Features
* Incorporates the ARM926EJ-S™ ARM® Thumb® Processor
— DSP Instruction Extensions, Jazelle® Technology for Java® Acceleration
— 16 Kbyte Data Cache, 16 Kbyte Instruction Cache, Write Buffer
— 220 MIPS at 200 MHz
— Memory Management Unit
— EmbeddedICE™, Debug Communication Channel Support
— Mid-level Implementation Embedded Trace Macrocell™
¢ Bus Matrix
— Nine 32-bit-layer Matrix, Allowing a Total of 28.8 Gbps of On-chip Bus Bandwidth
— Boot Mode Select Option, Remap Command
* Embedded Memories
— One 128 Kbyte Internal ROM, Single-cycle Access at Maximum Bus Matrix Speed
— One 80 Kbyte Internal SRAM, Single-cycle Access at Maximum Processor or Bus
Matrix Speed
— One 16 Kbyte Internal SRAM, Single-cycle Access at Maximum Bus Matrix Speed
¢ Dual External Bus Interface (EBIO and EBI1)
— EBIO Supports SDRAM, Static Memory, ECC-enabled NAND Flash and
CompactFlash®
— EBI1 Supports SDRAM, Static Memory and ECC-enabled NAND Flash
¢ DMA Controller (DMAC)
— Acts as one Bus Matrix Master
— Embeds 2 Unidirectional Channels with Programmable Priority, Address
Generation, Channel Buffering and Control
* Twenty Peripheral DMA Controller Channels (PDC)
¢ LCD Controller
— Supports Passive or Active Displays
— Up to 24 bits per Pixel in TFT Mode, Up to 16 bits per Pixel in STN Color Mode
— Up to 16M Colors in TFT Mode, Resolution Up to 2048x2048, Supports Virtual
Screen Buffers
¢ 2D Graphics Accelerator
- Line Draw, Block Transfer, Polygon Fill, Clipping, Commands Queuing
* Image Sensor Interface
— ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate
— 12-bit Data Interface for Support of High Sensibility Sensors
— SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format
¢ USB 2.0 Full Speed (12 Mbits per second) Host Double Port
— Dual On-chip Transceivers
- Integrated FIFOs and Dedicated DMA Channels
¢ USB 2.0 Full Speed (12 Mbits per second) Device Port
— On-chip Transceiver, 2,432-byte Configurable Integrated DPRAM
¢ Ethernet MAC 10/100 Base-T
— Media Independent Interface or Reduced Media Independent Interface
— 28-byte FIFOs and Dedicated DMA Channels for Receive and Transmit
¢ Fully-featured System Controller, including
— Reset Controller, Shutdown Controller
— Twenty 32-bit Battery Backup Registers for a Total of 80 Bytes
— Clock Generator and Power Management Controller
— Advanced Interrupt Controller and Debug Unit

ATMEL

Y

AT91 ARM
Thumb
Microcontrollers

AT91SAM9263

Preliminary

6249D-ATARM-20-Dec-07

ATMEL

— Periodic Interval Timer, Watchdog Timer and Double Real-time Timer
Reset Controller (RSTC)
— Based on Two Power-on Reset Cells, Reset Source Identification and Reset Output Control
Shutdown Controller (SHDWC)
— Programmable Shutdown Pin Control and Wake-up Circuitry
Clock Generator (CKGR)
— 32768Hz Low-power Oscillator on Battery Backup Power Supply, Providing a Permanent Slow Clock
— 3 to 20 MHz On-chip Oscillator and Two Up to 240 MHz PLLs
Power Management Controller (PMC)
— Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
— Four Programmable External Clock Signals
Advanced Interrupt Controller (AIC)
- Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
— Two External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected
Debug Unit (DBGU)
— 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access Prevention
Periodic Interval Timer (PIT)
— 20-bit Interval Timer plus 12-bit Interval Counter
Watchdog Timer (WDT)
— Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock
Two Real-time Timers (RTT)
— 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler
Five 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC, PIOD and PIOE)
— 160 Programmable I/O Lines Multiplexed with Up to Two Peripheral I/0s
— Input Change Interrupt Capability on Each I/O Line
- Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
One Part 2.0A and Part 2.0B-compliant CAN Controller
— 16 Fully-programmable Message Object Mailboxes, 16-bit Time Stamp Counter
Two Multimedia Card Interface (MCI)
— SDCard/SDIO and MultiMediaCard™ Compliant
— Automatic Protocol Control and Fast Automatic Data Transfers with PDC
— Two SDCard Slots Support on eAch Controller
Two Synchronous Serial Controllers (SSC)
— Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
- I?S Analog Interface Support, Time Division Multiplex Support
— High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
One AC97 Controller (AC97C)
— 6-channel Single AC97 Analog Front End Interface, Slot Assigner
Three Universal Synchronous/Asynchronous Receiver Transmitters (USART)
- Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding
— Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
Two Master/Slave Serial Peripheral Interface (SPI)
— 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
One Three-channel 16-bit Timer/Counters (TC)
— Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
— Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
One Four-channel 16-bit PWM Controller (PWMC)
One Two-wire Interface (TWI)
— Master Mode Support, All Two-wire Atmel® EEPROMs Supported

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

* IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins
* Required Power Supplies

- 1.08V to 1.32V for VDDCORE and VDDBU

— 3.0V to 3.6V for VDDOSC and VDDPLL

— 2.7V to 3.6V for VDDIOPO (Peripheral I/0s)

- 1.65V to 3.6V for VDDIOP1 (Peripheral 1/0s)

— Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOMO/VDDIOM1 (Memory 1/Os)
¢ Available in a 324-ball TFBGA Green Package

1. Description

The AT91SAM9263 32-bit microcontroller, based on the ARM926EJ-S processor, is architec-
tured on a 9-layer matrix, allowing a maximum internal bandwidth of nine 32-bit buses. It also
features two independent external memory buses, EBIO and EBI1, capable of interfacing with a
wide range of memory devices and an IDE hard disk. Two external buses prevent bottlenecks,
thus guaranteeing maximum performance.

The AT91SAM9263 embeds an LCD Controller supported by a 2D Graphics Controller and a 2-
channel DMA Controller, and one Image Sensor Interface. It also integrates several standard
peripherals, such as USART, SPI, TWI, Timer Counters, PWM Generators, Multimedia Card
interface and one CAN Controller.

When coupled with an external GPS engine, the AT91SAM9263 provides the ideal solution for
navigation systems.

ATMEL ;

6249D-ATARM-20-Dec-07

AIMEL

I ()

AT91SAM9263 Block Diagram

2,

AT91SAM9263 Block Diagram

Figure 2-1.

IMANVN ‘JOANVN
0lvds ‘Imas
SVO ‘svd

SOANVYN/ZSON
SOAdS/LSON
£SaN/EdMN

1IVMN

ITOANVN/eeY
TVANVN/LSY
»0as
LSAN/LHMN
IMN/0OHMN
adN

O0SON

Lva/LLv
ova/9Lvy
0cv-8LV/SlV-cV
CHMN/LY
0SaN/0vY

~Lg3 S1La-oa

2ZSON

Lea-9ia
23040-13040
MNYHD/Sev
SOANVN/ESON
1SO40/SSON
0SO40/¥SON
ev-eev
1IVMN

3TOANVN/CeVY

FTVANVN/ LoV

IMANVYN 'SOANVN

0lvds ‘Imas

SVO ‘svd

3IHMOAs Moas

£SAN/EdMN

LSEN/LHMN

IMN/OHMN

adnN

SOds/LSON

0SON

Lva/LLy

oveamsLy

02V-8lY ‘SLv-gv

CHMN/SSAN/LY

0SaN/ov

— S1a-oa
olg3a

%VO
o >y > — 19
N m%&&/\ Qo &o/wnm‘.% S Has 0l Oﬁ.@ﬂo&&a\w«u e Oo_oh,_
S o SIS AR S8 - S D 00 DS & &
QDL SO %&ObeUD SERS NN > RTRREIRII IR QA A VRS GBI S S
IS VA KOO N 2NN S SO ¥ SRR eX
PO OF SRS RO OFEDS B ST P P

J9jj0)u0)
003 eoBpalU| vog 201 214vsn
losusg someq 10SS 1oL Hds L1dvSN ML LIOW
J9jj00u0D abeuw asn 00SS 0260V 00L | |OoWMd olds NVO 0L4vsn OION
Aiows
onels YING oad 0ad oad
Ja|jonuo)d * * * * » »
ANVHas ady »
1SHN
yseld aNVN 19110:3U0D —3y00aan
Has3 solydelrn vING i@o .
. resoydued obpug
de 1suueLo-g [suueyo-0g [eieyduad saMhay 9t dNIMm
NaHS
vING NVHS
—> 2ELNOX
\ 4 « « + + * [«—— CENIX
19]|043U0D
oo3 —— naaaa
T —— 3y00aan
Kiows XU}e\ sng Jake|-6
N
oneis | [T selayl 08
> VYIS 1sed oso [Nox
l«— NIX
l9|j01u0D g77d J«— 904T1d
WvHas a | v1ld _|*— vouTid
vINg VNG VvING soepew] Sng Wola Woul OINd]
<—> £310d-030d
[oad] [oal4] [oa1d][Ln] Se1Ad oL seifadaL| eoepelul WOL o <« > axia
ayoenqa NAW ayoe)|
IoHO OVIN noaa [«<—> axyda
useld ANVN asn QuJd 18l104U09 3 ‘oeinwi3 LOYI-004|
yse|41oedwon ! W3 0010k aon 10S$9201d S-r3926NHYV | ynono-ul oY DG o4
2N D
oig3 - HHHHHHHHH Tiiiy I 111t 18]103U0D
OSUBLL [rosuBdL N N _ ueog Arepunog Dy _ welshs l«—— 1S1
Sy PLLODDPPL SSENS & ey o DSOS
SIS RRULEEIAD SOOBEE” ¥ R0 P P
;Y & o&o&o ,mv&.& N0 SRS %0«00¢+ &5 ¥
3 05 NS
&.,.M LN w,owu¢w¢oo @w_w&v ANVTS e HILSYIN
S T S R
DG &
>
&
>
o
l/—'

Inlhelg'a |

AT91SAM9263 Prel

4

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

3. Signal Description
Table 3-1 gives details on the signal name classified by peripheral.

Table 3-1. Signal Description List
Active
Signal Name Function Type Level Comments
Power Supplies
VDDIOMO EBIO I/O Lines Power Supply Power 1.65V to 3.6V
VDDIOM1 EBI1 I/O Lines Power Supply Power 1.65V to 3.6V
VDDIOPO Peripherals 1/0O Lines Power Supply Power 2.7V to 3.6V
VDDIOP1 Peripherals I/O Lines Power Supply Power 1.65V to 3.6V
VDDBU Backup 1/0 Lines Power Supply Power 1.08V to 1.32V
VDDPLL PLL Power Supply Power 3.0V to 3.6V
VDDOSC Oscillator Power Supply Power 3.0V to 3.6V
VDDCORE Core Chip Power Supply Power 1.08V to 1.32V
GND Ground Ground
GNDPLL PLL Ground Ground
GNDBU Backup Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input
XOUT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input
XOUT32 Slow Clock Oscillator Output Output
PLLRCA PLL A Filter Input
PLLRCB PLL B Filter Input
PCKO - PCK3 Programmable Clock Output Output
Shutdown, Wakeup Logic
SHDN Shutdown Control Output SJZeCSBg\G_Only' Do not tie
WKUP Wake-up Input Input {oospis betiween OV and
ICE and JTAG
NTRST Test Reset Signal Input Low Pull-up resistor
TCK Test Clock Input No pull-up resistor
TDI Test Data In Input No pull-up resistor
TDO Test Data Out Output
T™MS Test Mode Select Input No pull-up resistor
JTAGSEL JTAG Selection Input P donn TesSton Looeps
RTCK Return Test Clock Output

6249D-ATARM-20-Dec-07

ATMEL

ATMEL

Table 3-1. Signal Description List (Continued)
Active
Signal Name Function Type Level Comments
Embedded Trace Module - ETM
TSYNC Trace Synchronization Signal Output
TCLK Trace Clock Output
TPSO - TPS2 Trace ARM Pipeline Status Output
TPKO - TPK15 Trace Packet Port Output
Reset/Test
NRST Microcontroller Reset I/0 Low Pull-up resistor
TST Test Mode Select Input Pull-down resistor
BMS Boot Mode Select Input
Debug Unit - DBGU

DRXD Debug Receive Data Input
DTXD Debug Transmit Data Output

Advanced Interrupt Controller - AIC
IRQO - IRQ1 External Interrupt Inputs Input
FlQ Fast Interrupt Input Input

PIO Controller - PIOA - PIOB - PIOC - PIOD - PIOE
PAO - PA31 Parallel 10 Controller A I/O Pulled-up input at reset
PBO - PB31 Parallel 10 Controller B I/O Pulled-up input at reset
PCO - PC31 Parallel 10 Controller C IO Pulled-up input at reset
PDO - PD31 Parallel 10 Controller D I/0 Pulled-up input at reset
PEO - PE31 Parallel 10 Controller E I/O Pulled-up input at reset
Direct Memory Access Controller - DMA

DMARQO-DMARQ3 DMA Requests Input ‘ ‘

External Bus Interface - EBIO - EBI1
EBIx_DO - EBIx_D31 Data Bus 110 Pulled-up input at reset
EBIx_AO - EBIx_A25 Address Bus Output 0 at reset
EBIx_NWAIT External Wait Signal Input Low

Static Memory Controller - SMC
Eg:?::ggg Eg:?:mggg Chip Select Lines Output Low
EBIx_NWRO -EBIx_NWR3 Write Signal Output Low
EBIx_NRD Read Signal Output Low
EBIx_NWE Write Enable Output Low
EBIx_NBSO - EBIx_NBS3 Byte Mask Signal Output Low
CompactFlash Support

EBIO_CFCE1 - EBIO_CFCE2 ‘ CompactFlash Chip Enable ‘ Output ‘ Low ‘

6 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 3-1. Signal Description List (Continued)

Active
Signal Name Function Type Level Comments
EBIO_CFOE CompactFlash Output Enable Output Low
EBIO_CFWE CompactFlash Write Enable Output Low
EBIO_CFIOR CompactFlash IO Read Output Low
EBIO_CFIOW CompactFlash IO Write Output Low
EBIO_CFRNW CompactFlash Read Not Write Output
EBIO_CFCSO - EBIO_CFCS1 | CompactFlash Chip Select Lines Output Low
NAND Flash Support
EBIx_NANDCS NAND Flash Chip Select Output Low
EBIx_NANDOE NAND Flash Output Enable Output Low
EBIx_NANDWE NAND Flash Write Enable Output Low
SDRAM Controller
EBIx_SDCK SDRAM Clock Output
EBIx_SDCKE SDRAM Clock Enable Output High
EBIx_SDCS SDRAM Controller Chip Select Output Low
EBIx_BAO - EBIx_BA1 Bank Select Output
EBIx_SDWE SDRAM Write Enable Output Low
EBIx_RAS - EBIx_CAS Row and Column Signal Output Low
EBIx_SDA10 SDRAM Address 10 Line Output
Multimedia Card Interface
MCIx_CK Multimedia Card Clock Output
MCIx_CDA Multimedia Card Slot A Command I/O
MCIx_CDB Multimedia Card Slot B Command /0
MCIx_DAO - MCIx_DAS3 Multimedia Card Slot A Data I/O
MCIx_DBO0 - MCIx_DB3 Multimedia Card Slot B Data 110
Universal Synchronous Asynchronous Receiver Transmitter USART

SCKx USARTX Serial Clock I/O
TXDx USARTXx Transmit Data I/O
RXDx USARTX Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTXx Clear To Send Input

Synchronous Serial Controller SSC
TDx SSCx Transmit Data Output
RDx SSCx Receive Data Input
TKx SSCx Transmit Clock I/0
RKx SSCx Receive Clock I/O

ATMEL 7

6249D-ATARM-20-Dec-07

ATMEL

Table 3-1. Signal Description List (Continued)

Active
Signal Name Function Type Level Comments
TFx SSCx Transmit Frame Sync I/O
RFx SSCx Receive Frame Sync /0
AC97 Controller - AC97C
AC97RX AC97 Receive Signal Input
AC97TX AC97 Transmit Signal Output
AC97FS AC97 Frame Synchronization Signal Output
AC97CK AC97 Clock signal Input
Timer/Counter - TC
TCLKx TC Channel x External Clock Input Input
TIOAX TC Channel x I/0O Line A /0
TIOBx TC Channel x I/O Line B I/0
Pulse Width Modulation Controller- PWMC

PWMx Pulse Width Modulation Output Output ‘ ‘

Serial Peripheral Interface - SPI
SPIx_MISO Master In Slave Out I/0
SPIx_MOSI Master Out Slave In I/0
SPIx_SPCK SPI Serial Clock I/0
SPIx_NPCS0 SPI Peripheral Chip Select 0 I/0 Low
SPIx_NPCS1 - SPIx_NPCS3 | SPI Peripheral Chip Select Output Low

Two-Wire Interface
TWD Two-wire Serial Data I/0
TWCK Two-wire Serial Clock I/0
CAN Controllers
CANRX CAN Input Input
CANTX CAN Output Output
LCD Controller - LCDC
LCDDO - LCDD23 LCD Data Bus Output
LCDVSYNC LCD Vertical Synchronization Output
LCDHSYNC LCD Horizontal Synchronization Output
LCDDOTCK LCD Dot Clock Output
LCDDEN LCD Data Enable Output
LCDCC LCD Contrast Control Output
Ethernet 10/100

ETXCK Transmit Clock or Reference Clock Input MIl only, REFCK in RMII
ERXCK Receive Clock Input MIl only

8 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 3-1. Signal Description List (Continued)
Active
Signal Name Function Type Level Comments
ETXEN Transmit Enable Output
ETX0-ETX3 Transmit Data Output ETX0-ETX1 only in RMII
ETXER Transmit Coding Error Output Mil only
ERXDV Receive Data Valid Input RXDV in Mll, CRSDV in RMII
ERXO0-ERX3 Receive Data Input ERXO0-ERX1 only in RMII
ERXER Receive Error Input
ECRS Carrier Sense and Data Valid Input Mil only
ECOL Collision Detect Input Mil only
EMDC Management Data Clock Output
EMDIO Management Data Input/Output I/0
EF100 Force 100Mbit/sec. Output High RMII only
USB Device Port
DDM USB Device Port Data - Analog
DDP USB Device Port Data + Analog
USB Host Port
HDPA USB Host Port A Data + Analog
HDMA USB Host Port A Data - Analog
HDPB USB Host Port B Data + Analog
HDMB USB Host Port B Data - Analog
Image Sensor Interface - ISI
ISI_DO-ISI_D11 Image Sensor Data Input
ISI_MCK Image Sensor Reference Clock Output
ISI_HSYNC Image Sensor Horizontal Synchro Input
ISI_VSYNC Image Sensor Vertical Synchro Input
ISI_PCK Image Sensor Data Clock Input

6249D-ATARM-20-Dec-07

ATMEL

ATMEL

4. Package and Pinout

The AT91SAM9263 is available in a 324-ball TFBGA Green package, 15 x 15 mm, 0.8mm ball
pitch.

4.1 324-ball TFBGA Package Outline
Figure 4-1 shows the orientation of the 324-ball TFBGA package.
A detailed mechanical description is given in the section “AT91SAM9263 Mechanical Character-
istics” in the product datasheet.

Figure 4-1. 324-ball TFBGA Pinout (Top View)

Pin A1 Corner TOP VIEW
X 123456 7 8 91011121314151617 18

Oo0OO0OOOODOOOOOODODOOOODO
OO0OOOODODOODODODOODODODODOODOOO
Oo0OO0OOOODOOOOOODODOOOODO
OO0OOOODODOODODODOODODODODOODOOO
OO0OOOOODOOOODOOOODOODOO
Oo0oo0oOOOODOOOODOODOOOOOO
OO0OOODODODOOODOODODOODOODOO
Oo0oo0oOOOODOOOODOODOOOOOO
OO0OOODODODOOODOODODOODOODOO
Oo0oo0oOOOODOOOODOODOOOOOO
OO0OOODODODOOODOODODOODOODOO
OO0OOODODODOOODOODODOODOODOO
Oo0oo0oOOOODOOOODOODOOOOOO
OO0OOODODODOOODOODODOODOODOO
OO0OOOODODOODOODOODODOOODOO
OO0OOOOODOODODODOOODODODOODOOO
OO0OOODOODODODODODOOOODODO ODOO
OO0OOODOOODOODOOOOODODOOOO

<KCHIDVZZIrARSCSIOTMMOO ®>

10 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

4.2 324-ball TFBGA Package Pinout

Table 4-1. AT91SAM9263 Pinout for 324-ball TFBGA Package

™ Pin §igna| Name ™Pin Signal Name ™ Pin §igna| Name ™Pin §igna| Name
Al EBIO_D2 E10 | PC31 K1 PE6 P10 | EBI1_NCSO
A2 EBIO_SDCKE E11 | PC22 K2 PD28 P11 | EBI1_NWE_NWRO
A3 EBIO_NWE_NWRO E12 | PC15 K3 PEO P12 | EBI1_D4
A4 EBIO_NCS1_SDCS E13 | PC11 K4 PE1 P13 | EBI1_D10
A5 EBIO_A19 E14 | PC4 K5 PD27 P14 | PA3
A6 EBIO_A11 E15 | PB30 K6 PD31 P15 | PA2
A7 EBIO_A10 E16 | PCO K7 PD29 P16 | PE28
A8 EBIO_A5 E17 | PB31 K8 PD25 P17 | TDI
A9 EBIO_A1_NBS2_NWR2 E18 | HDPA K9 GND P18 | PLLRCB
A10 | PD4 F1 PD7 K10 | VDDIOMO R1 XOUT32
A11 | PC30 F2 EBIO_D13 K11 | GND R2 TST
A12 | PC26 F3 EBIO_D9 K12 | VDDIOMO R3 PA18
A13 | PC24 F4 EBIO_D11 K13 | PB3/BMS R4 PA25
A14 | PC19 F5 EBIO_D12 K14 | PA14 R5 PA30
A15 | PC12 F6 EBIO_NCSO0 K15 | PA15 R6 EBI1_A2
A16 | VDDCORE F7 EBIO_A16_BAO K16 | PB1 R7 EBI1_A14
A17 | VDDIOPO F8 EBIO_A12 K17 | PBO R8 EBI1_A13
A18 | DDP F9 EBIO_A6 K18 | PB2 R9 EBI1_A17_BA1
B1 EBIO_D4 F10 | PD3 L1 PE10 R10 | EBI1_D1
B2 EBIO_NANDOE F11 | PC27 L2 PE4 R11 | EBI1_D8
B3 EBIO_CAS F12 | PC18 L3 PE9 R12 | EBI1_D12
B4 EBIO_RAS F13 | PC13 L4 PE7 R13 | EBI1_D15
B5 EBIO_NBS3_NWR3 F14 | PB26 L5 PE5 R14 | PE26
B6 EBIO_A22 F15 | PB25 L6 PE2 R15 | EBI1_SDCK
B7 EBIO_A15 F16 | PB29 L7 PE3 R16 | PE30
B8 EBIO_A7 F17 | PB27 L8 VDDIOP1 R17 | TCK
B9 EBIO_A4 F18 | HDMA L9 VDDIOMH1 R18 | XOUT
B10 | PDO G1 PD17 L10 | VDDIOMO T VDDOSC
B11 | PC28 G2 PD12 L11 VDDIOPO T2 VDDIOMH1
B12 | PC21 G3 PD6 L12 | GNDBU T3 PA19
B13 | PC17 G4 EBIO_D14 L13 | PA13 T4 PA21
B14 | PC9 G5 PD5 L14 | PB4 T5 PA26
B15 | PC7 G6 PD8 L15 | PA9 T6 PA31
B16 | PC5 G7 PD10 L16 | PA12 T7 EBI1_A7
B17 | PB16 G8 GND L17 | PA10 T8 EBI1_A12
B18 | DDM G9 NC™ L18 | PA11 T9 EBI1_A18
C1 EBIO_D6 G10 | GND M1 PE18 T10 | EBI1_DO
c2 EBIO_DO G11 | GND M2 PE14 T11 | EBI1_D7
C3 EBIO_NANDWE G12 | GND M3 PE15 T12 | EBI1_D14
C4 EBIO_SDWE G13 | PB21 M4 PE11 T13 | PE23
C5 EBIO_SDCK G14 | PB20 M5 PE13 T14 | PE25
C6 EBIO_A21 G15 | PB23 M6 PE12 T15 | PE29
Cc7 EBIO_A13 G16 | PB28 M7 PE8 T16 | PE31
C8 EBIO_A8 G17 | PB22 M8 VDDBU T17 | GNDPLL
C9 EBIO_A3 G18 | PB18 M9 EBI1_A21 T18 | XIN
C10 | PD2 H1 PD24 M10 | VDDIOM1 U1 PA17
C11 | PC29 H2 PD13 M11 | GND U2 PA20
C12 | PC23 H3 PD15 M12 | GND (UK] PA23
C13 | PC14 H4 PD9 M13 | VDDIOM1 U4 PA24
C14 | PC8 H5 PD11 M14 | PA6 us PA28

6249D-ATARM-20-Dec-07

ATMEL

11

ATMEL

Table 4-1. AT91SAM9263 Pinout for 324-ball TFBGA Package (Continued)
™ Pin §igna| Name ™Pin Signal Name ™ Pin Signal Name ™Pin §igna| Name
C15 | PC3 H6 PD14 M15 | PA4 ue6 EBI1_AO0_NBSO
C16 | GND H7 PD16 M16 | PA7 u7 EBI1_A5
C17 | VDDIOPO H8 VDDIOMO M17 | PA5 us EBI1_A10
C18 | HDPB H9 GND M18 | PA8 U9 EBI1_A16_BAO
D1 EBIO_D10 H10 | VDDCORE N1 NC U10 | EBI1_NRD
D2 EBIO_D3 H11 | GND N2 NC Uil | EBI1_D3
D3 NC™ H12 | PB19 N3 PE19 ui2 | EBI1_D13
D4 EBIO_D1 H13 | PB17 N4 NC™ U13 | PE22
D5 EBIO_A20 H14 | PB15 N5 PE17 uti4 | PE27
D6 EBIO_A17_BA1 H15 | PB13 N6 PE16 Ut15 | RTCK
D7 EBIO_A18 H16 | PB24 N7 EBI1_A6 U16 | NTRST
D8 EBIO_A9 H17 | PB14 N8 EBI1_A11 U17 | VDDPLLA
D9 EBIO_A2 H18 | PB12 N9 EBI1_A22 U18 | PLLRCA
D10 | PD1 J1 PD30 N10 | EBI1_D2 VA1 VDDCORE
D11 | PC25 J2 PD26 N11 | EBI1_D6 V2 PA22
D12 | PC20 J3 PD22 N12 | EBI1_D9 V3 PA27
D13 | PC6 J4 PD19 N13 | GND V4 PA29
D14 | PC16 J5 PD18 N14 | GNDPLL V5 EBI1_A1_NWR2
D15 | PC10 J6 PD23 N15 | PA1 Vé EBI1_A3
D16 | PC2 J7 PD21 N16 | PAO V7 EBI1_A9
D17 | PC1 J8 PD20 N17 | TMS V8 EBI1_A15
D18 | HDMB J9 GND N18 | TDO V9 EBI1_A20
E1 EBIO_D15 J10 | GND P1 XIN32 V10 | EBI1_NBS1_NWRI1
E2 EBIO_D7 J11 GND P2 SHDN Vi1 | EBI1_D5
E3 EBIO_D5 J12 | PB11 P3 PA16 Vi2 | EBI1_D11
E4 EBIO_D8 J13 | PB9 P4 WKUP V13 | PE21
E5 EBIO_NBS1_NWR1 J14 | PB10 P5 JTAGSEL V14 | PE24
E6 EBIO_NRD J15 | PB5 P6 PE20 V15 | NRST
E7 EBIO_A14 J16 | PB6 P7 EBI1_A8 V16 | GND
ES8 EBIO_SDA10 J17 | PB7 P8 EBI1_A4 V17 | GND
E9 EBIO_AO_NBSO J18 | PB8 P9 EBI1_A19 V18 | VDDPLLB

Note: 1. NC pins must be left unconnected.

5. Power Considerations

5.1 Power Supplies

12

AT91SAM9263 has several types of power supply pins:

¢ VDDCORE pins: Power the core, including the processor, the embedded memories and the
peripherals; voltage ranges from 1.08V to 1.32V, 1.2V nominal. During startup, core supply
voltage (VDDCORE) slope must be superior or equal to 5V/ms.

* VDDIOMO and VDDIOM1 pins: Power the External Bus Interface 0 I/O lines and the External
Bus Interface 1 I/O lines, respectively; voltage ranges between 1.65V and 1.95V (1.8V
nominal) or between 3.0V and 3.6V (3.3V nominal).

* VDDIOPOQ pins: Power the Peripheral I/O lines and the USB transceivers; voltage ranges from
2.7V to 3.6V, 3.3V nominal.

* VDDIOP1 pins: Power the Peripheral I/O lines involving the Image Sensor Interface; voltage
ranges from 1.65V to 3.6V, 1.8V, 2.5V, 3V or 3.3V nominal.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

» VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage
ranges from 1.08V to 1.32V, 1.2V nominal. During startup, backup voltage (VDDBU) slope
must be superior or equal to 5V/ms.

¢ VDDPLL pin: Powers the PLL cells; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
* VDDOSC pin: Powers the Main Oscillator cells; voltage ranges from 3.0V to 3.6V, L3.3V
nominal.

The power supplies VDDIOMO, VDDIOM1 and VDDIOPO, VDDIOP1 are identified in the pinout
table and the multiplexing tables. These supplies enable the user to power the device differently
for interfacing with memories and for interfacing with peripherals.

Ground pins GND are common to VDDOSC, VDDCORE, VDDIOMO, VDDIOM1, VDDIOPO and
VDDIOP1 pins power supplies. Separated ground pins are provided for VDDBU and VDDPLL.
These ground pins are respectively GNDBU and GNDPLL.

5.2 Power Consumption

The AT91SAM9263 consumes about 700 pA (worst case) of static current on VDDCORE at
25°C. This static current rises at up to 7 mA if the temperature increases to 85°C.

On VDDBU, the current does not exceed 3 pA @25°C, but can rise at up to 20 pA @85°C. An
automatic switch to VDDCORE guarantees low power consumption on the battery when the sys-
tem is on.

For dynamic power consumption, the AT91SAM9263 consumes a maximum of 70 mA on
VDDCORE at maximum conditions (1.2V, 25°C, processor running full-performance algorithm).

5.3 Programmable I/O Lines Power Supplies

The power supply pins VDDIOMO and VDDIOM1 accept two voltage ranges. This allows the
device to reach its maximum speed, either out of 1.8V or 3.0V external memories.

The maximum speed is 100 MHz on the pin SDCK (SDRAM Clock) loaded with 30 pF for power
supply at 1.8V and 50pF for power supply at 3.3V. The other signals (control, address and data
signals) do not go over 50MHz.

The voltage ranges are determined by programming registers in the Chip Configuration registers
located in the Matrix User Interface.

At reset, the selected voltage defaults to 3.3V nominal and power supply pins can accept either
1.8V or 3.3V. However, the device cannot reach its maximum speed if the voltage supplied to
the pins is only 1.8V without reprogramming the EBIO voltage range. The user must be sure to
program the EBIO voltage range before getting the device out of its Slow Clock Mode.

6. 1/0 Line Considerations

6.1 JTAG Port Pins
TMS, TDI and TCK are Schmitt trigger inputs and have no pull-up resistors.

TDO and RTCK are outputs, driven at up to VDDIOPO, and have no pull-up resistors.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level
(vDDBU). It integrates a permanent pull-down resistor of about 15 kQ to GNDBU, so that it can
be left unconnected for normal operations.

ATMEL 1

6249D-ATARM-20-Dec-07

6.2

6.3

6.4

6.5

Test Pin

Reset Pins

ATMEL

The NTRST signal is described in Section 6.3.
All JTAG signals except JTAGSEL (VDDBU) are supplied with VDDIOPO.

The TST pin is used for manufacturing test purposes when asserted high. It integrates a perma-
nent pull-down resistor of about 15 kQ to GNDBU, so that it can be left unconnected for normal
operations. Driving this line at a high level leads to unpredictable results.

This pin is supplied with VDDBU.

NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven
with voltage at up to VDDIOPO.

NTRST is an input which allows reset of the JTAG Test Access port. It has no action on the
processor.

As the product integrates power-on reset cells, which manage the processor and the JTAG
reset, the NRST and NTRST pins can be left unconnected.

The NRST and NTRST pins both integrate a permanent pull-up resistor of 100 kQ minimum to
VDDIOPO.

The NRST signal is inserted in the Boundary Scan.

PIO Controllers

All the I/0O lines managed by the PIO Controllers integrate a programmable pull-up resistor of
100 kQ typical. Programming of this pull-up resistor is performed independently for each 1/O line
through the PI1O Controllers.

After reset, all the 1/O lines default as inputs with pull-up resistors enabled, except those which
are multiplexed with the External Bus Interface signals that require to be enabled as Peripheral
at reset. This is explicitly indicated in the column “Reset State” of the PIO Controller multiplexing
tables on page 35 and following.

Shutdown Logic Pins

The SHDN pin is an output only, which is driven by the Shutdown Controller.
The pin WKUP is an input only. It can accept voltages only between 0V and VDDBU.

7. Processor and Architecture

71

14

ARM926EJ-S Processor

* RISC Processor based on ARM v5TEJ Harvard Architecture with Jazelle technology for Java
acceleration

¢ Two Instruction Sets

— ARM High-performance 32-bit Instruction Set

— Thumb High Code Density 16-bit Instruction Set
¢ DSP Instruction Extensions
* 5-stage Pipeline Architecture

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

— Instruction Fetch (F)
— Instruction Decode (D)
— Execute (E)
— Data Memory (M)
— Register Write (W)
¢ 16 Kbyte Data Cache, 16 Kbyte Instruction Cache
— Virtually-addressed 4-way Associative Cache
— Eight words per line
— Write-through and Write-back Operation
— Pseudo-random or Round-robin Replacement
* Write Buffer
— Main Write Buffer with 16-word Data Buffer and 4-address Buffer
— DCache Write-back Buffer with 8-word Entries and a Single Address Entry
— Software Control Drain
» Standard ARM v4 and v5 Memory Management Unit (MMU)
— Access Permission for Sections

— Access Permission for large pages and small pages can be specified separately for
each quarter of the page

— 16 embedded domains
* Bus Interface Unit (BIU)
— Arbitrates and Schedules AHB Requests

— Separate Masters for both instruction and data access providing complete Matrix
system flexibility

— Separate Address and Data Buses for both the 32-bit instruction interface and the
32-bit data interface

— On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit
(Words)

7.2 Bus Matrix
* O-layer Matrix, handling requests from 9 masters
e Programmable Arbitration strategy
— Fixed-priority Arbitration
— Round-Robin Arbitration, either with no default master, last accessed default master
or fixed default master

¢ Burst Management
— Breaking with Slot Cycle Limit Support
— Undefined Burst Length Support

* One Address Decoder provided per Master

— Three different slaves may be assigned to each decoded memory area: one for
internal boot, one for external boot, one after remap

* Boot Mode Select
— Non-volatile Boot Memory can be internal or external

ATMEL 1

6249D-ATARM-20-Dec-07

ATMEL

— Selection is made by BMS pin sampled at reset

¢ Remap Command
— Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory
— Allows Handling of Dynamic Exception Vectors

7.3 Matrix Masters

The Bus Matrix of the AT91SAM9263 manages nine masters, thus each master can perform an
access concurrently with others to an available slave peripheral or memory.

Each master has its own decoder, which is defined specifically for each master.

Table 7-1. List of Bus Matrix Masters

Master 0 OHCI USB Host Controller
Master 1 Image Sensor Interface
Master 2 2D Graphic Controller
Master 3 DMA Controller

Master 4 Ethernet MAC

Master 5 LCD Controller

Master 6 Peripheral DMA Controller
Master 7 ARM926 Data

Master 8 ARM926™ Instruction

7.4 Matrix Slaves
The Bus Matrix of the AT91SAM9263 manages eight slaves. Each slave has its own arbiter,
thus allowing to program a different arbitration per slave.

The LCD Controller, the DMA Controller, the USB OTG and the USB Host have a user interface
mapped as a slave on the Matrix. They share the same layer, as programming them does not
require a high bandwidth.

Table 7-2. List of Bus Matrix Slaves

Slave 0 Internal ROM
Slave 1 Internal 80 Kbyte SRAM
Slave 2 Internal 16 Kbyte SRAM

LCD Controller User Interface

Slave 3 DMA Controller User Interface

USB Host User Interface

Slave 4 External Bus Interface 0
Slave 5 External Bus Interface 1
Slave 6 Peripheral Bridge

16 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

7.5 Master to Slave Access
In most cases, all the masters can access all the slaves. However, some paths do not make
sense, for example, allowing access from the Ethernet MAC to the Internal Peripherals. Thus,
these paths are forbidden or simply not wired, and are shown as “-” in Table 7-3.

Table 7-3. Masters to Slaves Access
Master 0 1 2 3 4 5 6 7&8
OHCI USB Image 2D Peripheral ARM926
Slave Host Sensor Graphics DMA Ethernet LCD DMA Data &
Controller MAC Controller .
Controller Interface | Controller Controller Instruction
0 Internal ROM X X X X X X X X
Internal 80 Kbyte
1 SRAM X X X X X X X X
5 Internal 16 Kbyte X X X X X X X X

SRAM Bank

LCD Controller
User Interface

DMA Controller
User Interface

USB Host User

Interface i i i i))) X

4 External Bus X X X X X X X X
Interface O

5 External Bus X X X X X X X X
Interface 1

6 Peripheral Bridge - - - X - - X X

7.6 Peripheral DMA Controller
¢ Acts as one Matrix Master

 Allows data transfers between a peripheral and memory without any intervention of the
processor

* Next Pointer support, removes heavy real-time constraints on buffer management.
* Twenty channels
— Two for each USART
— Two for the Debug Unit
— Two for each Serial Synchronous Controller
— Two for each Serial Peripheral Interface
— Two for the AC97 Controller
— One for each Multimedia Card Interface
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-
lowing priorities (low to high priorities):
— DBGU Transmit Channel
— USART2 Transmit Channel

ATMEL L

6249D-ATARM-20-Dec-07

7.7

18

— USART1 Transmit Channel

— USARTO Transmit Channel

— AC97 Transmit Channel

— SPI1 Transmit Channel

— SPI0 Transmit Channel

— 8SC1 Transmit Channel

— SSCO Transmit Channel

— DBGU Receive Channel

— USART2 Receive Channel

— USART1 Receive Channel

— USARTO Receive Channel

— AC97 Receive Channel

— SPI1 Receive Channel

— SPI0 Receive Channel

— SSC1 Receive Channel

— SSCO0 Receive Channel

— MCI1 Transmit/Receive Channel
— MCIO Transmit/Receive Channel

DMA Controller
¢ Acts as one Matrix Master
* Embeds 2 unidirectional channels with programmable priority
* Address Generation
— Source/destination address programming
— Address increment, decrement or no change

— DMA chaining support for multiple non-contiguous data blocks through use of linked
lists

— Scatter support for placing fields into a system memory area from a contiguous
transfer. Writing a stream of data into non-contiguous fields in system memory.

— Gather support for extracting fields from a system memory area into a contiguous
transfer

— User enabled auto-reloading of source, destination and control registers from initially
programmed values at the end of a block transfer

— Auto-loading of source, destination and control registers from system memory at end
of block transfer in block chaining mode

— Unaligned system address to data transfer width supported in hardware
* Channel Buffering

— Two 8-word FIFOs

— Automatic packing/unpacking of data to fit FIFO width
¢ Channel Control

— Programmable multiple transaction size for each channel

— Support for cleanly disabling a channel without data loss

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

— Suspend DMA operation

— Programmable DMA lock transfer support.
e Transfer Initiation

— Supports four external DMA Requests

— Support for software handshaking interface. Memory mapped registers can be used
to control the flow of a DMA transfer in place of a hardware handshaking interface

e Interrupt

— Programmable interrupt generation on DMA transfer completion, Block transfer
completion, Single/Multiple transaction completion or Error condition

7.8 Debug and Test Features

* ARM926 Real-time In-circuit Emulator
— Two real-time Watchpoint Units
— Two Independent Registers: Debug Control Register and Debug Status Register
— Test Access Port Accessible through JTAG Protocol
— Debug Communications Channel

* Debug Unit
— Two-pin UART
— Debug Communication Channel Interrupt Handling
— Chip ID Register

» Embedded Trace Macrocell: ETM9™
— Medium+ Level Implementation
— Half-rate Clock Mode
— Four Pairs of Address Comparators
— Two Data Comparators
— Eight Memory Map Decoder Inputs
— Two 16-bit Counters
— One 3-stage Sequencer
— One 45-byte FIFO

* |IEEE1149.1 JTAG Boundary-scan on All Digital Pins

ATMEL 1

6249D-ATARM-20-Dec-07

ATMEL

8. Memories

Figure 8-1. AT91SAM9263 Memory Mapping

Address Memory Space Internal Memory Mapping

- " 0x00000000 Notes:
0x0000 0000 Boot Memory (1) (1) Can be ROM, EBIO_NCSO0 or SRAM
0x0010 0000 depending on BMS and REMAP
Internal Memories | 256M Bytes ITCM (2) (2) Software programmable
OXOFFF FFFF 0x0020 0000
0x1000 0000 DTCM @)
EBI0 et 0x0030 0000 SRAM @)
i es
Chip Select 0 4 0x0040 0000
Ox1FFF FFFF ROM
0x2000 0000 Ca10 0x0050 0000 SO
Chip Select 1/ 256M Bytes 0x0060 0000
P EBIO SDRAMC Reserved
X
0x0070 0000
0x3000 0000 LCD Controller
EBIO 0x0080 0000
Chip Select 2 256M Bytes DMAC
Ox3FFF FFFF 0x0090 0000
0x4000 0000 Reserved
_EBIO 0X00A0 0000
Chip Select3/ | 256M Bytes USB HOST
JpP— NANDFlash 0X00BO 0000
)X
0x5000 0000 810 Reserved
i Peripheral Mappin
g hip Set'chlt 4{} 256M Bytes P Pping
ompact Flas 0xF000 0000
OX5FFF FFFF Slot 0 Reserved 16K Bytes
0x6000 0000 EBIO OxFFF7 8000 :
Chip Select 5/ 256M Bt UDP 16K Bytes System Controller Mapping
es
Compact Flash V OxFFF7 C000 OxFFFF C000
Ox6FFF FFFF Slot 1 TCO, TC1, TC2 16K Bytes Reserved
0x7000 0000 0XFFF8 0000
EBI MCI0 16K Bytes OxFFFF E000 ECCO 512 Bytes
Chip Select 0 256M Bytes 0xFFF8 4000
OXFFFF E200
OX7FFF FFFF melt 16K Bytes SDRAMCO 512 Bytes
0x8000 0000 OxFFF8 8000
EBI1 ™w 16K Bytes OXFFFF E400 GO 612 Briee
Chip Select 1/ | 256M Bytes OXFFF8 C000 Y
S EBI1 SDRAMC USARTO 16K Bytes OxFFFF E600 ECC1 512 bytes
0%9000 0000 0xFFF9 0000 OXFFFF E800 ’
EBI USART1 16K Bytes SDRAMCH 512 Bytes
Chip Select2/ | 256M Bytes OxFFF9 4000
NANDFlash USART2 16K Bytes OXFFFFEAQO smCt 512 Bytes
Ox9FFF FFFF O0xFFF9 8000
0xA000 0000 $5C0 16K Bytes OxFFFF EC0O MATRIX .
7777777777777 es
OXFFF9 C000 OxFFFF ED10 cora Y
SSC1 16K Bytes
OXFFFF EE00
0xFFFA 0000 DBGU 512 Bytes
AC97C 16K Bytes OXFFFF FO00
OXFFFA 4000 AlC 512 bytes
SPIO 16K Bytes OXEFFE F200
X
OXFFFA 8000 PIOA 512 bytes
SPI1 16K Bytes OXFFFF F400
. OxFFFA C000 PIOB 512 Bytes
Undefined 1,280M Bytes CANO 16K Bytes OXFFFF F600 g
(Abort) X oC
0xFFFB 0000 Pl 512 bytes
OXFFFF F800
Reserved PIOD 512 bytes
OXFFFF FA0O
OxFFFB 8000 PIOE 512 bytes
PWMC 16K Bytes
OxFFFB C000 OXFFFF FC00 PMC 256 Bytes
EMAC 16K Bytes OXFFFF FDOO RSTC 16 Bytes
OXFFFC 0000
Reserved 16K Bytes OXFFFF FD10 SHDWC 16 Bytes
0XFFFC 4000 OxFFFF FD20 RTTO 16 Bytes
1SI 16K Bytes OXFFFF FD30 oI 16 Bytes
OXEFFF FFFF oirrRC 8000 2DGE 16K Bytes OXFFFFFDA0 wor 16 Bytes
0xF000 0000 OXFFEC C000 OxFFFF FD50 RTT1 16 Bytes
Reserved OxFFFF FD60 GPBR 80 Bytes
Internal Peripherals | 256M Bytes OxFFEF C000 FFFF FDB
SYSC 16K Bytes Ox 0
OXFFFF FFFF —————— OXFFFF FFFF — OXFFFFFFFF Reserved

20 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the
Advanced High Performance Bus (AHB) for its master and slave interfaces with additional
features.

Decoding breaks up the 4G bytes of address space into 16 banks of 256M bytes. The banks 1 to
9 are directed to the EBIO that associates these banks to the external chip selects EBIO_NCSO0
to EBIO_NCS5 and EBI1_NCSO0 to EBI1_NCS2. The bank 0 is reserved for the addressing of the
internal memories, and a second level of decoding provides 1M bytes of internal memory area.
Bank 15 is reserved for the peripherals and provides access to the Advanced Peripheral Bus
(APB).

Other areas are unused and performing an access within them provides an abort to the master
requesting such an access.

Each master has its own bus and its own decoder, thus allowing a different memory mapping for
each master. However, in order to simplify the mappings, all the masters have a similar address
decoding.

Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different slaves are
assigned to the memory space decoded at address 0x0: one for internal boot, one for external
boot and one after remap. Refer to Table 8-1, “Internal Memory Mapping,” on page 21 for
details.

A complete memory map is presented in Figure 8-1 on page 20.

8.1 Embedded Memories

¢ 128 Kbyte ROM
— Single Cycle Access at full matrix speed
¢ One 80 Kbyte Fast SRAM
— Single Cycle Access at full matrix speed
— Supports ARM926EJ-S TCM interface at full processor speed
— Allows internal Frame Buffer for up to 1/4 VGA 8 bpp screen
¢ 16 Kbyte Fast SRAM
— Single Cycle Access at full matrix speed

8.1.1 Internal Memory Mapping

Table 8-1 summarizes the Internal Memory Mapping, depending on the Remap status and the
BMS state at reset.

Table 8-1. Internal Memory Mapping

REMAP =0 REMAP =1
Address BMS =1 BMS =0
0x0000 0000 ROM EBIO_NCSO SRAM C

8.1.1.1 Internal 80 Kbyte Fast SRAM

6249D-ATARM-20-Dec-07

The AT91SAM9263 device embeds a high-speed 80 Kbyte SRAM. This internal SRAM is split
into three areas. Its memory mapping is presented in Figure 8-1 on page 20.

¢ Internal SRAM A is the ARM926EJ-S Instruction TCM. The user can map this SRAM block
anywhere in the ARM926 instruction memory space using CP15 instructions and the TCR

ATMEL 2

ATMEL

configuration register located in the Chip Configuration User Interface. This SRAM block is
also accessible by the ARM926 Data Master and by the AHB Masters through the AHB bus
at address 0x0010 0000.

¢ Internal SRAM B is the ARM926EJ-S Data TCM. The user can map this SRAM block
anywhere in the ARM926 data memory space using CP15 instructions. This SRAM block is
also accessible by the ARM926 Data Master and by the AHB Masters through the AHB bus
at address 0x0020 0000.

* Internal SRAM C is only accessible by all the AHB Masters. After reset and until the Remap
Command is performed, this SRAM block is accessible through the AHB bus at address
0x0030 0000 by all the AHB Masters. After Remap, this SRAM block also becomes
accessible through the AHB bus at address 0x0 by the ARM926 Instruction and the ARM926
Data Masters.

Within the 80 Kbytes of SRAM available, the amount of memory assigned to each block is soft-
ware programmable as a multiple of 16 Kbytes as shown in Table 8-2. This table provides the
size of the Internal SRAM C according to the size of the internal SRAM A and the internal SRAM
B.

Table 8-2. Internal SRAM Block Size
Internal SRAM A (ITCM) Size
Internal SRAM C 0 16 Kbytes 32 Kbytes
Internal SRAM B 0 80 Kbytes 64 Kbytes 48 Kbytes
(DTCM) size 16 Kbytes 64 Kbytes 48 Kbytes 32 Kbytes
32 Kbytes 48 Kbytes 32 Kbytes 16 Kbytes
Note that among the five 16 Kbyte blocks making up the Internal SRAM, one is permanently
assigned to Internal SRAM C.
At reset, the whole memory (80 Kbytes) is assigned to Internal SRAM C.
The memory blocks assigned to SRAM A, SRAM B and SRAM C areas are not contiguous and
when the user dynamically changes the Internal SRAM configuration, the new 16 Kbyte block
organization may affect the previous configuration from a software point of view.
Table 8-3 illustrates different configurations and the related 16 Kbyte blocks assignments (RBO
to RB4).
Table 8-3. 16 Kbyte Block Allocation

Configuration examples and related 16 Kbyte block assignments

ITCM = 0 Kbyte ITCM = 32 Kbytes ITCM = 16 Kbytes ITCM = 32 Kbytes ITCM = 16 Kbytes

Decoded DTCM = 0 Kbyte DTCM = 32 Kbytes | DTCM = 32 Kbytes | DTCM = 16 Kbytes | DTCM = 16 Kbytes
Area Address AHB = 80 Kbytes (' | AHB =16 Kbytes | AHB = 32 Kbytes AHB = 32 Kbytes AHB = 48 Kbytes

Internal 0x0010 0000 RB1 RB1 RB1 RB1

SRAM A

(ITCM) 0x0010 4000 RBO RBO

Internal 0x0020 0000 RB3 RB3 RB3 RB3

SRAM B

(DTCM) 0x0020 4000 RB2 RB2

22

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 8-3. 16 Kbyte Block Allocation (Continued)
Configuration examples and related 16 Kbyte block assignments
ITCM = 0 Kbyte ITCM = 32 Kbytes | ITCM = 16 Kbytes ITCM = 32 Kbytes ITCM = 16 Kbytes
Decoded DTCM = 0 Kbyte DTCM = 32 Kbytes | DTCM = 32 Kbytes | DTCM = 16 Kbytes | DTCM = 16 Kbytes
Area Address AHB = 80 Kbytes (") | AHB = 16 Kbytes AHB = 32 Kbytes AHB = 32 Kbytes AHB = 48 Kbytes
0x0030 0000 RB4 RB4 RB4 RB4 RB4
0x0030 4000 RB3 RBO RB2 RB2
Internal
SRAM C 0x0030 8000 RB2 RBO
(AHB) 0x0030 C000 RB1
0x0031 0000 RBO
Note: 1. Configuration after reset.
When accessed from the Bus Matrix, the internal 80 Kbytes of Fast SRAM is single cycle acces-
sible at full matrix speed (MCK). When accessed from the processor’'s TCM Interface, they are
also single cycle accessible at full processor speed.
8.1.1.2 Internal 16 Kbyte Fast SRAM
The AT91SAM9263 integrates a 16 Kbyte SRAM, mapped at address 0x0050 0000. This SRAM
is single cycle accessible at full Bus Matrix speed.
8.1.2 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed with two parameters.

REMAP allows the user to layout the internal SRAM bank to 0x0. This is done by software once
the system has booted. Refer to the section “AT91SAM9263 Bus Matrix” in the product
datasheet for more details.

When REMAP = 0, BMS allows the user to layout at address 0x0 either the ROM or an external
memory. This is done via hardware at reset.

Note: Memory blocks not affected by these parameters can always be seen at their specified base

addresses. See the complete memory map presented in Figure 8-1 on page 20.

The AT91SAM9263 Bus Matrix manages a boot memory that depends on the level on the pin
BMS at reset. The internal memory area mapped between address 0x0 and 0xO00F FFFF is
reserved to this effect.

If BMS is detected at 1, the boot memory is the embedded ROM.

If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the
External Bus Interface.

8.1.2.1 BMS = 1, Boot on Embedded ROM

The system boots on Boot Program.
* Boot at slow clock
¢ Auto baudrate detection
e Downloads and runs an application from external storage media into internal SRAM
¢ Downloaded code size depends on embedded SRAM size
¢ Automatic detection of valid application
* Bootloader on a non-volatile memory

ATMEL 2

6249D-ATARM-20-Dec-07

ATMEL

— SPI DataFlash® connected on NPCSO0 of the SPI0

* Interface with SAM-BA® Graphic User Interface to enable code loading via:
— Serial communication on a DBGU
— USB Bulk Device Port

8.1.22 BMS = 0, Boot on External Memory
* Boot at slow clock

* Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit
data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.

The customer-programmed software must perform a complete configuration.
To speed up the boot sequence when booting at 32 kHz EBI0O CS0 (BMS=0) the user must:
1. Program the PMC (main oscillator enable or bypass mode).

2. Program and Start the PLL.

3. Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them
to the new clock.

4. Switch the main clock to the new value.

8.2 External Memories
The external memories are accessed through the External Bus Interfaces 0 and 1. Each Chip
Select line has a 256 Mbyte memory area assigned.

Refer to Figure 8-1 on page 20.

8.2.1 External Bus Interfaces

The AT91SAM9263 features two External Bus Interfaces to offer more bandwidth to the system
and to prevent bottlenecks while accessing external memories.

82.1.1 External Bus Interface 0
* Integrates three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller
» Additional logic for NANDFlash and CompactFlash
* Optional Full 32-bit External Data Bus
¢ Up to 26-bit Address Bus (up to 64 Mbytes linear per chip select)
¢ Up to 6 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3, Optional NAND Flash support
— Static Memory Controller on NCS4 - NCS5, Optional CompactFlash support
¢ Optimized for Application Memory Space

24 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

8212 External Bus Interface 1

* Integrates three External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
— ECC Controller

» Additional logic for NANDFlash

¢ Optional Full 32-bit External Data Bus

¢ Up to 23-bit Address Bus (up to 8 Mbytes linear)

* Up to 3 Chip Selects, Configurable Assignment:
— Static Memory Controller on NCS0
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2, Optional NAND Flash support

* Allows supporting an ewternal Frame Buffer for the embedded LCD Controller without
impacting processor performance.

8.2.2 Static Memory Controller
¢ 8-, 16- or 32-bit Data Bus
e Multiple Access Modes supported
— Byte Write or Byte Select Lines
— Asynchronous read in Page Mode supported (4- up to 32-byte page size)
* Multiple device adaptability
— Compliant with LCD Module
— Control signals programmable setup, pulse and hold time for each Memory Bank
* Multiple Wait State Management
— Programmable Wait State Generation
— External Wait Request
— Programmable Data Float Time
¢ Slow Clock mode supported

8.2.3 SDRAM Controller

¢ Supported devices
— Standard and Low-power SDRAM (Mobile SDRAM)

* Numerous configurations supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with two or four Internal Banks
— SDRAM with 16- or 32-bit Data Path

* Programming facilities
— Word, half-word, byte access
— Automatic page break when Memory Boundary has been reached
— Multibank Ping-pong Access
— Timing parameters specified by software
— Automatic refresh operation, refresh rate is programmable

ATMEL 2

6249D-ATARM-20-Dec-07

8.24

ATMEL

* Energy-saving capabilities
— Self-refresh, power down and deep power down modes supported
e Error detection
— Refresh Error Interrupt
* SDRAM Power-up Initialization by software
¢ CAS Latency of 1, 2 and 3 supported
* Auto Precharge Command not used

Error Corrected Code Controller

¢ Tracking the accesses to a NAND Flash device by trigging on the corresponding chip select
¢ Single-bit error correction and two-bit random detection
* Automatic Hamming Code Calculation while writing
— ECC value available in a register
* Automatic Hamming Code Calculation while reading

— Error Report, including error flag, correctable error flag and word address being
detected erroneous

— Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-byte
pages

9. System Controller

26

The System Controller is a set of peripherals that allow handling of key elements of the system,
such as power, resets, clocks, time, interrupts, watchdog, etc.

The System Controller User Interface also embeds registers that are used to configure the Bus
Matrix and a set of registers for the chip configuration. The chip configuration registers can be
used to configure:

— EBIO and EBI1 chip select assignment and voltage range for external memories

— ARM Processor Tightly Coupled Memories
The System Controller peripherals are all mapped within the highest 16 Kbytes of address
space, between addresses OxFFFF C000 and OxFFFF FFFF.

However, all the registers of the System Controller are mapped on the top of the address space.
This allows all the registers of the System Controller to be addressed from a single pointer by
using the standard ARM instruction set, as the Load/Store instructions have an indexing mode of
+ 4 Kbytes.

Figure 9-1 on page 27 shows the System Controller block diagram.

Figure 8-1 on page 20 shows the mapping of the User Interfaces of the System Controller
peripherals.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

9.1 System Controller Block Diagram

Figure 9-1.

NRsT [}

VDDCORE —
VDDBU —

SHDN
WKUP
XIN32

XOuT32

XIN

XOuT

PLLRCA

PLLRCB

PA0-PA31
PB0-PB31
PC0-PC31
PDO-PD31
PEO-PE31

6249D-ATARM-20-Dec-07

AT91SAM9263 System Controller Block Diagram

System Controller

TTFT FTHY

O

ATMEL

VDDCORE Powered .
irqo-irg1 nirg
fiq Advanced nfig
Interrupt
periph_irg[2..29] Controller
it_ir
nF;%)_irg —— int
rt1_irq
wdtirq a7 nrst) ARM926EJ-S
dbgu_irq -
pmc_irq
rstc_irq \
MCK . proc_nrese
periph_nreset Dzl:iltg —> dbgu_irq
dbgu_rxd —— dbgu_txd PCK
MCK Periodic debug
) debug Interval L pit_irq
periph_nreset Timer
Sebig e A Comater
deti’éjlg W?rti?:g?g wat_irq
proc_nreset
MCK
wdt_fault
= Bus Matrix
WDRPROC periph_nreset
L——> rstc_irq
VDDCORE Ft’:rir::esget —— periph_nreset
POR Jfag | Reset ——> proc_nreset
;I Controller ——> backup_nreset
| ~|«——— battery_save
VDDBU VDDBU Powered
POR__| sLck
SLCK Real-Time —> rit0_irg
backup_nreset Timer 0 ——> rtt0_alarm UDPCK
SLCK ————— Real-Time —> rit1_irq periph_clk[24] USB
backup_nreset ———» Timer 1 —— rit1_alarm . Devi
periph_nreset evice
SLCK ————] . Port
periph_irg[24]
Shut-Down
Controller 8/0 Orltt?gisr _»battery_save
backup_nreset —] UHPCK
SLow eriph_clk[29]
CLOCK rtt0_alarm —» Z(é Giner;l-Purpose periph_ USB Host
- ist
0SC rtt1_alarm — ackup Registers periph_nreset bort
SLCK periph_irq[29]
——> periph_clk[2..29]
int —— pck[0-3]
MAIN MAINCK —> PCK)
0OSC > OTGCK periph_clk[26]
Power —— UDPCK X
3 Management periph_nreset LCD
PLLA PLLACK Controller Controller
periph_irq[26]
PLLB | PLLBCK —> MCK
—— pmc_irq
periph_nreset periph_clk[7..27]
—— idle
periph_nreset
periph_nreset —> periph_irq[2..6] Embedded
periph_clk[2..6] —> irq0-irq1 Peripherals
dbgu_rxd PIO —— fiq periph_irq[7..27]
Controllers L > dbgu_txd
in
out
enable

27

9.2

9.3

9.4

ATMEL

Reset Controller

¢ Based on two Power-on-Reset cells
— One on VDDBU and one on VDDCORE
¢ Status of the last reset

— Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software
reset, user reset or watchdog reset

¢ Controls the internal resets and the NRST pin output
— Allows shaping a reset signal for the external devices

Shutdown Controller

¢ Shutdown and Wake-up logic
— Software programmable assertion of the SHDN pin (SHDN is push-pull)
— Deassertion programmable on a WKUP pin level change or on alarm

Clock Generator

* Embeds the low-power 32768 Hz Slow Clock Oscillator
— Provides the permanent Slow Clock SLCK to the system
e Embeds the Main Oscillator
— Oscillator bypass feature
— Supports 3 to 20 MHz crystals
* Embeds 2 PLLs
— Output 80 to 240 MHz clocks
— Integrates an input divider to increase output accuracy
— 1 MHz Minimum input frequency

Figure 9-2. Clock Generator Block Diagram

28

Clock Generator

XIN32 | I Slow Clock Slow Clock
Oscillator SLCK
XOUT32 | I

XIN | I Main Main Clock

Oscillator MAINCK
XOuUT | I
®-| PLL and PLLA Clock
PLLRCA | I Divider A PLLACK
— PLL and PLLB Clock
PLLRCB | I Divider B PLLBCK

l Status T Control

Power
Management
Controller

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

9.5 Power Management Controller

* Provides:
— the Processor Clock PCK
— the Master Clock MCK, in particular to the Matrix and the memory interfaces
— the USB Device Clock UDPCK
— the USB Host Clock UHPCK
— independent peripheral clocks, typically at the frequency of MCK
— four programmable clock outputs: PCKO to PCK3

* Five flexible operating modes:
— Normal Mode with processor and peripherals running at a programmable frequency
— ldle Mode with processor stopped while waiting for an interrupt
— Slow Clock Mode with processor and peripherals running at low frequency

— Standby Mode, mix of Idle and Backup Mode, with peripherals running at low
frequency, processor stopped waiting for an interrupt

— Backup Mode with Main Power Supplies off, VDDBU powered by a battery

Figure 9-3. AT91SAM9263 Power Management Controller Block Diagram

Processor
Clock |——» PCK
Controller

< int

Master Clock Controller| Idle Mode

ek] Prescal Divid
MAINCK - rescaler ivider _
PLLACK | 1,2,/4,.../64 | 1,/2,/4 MCK

PLLBCK — L -
Peripherals
Clock Controller periph_clk[..]

ON/OFF
Programmable Clock Controller
SLCK — ON/OFF
MAINCK — Prescaler o] > pckl..]
PLLACK — /1,/2,/4,...,/64
PLLBCK —
USB Clock Controller
Divider ON/OFF
PLLBCK A./2/4 UDPCK
UHPCK

9.6 Periodic Interval Timer
¢ Includes a 20-bit Periodic Counter, with less than 1 ps accuracy
¢ Includes a 12-bit Interval Overlay Counter
* Real-time OS or Linux®WindowsCE® compliant tick generator

9.7 Watchdog Timer
* 16-bit key-protected Counter, programmable only once

ATMEL 29

6249D-ATARM-20-Dec-07

ATMEL

* Windowed, prevents the processor deadlocking on the watchdog access

9.8 Real-time Timer
* Two Real-time Timers, allowing backup of time with different accuracies
— 32-bit Free-running back-up counter

— Integrates a 16-bit programmable prescaler running on the embedded 32.768Hz
oscillator

— Alarm Register capable of generating a wake-up of the system through the
Shutdown Controller

9.9 General-purpose Backup Registers
* Twenty 32-bit general-purpose backup registers

9.10 Backup Power Switch

» Automatic switch of VDDBU to VDDCORE guaranteeing very low power consumption on
VDDBU while VDDCORE is present

9.11 Advanced Interrupt Controller
e Controls the interrupt lines (nNIRQ and nFIQ) of the ARM Processor
¢ Thirty-two individually maskable and vectored interrupt sources
— Source 0 is reserved for the Fast Interrupt Input (FIQ)
— Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)
— Programmable Edge-triggered or Level-sensitive Internal Sources
— Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
* Four External Sources plus the Fast Interrupt signal
* 8-level Priority Controller
— Drives the Normal Interrupt of the processor
— Handles priority of the interrupt sources 1 to 31
— Higher priority interrupts can be served during service of lower priority interrupt
* Vectoring
— Optimizes Interrupt Service Routine Branch and Execution
— One 32-bit Vector Register per interrupt source
— Interrupt Vector Register reads the corresponding current Interrupt Vector
* Protect Mode

— Easy debugging by preventing automatic operations when protect models are
enabled

¢ Fast Forcing

— Permits redirecting any normal interrupt source on the Fast Interrupt of the
processor

9.12 Debug Unit

e Composed of two functions
— Two-pin UART

30 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

— Debug Communication Channel (DCC) support
e Two-pin UART
— Implemented features are 100% compatible with the standard Atmel USART

— Independent receiver and transmitter with a common programmable Baud Rate
Generator

— Even, Odd, Mark or Space Parity Generation

— Parity, Framing and Overrun Error Detection

— Automatic Echo, Local Loopback and Remote Loopback Channel Modes

— Support for two PDC channels with connection to receiver and transmitter
e Debug Communication Channel Support

— Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from
the ARM Processor’s ICE Interface

9.13 Chip Identification
e Chip ID: 0x019607A0
* JTAG ID: 0x05BOCO3F
¢ ARM926 TAP ID: 0x0792603F

9.14 PIO Controllers
¢ Five PIO Controllers, PIOA to PIOE, controlling a total of 160 I/O Lines
¢ Each PIO Controller controls up to 32 programmable 1/O Lines
— PIOA has 32 /O Lines
— PIOB has 32 I/O Lines
— PIOC has 32 I/O Lines
— PIOD has 32 I/O Lines
— PIOE has 32 I/O Lines
* Fully programmable through Set/Clear Registers
* Multiplexing of two peripheral functions per 1/O Line
e For each I/O Line (whether assigned to a peripheral or used as general-purpose 1/O)
— Input change interrupt
— Glitch filter
— Multi-drive option enables driving in open drain
— Programmable pull-up on each 1/O line
— Pin data status register, supplies visibility of the level on the pin at any time
¢ Synchronous output, provides Set and Clear of several I/O lines in a single write

ATMEL s

6249D-ATARM-20-Dec-07

10. Peripherals

10.1 User Interface

10.2 Identifiers

Table 10-1. AT91SAM9263 Peripheral Identifiers

ATMEL

The Peripherals are mapped in the upper 256 Mbytes of the address space between the
addresses OxFFFA 0000 and OxFFFC FFFF. Each User Peripheral is allocated 16 Kbytes of

address space.

A complete memory map is presented in Figure 8-1 on page 20.

Table 10-1 defines the Peripheral Identifiers. A peripheral identifier is required for the control of
the peripheral interrupt with the Advanced Interrupt Controller and for the control of the periph-
eral clock with the Power Management Controller.

Peripheral ID Peripheral Mnemonic Peripheral Name External Interrupt
0 AIC Advanced Interrupt Controller FlQ
1 SYSC System Controller Interrupt
2 PIOA Parallel I/O Controller A
3 PIOB Parallel I/O Controller B
4 PIOC to PIOE Parallel I/O Controller C, D and E
5 reserved
6 reserved
7 uso USART 0
8 ust USART 1
9 us2 USART 2
10 MCIo Multimedia Card Interface 0
11 MCI1 Multimedia Card Interface 1
12 CAN CAN Controller
13 TWI Two-Wire Interface
14 SPIO Serial Peripheral Interface 0
15 SPIH Serial Peripheral Interface 1
16 SSCo Synchronous Serial Controller 0
17 SSCH Synchronous Serial Controller 1
18 AC97C AC97 Controller
19 TCO, TC1, TC2 Timer/Counter 0, 1 and 2
20 PWMC Pulse Width Modulation Controller
21 EMAC Ethernet MAC
22 reserved
23 2DGE 2D Graphic Engine
24 UDP USB Device Port
25 1SI Image Sensor Interface
26 LCDC LCD Controller
27 DMA DMA Controller
28 reserved

32 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 10-1. AT91SAM9263 Peripheral Identifiers (Continued)

Peripheral ID Peripheral Mnemonic Peripheral Name External Interrupt
29 UHP USB Host Port
30 AIC Advanced Interrupt Controller IRQO
31 AIC Advanced Interrupt Controller IRQ1

Note: Setting AIC, SYSC, UHP and IRQO - 1 bits in the clock set/clear registers of the PMC has no effect.
10.2.1 Peripheral Interrupts and Clock Control

10.2.1.1 System Interrupt
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:

» the SDRAM Controller

¢ the Debug Unit

* the Periodic Interval Timer

 the Real-Time Timer

¢ the Watchdog Timer

* the Reset Controller

* the Power Management Controller

The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used
within the Advanced Interrupt Controller.

10.2.1.2 External Interrupts
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQO to
IRQ1, use a dedicated Peripheral ID. However, there is no clock control associated with these
peripheral IDs.

10.2.1.3 Timer Counter Interrupts
The three Timer Counter channels interrupt signals are OR-wired together to provide the inter-
rupt source 19 of the Advanced Interrupt Controller. This forces the programmer to read all
Timer Counter status registers before branching the right Interrupt Service Routine.

The Timer Counter channels clocks cannot be deactivated independently. Switching off the
clock of the Peripheral 19 disables the clock of the 3 channels.

10.3 Peripherals Signals Multiplexing on I/O Lines

The AT91SAM9263 device features 5 PIO controllers, PIOA, PIOB, PIOC, PIOD and PIOE,
which multiplex the I/O lines of the peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The multiplexing tables define how the I/O lines of the peripherals A and B are
multiplexed on the PIO Controllers. The two columns “Function” and “Comments” have been
inserted in this table for the user's own comments; they may be used to track how pins are
defined in an application.

Note that some peripheral functions which are output only may be duplicated within both tables.

The column “Reset State” indicates whether the P1O Line resets in I/O mode or in peripheral
mode. If I/O is specified, the PIO Line resets in input with the pull-up enabled, so that the device

ATMEL s

6249D-ATARM-20-Dec-07

ATMEL

is maintained in a static state as soon as the reset is released. As a result, the bit corresponding
to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.

If a signal name is specified in the “Reset State” column, the PIO Line is assigned to this function
and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories,
in particular the address lines, which require the pin to be driven as soon as the reset is
released. Note that the pull-up resistor is also enabled in this case.

34 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

10.3.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on P1O Controller A

PIO Controller A Application Usage
Reset Power
1/0 Line Peripheral A Peripheral B State Supply Function Comments
PAO MCIO_DAO SPI0O_MISO I/O VDDIOPO
PA1 MCIO_CDA SPI0_MOSI I/O VDDIOPO
PA2 SPI0_SPCK I/O VDDIOPO
PA3 MCIO_DA1 SPIO_NPCS1 I/O VDDIOPO
PA4 MCI0_DA2 SPI0_NPCS2 I/O VDDIOPO
PA5 MCIO_DAS3 SPI0_NPCSO0 I/0 VDDIOPO
PA6 MCI1_CK PCK2 I/O VDDIOPO
PA7 MCI1_CDA I/O VDDIOPO
PA8 MCI1_DAO I/O VDDIOPO
PA9 MCI1_DA1 I/O VDDIOPO
PA10 MCI1_DA2 I/O VDDIOPO
PA11 MCI1_DA3 I/O VDDIOPO
PA12 MCIO_CK I/O VDDIOPO
PA13 CANTX PCKO I/O VDDIOPO
PA14 CANRX IRQO I/0 VDDIOPO
PA15 TCLK2 IRQ1 I/O VDDIOPO
PA16 MCI0_CDB EBI1_D16 I/O VDDIOM!1
PA17 MCI0_DBO EBI1_D17 I/O VDDIOMH1
PA18 MCI0_DBH1 EBI1_D18 I/O VDDIOM!1
PA19 MCI0_DB2 EBI1_D19 I/O VDDIOM!1
PA20 MCI0_DB3 EBI1_D20 I/O VDDIOM!1
PA21 MCI1_CDB EBI1_D21 I/O VDDIOM!1
PA22 MCI1_DBO EBI1_D22 I/O VDDIOM!1
PA23 MCI1_DB1 EBI1_D23 I/O VDDIOMH1
PA24 MCI1_DB2 EBI1_D24 I/O VDDIOM!1
PA25 MCI1_DB3 EBI1_D25 I/O VDDIOM!1
PA26 TXDO EBI1_D26 I/O VDDIOMH1
PA27 RXDO EBI1_D27 I/O VDDIOM!1
PA28 RTSO EBI1_D28 I/O VDDIOM!1
PA29 CTSO EBI1_D29 I/O VDDIOM!1
PA30 SCKO EBI1_D30 I/O VDDIOM!1
PA31 DMARQO EBI1_D31 I/O VDDIOMH1

ATMEL s

6249D-ATARM-20-Dec-07

ATMEL

10.3.2 PIO Controller B Multiplexing
Table 10-3. Multiplexing on PI1O Controller B
PIO Controller B Application Usage
Reset Power

1/0 Line Peripheral A Peripheral B State Supply Function Comments
PBO AC97FS TFO I/0 VDDIOPO
PB1 AC97CK TKO I/0 VDDIOPO
PB2 AC97TX TDO I/0 VDDIOPO
PB3 AC97RX RDO I/0 VDDIOPO
PB4 TWD RKO I/0 VDDIOPO
PB5 TWCK RFO I/0 VDDIOPO
PB6 TF1 DMARQ1 I/0 VDDIOPO
PB7 TK1 PWMO I/0 VDDIOPO
PB8 TD1 PWM1 I/0 VDDIOPO
PB9 RD1 LCDCC I/0 VDDIOPO
PB10 RK1 PCK1 I/0 VDDIOPO
PB11 RF1 SPIO_NPCS3 I/0 VDDIOPO
PB12 SPI1_MISO I/0 VDDIOPO
PB13 SPI1_MOSI I/O VDDIOPO
PB14 SPI1_SPCK I/0 VDDIOPO
PB15 SPI1_NPCSO0 I/0 VDDIOPO
PB16 SPI1_NPCSH1 PCK1 I/0 VDDIOPO
PB17 SPI1_NPCS2 TIOA2 I/0 VDDIOPO
PB18 SPI1_NPCS3 TIOB2 I/0 VDDIOPO
PB19 I/O VDDIOPO
PB20 I/0 VDDIOPO
PB21 I/0 VDDIOPO
PB22 I/0 VDDIOPO
PB23 I/0 VDDIOPO
PB24 DMARQS3 I/0 VDDIOPO
PB25 I/O VDDIOPO
PB26 I/0 VDDIOPO
PB27 PWM2 I/0 VDDIOPO
PB28 TCLKO I/0 VDDIOPO
PB29 PWM3 I/0 VDDIOPO
PB30 I/0 VDDIOPO
PB31 I/O VDDIOPO

36 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

10.3.3 PIO Controller C Multiplexing

Table 10-4. Multiplexing on P1O Controller C

PIO Controller C Application Usage
Reset Power
1/0 Line Peripheral A Peripheral B State Supply Function Comments
PCO LCDVSYNC I/O VDDIOPO
PC1 LCDHSYNC I/O VDDIOPO
PC2 LCDDOTCK I/O VDDIOPO
PC3 LCDDEN PWM1 I/O VDDIOPO
PC4 LCDDO LCDD3 I/0 VDDIOPO
PC5 LCDD1 LCDD4 I/O VDDIOPO
PC6 LCDD2 LCDD5 I/O VDDIOPO
PC7 LCDD3 LCDD6 I/0 VDDIOPO
PC8 LCDD4 LCDD7 I/O VDDIOPO
PC9 LCDD5 LCDD10 I/O VDDIOPO
PC10 LCDD6 LCDD11 I/O VDDIOPO
PC11 LCDD7 LCDD12 I/O VDDIOPO
PC12 LCDD8 LCDD13 I/O VDDIOPO
PC13 LCDD9 LCDD14 I/0 VDDIOPO
PC14 LCDD10 LCDD15 I/O VDDIOPO
PC15 LCDD11 LCDD19 I/O VDDIOPO
PC16 LCDD12 LCDD20 I/O VDDIOPO
PC17 LCDD13 LCDD21 I/O VDDIOPO
PC18 LCDD14 LCDD22 I/O VDDIOPO
PC19 LCDD15 LCDD23 I/O VDDIOPO
PC20 LCDD16 ETX2 I/O VDDIOPO
PC21 LCDD17 ETX3 I/0 VDDIOPO
PC22 LCDD18 ERX2 I/O VDDIOPO
PC23 LCDD19 ERX3 I/O VDDIOPO
PC24 LCDD20 ETXER I/O VDDIOPO
PC25 LCDD21 ERXDV I/O VDDIOPO
PC26 LCDD22 ECOL I/O VDDIOPO
PC27 LCDD23 ERXCK I/O VDDIOPO
PC28 PWMO TCLK1 I/O VDDIOPO
PC29 PCKO PWM2 I/O VDDIOPO
PC30 DRXD I/O VDDIOPO
PC31 DTXD I/O VDDIOPO

ATMEL 57

6249D-ATARM-20-Dec-07

ATMEL

10.3.4 PIO Controller D Multiplexing

Table 10-5. Multiplexing on P1O Controller D

PIO Controller D Application Usage
Reset Power
1/0 Line Peripheral A Peripheral B State Supply Function Comments
PDO TXD1 SPIO_NPCS2 I/O VDDIOPO
PD1 RXD1 SPIO_NPCS3 I/O VDDIOPO
PD2 TXD2 SPI1_NPCS2 I/O VDDIOPO
PD3 RXD2 SPI1_NPCS3 I/O VDDIOPO
PD4 FlQ DMARQ2 I/0 VDDIOPO
PD5 EBIO_NWAIT RTS2 I/0 VDDIOMO
PD6 EBIO_NCS4/CFCS0 CTSs2 I/0 VDDIOMO
PD7 EBIO_NCS5/CFCS1 RTSH I/O VDDIOMO
PD8 EBIO_CFCE1 CTSH I/O VDDIOMO
PD9 EBIO_CFCE2 SCK2 I/O VDDIOMO
PD10 SCK1 I/O VDDIOMO
PD11 EBIO_NCS2 TSYNC I/O VDDIOMO
PD12 EBIO_A23 TCLK A23 VDDIOMO
PD13 EBIO_A24 TPSO A24 VDDIOMO
PD14 EBIO_A25_CFRNW TPSH A25 VDDIOMO
PD15 EBIO_NCS3/NANDCS TPS2 I/O VDDIOMO
PD16 EBIO_D16 TPKO I/O VDDIOMO
PD17 EBIO_D17 TPK1 I/O VDDIOMO
PD18 EBIO_D18 TPK2 I/O VDDIOMO
PD19 EBIO_D19 TPK3 I/O VDDIOMO
PD20 EBIO_D20 TPK4 I/O VDDIOMO
PD21 EBIO_D21 TPK5 I/O VDDIOMO
PD22 EBIO_D22 TPK6 I/O VDDIOMO
PD23 EBIO_D23 TPK7 I/O VDDIOMO
PD24 EBIO_D24 TPK8 I/O VDDIOMO
PD25 EBIO_D25 TPK9 I/O VDDIOMO
PD26 EBIO_D26 TPK10 I/O VDDIOMO
PD27 EBIO_D27 TPK11 I/O VDDIOMO
PD28 EBIO_D28 TPK12 I/O VDDIOMO
PD29 EBIO_D29 TPK13 I/O VDDIOMO
PD30 EBIO_D30 TPK14 I/O VDDIOMO
PD31 EBIO_D31 TPK15 I/O VDDIOMO

38 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

10.3.5 PIO Controller E Multiplexing
Table 10-6. Multiplexing on PIO Controller E
PIO Controller E Application Usage
Reset Power
1/0 Line Peripheral A Peripheral B State Supply Function Comments
PEO ISI_DO I/0 VDDIOPH1
PE1 ISI_D1 I/O VDDIOP1
PE2 ISI_D2 I/0 VDDIOP1
PE3 ISI_D3 I/0 VDDIOP1
PE4 ISI_D4 I/0 VDDIOPH1
PE5 ISI_D5 I/0 VDDIOPH1
PE6 ISI_D6 I/0 VDDIOPH1
PE7 ISI_D7 I/O VDDIOPH1
PE8 ISI_PCK TIOA1 I/O VDDIOP1
PE9 ISI_HSYNC TIOB1 I/0 VDDIOP1
PE10 ISI_VSYNC PWM3 I/0 VDDIOPH1
PE11 ISI_MCK PCKS3 I/0 VDDIOPH1
PE12 I1SI_D8 I/0 VDDIOPH1
PE13 ISI_D9 I/O VDDIOP1
PE14 ISI_D10 I/0 VDDIOP1
PE15 ISI_D11 I/0 VDDIOP1
PE16 I/0 VDDIOPH1
PE17 I/0 VDDIOPH1
PE18 TIOAO I/0 VDDIOPH1
PE19 TIOBO I/O VDDIOP1
PE20 EBI1_NWAIT I/0 VDDIOM1
PE21 ETXCK EBI1_NANDWE I/0 VDDIOM!1
PE22 ECRS EBI1_NCS2/NANDCS I/0 VDDIOM1
PE23 ETXO0 EB1_NANDOE I/0 VDDIOM1
PE24 ETX1 EBI1_NWR3/NBS3 I/0 VDDIOM1
PE25 ERXO EBI1_NCS1/SDCS I/O VDDIOM1
PE26 ERX1 I/0 VDDIOM1
PE27 ERXER EBI1_SDCKE I/0 VDDIOM1
PE28 ETXEN EBI1_RAS I/0 VDDIOM1
PE29 EMDC EBI1_CAS I/0 VDDIOMA1
PE30 EMDIO EBI1_SDWE I/0 VDDIOM1
PE31 EF100 EBI1_SDA10 I/O VDDIOM!1

ATMEL 59

6249D-ATARM-20-Dec-07

ATMEL

10.4 System Resource Multiplexing

10.4.1

10.4.2

10.4.3

10.4.4

10.4.5

10.4.6

10.4.7

10.4.8

40

LCD Controller

The LCD Controller can interface with several LCD panels. It supports 4 bits per pixel (bpp), 8
bpp or 16 bpp without limitation. Interfacing 24 bpp TFT panels prevents using the Ethernet
MAC. 16 bpp TFT panels are interfaced through peripheral B functions, as color data is output
on LCDDS3 to LCDD7, LCDD11 to LCDD15 and LCDD19 to LCDD23. Intensity bit is output on
LCDD10. Using the peripheral B does not prevent using MAC lines. 16 bpp STN panels are
interfaced through peripheral A and color data is output on LCDDO to LCDD15, thus MAC lines
can be used on peripheral B.

Mapping the LCD signals on peripheral A and peripheral B makes is possible to use 24 bpp TFT
panels in 24 bits (peripheral A) or 16 bits (peripheral B) by reprogramming the PIO controller and
thus without hardware modification.

ETM™
Using the ETM prevents the use of the EBIO in 32-bit mode. Only 16-bit mode (EBIO_DO to
EBIO_D15) is available, makes EBIO unable to interface CompactFlash and NandFlash cards,
reduces EBIO’s address bus width which makes it unable to address memory ranges bigger than
O0x7FFFFF and finally it makes impossible to use EBIO_NCS2.
EBI1
Using the following features prevents using EBI1 in 32-bit mode:
* the second slots of MCIO and/or MCI1
* USARTO
* DMA request 0 (DMARQO)
e Ethernet 10/100 MAC
SSC
Using SSCO prevents using the AC97 Controller and Two-wire Interface.
Using SSC1 prevents using DMA Request 1, PWMO, PWM1, LCDCC and PCK1.
USART
Using USART2 prevents using EBIO’s NWAIT signal, Chip Select 4 and CompactFlash Chip
Enable 2.
Using USART1 prevents using EBIO’s Chip Select 5 and CompactFlash Chip Enable1.
NAND Flash

Using the NAND Flash interface on EBI1 prevents using Ethernet MAC.

CompactFlash
Using the CompactFlash interface prevents using NCS4 and/or NCS5 to access other parallel
devices.

SPI0 and MCI Interface
SPI0 signals and MCIO signals are multiplexed, as the DataFlash Card is hardware-compatible
with the SDCard. Only one can be used at a time.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

10.4.9 Interrupts
Using IRQO prevents using the CAN controller.

Using FIQ prevents using DMA Request 2.

10.4.10 Image Sensor Interface
Using ISI in 8-bit data mode prevents using timers TIOA1, TIOB1.

10.4.11 Timers
Using TIOA2 and TIOB2, in this order, prevents using SPI1’s Chip Selects [2-3].

10.5 Embedded Peripherals Overview

10.5.1 Serial Peripheral Interface
¢ Supports communication with serial external devices

— Four chip selects with external decoder support allow communication with up to 15
peripherals

— Serial memories, such as DataFlash and 3-wire EEPROMs

— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors

— External co-processors

* Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select

— Programmable transfer delays between consecutive transfers and between clock
and data per chip select

— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Very fast transfers supported
— Transfers with baud rates up to MCK
— The chip select line may be left active to speed up transfers on the same device

10.5.2 Two-wire Interface
¢ Master Mode only
e Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
¢ Sequential read/write operations

10.5.3 USART
* Programmable Baud Rate Generator

* 5- to 9-bit full-duplex synchronous or asynchronous serial communications
— 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection
— Framing error detection, overrun error detection
— MSB- or LSB-first

ATMEL o

6249D-ATARM-20-Dec-07

ATMEL

— Optional break generation and detection
— By 8 or by-16 over-sampling receiver frequency
— Hardware handshaking RTS-CTS
— Receiver time-out and transmitter timeguard
— Optional Multi-drop Mode with address generation and detection
— Optional Manchester Encoding
* RS485 with driver control signal
* 1SO7816, T =0 or T = 1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
¢ [rDA modulation and demodulation
— Communication at up to 115.2 Kbps
* Test Modes
— Remote Loopback, Local Loopback, Automatic Echo

10.5.4 Serial Synchronous Controller

* Provides serial synchronous communication links used in audio and telecom applications
(with CODECs in Master or Slave Modes, 1°S, TDM Buses, Magnetic Card Reader, etc.)

¢ Contains an independent receiver and transmitter and a common clock divider
* Offers a configurable frame sync and data length

* Receiver and transmitter can be programmed to start automatically or on detection of
different event on the frame sync signal

* Receiver and transmitter include a data signal, a clock signal and a frame synchronization
signal

10.5.5 AC97 Controller

e Compatible with AC97 Component Specification V2.2

* Can interface with a single analog front end

¢ Three independent RX Channels and three independent TX Channels
— One RX and one TX channel dedicated to the AC97 analog front end control
— One RX and one TX channel for data transfers, associated with a PDC
— One RX and one TX channel for data transfers with no PDC

* Time Slot Assigner that can assign up to 12 time slots to a channel

* Channels support mono or stereo up to 20-bit sample length
— Variable sampling rate AC97 Codec Interface (48 kHz and below)

10.5.6 Timer Counter
* Three 16-bit Timer Counter Channels
* Wide range of functions including:
— Frequency Measurement
— Event Counting
— Interval Measurement
— Pulse Generation

42 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

— Delay Timing
— Pulse Width Modulation
— Up/down Capabilities
¢ Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
* Two global registers that act on all three TC Channels

10.5.7 Pulse Width Modulation Controller
* 4 channels, one 16-bit counter per channel
* Common clock generator, providing thirteen different clocks
— Modulo n counter providing eleven clocks
— Two independent Linear Dividers working on modulo n counter outputs
* Independent channel programming
— Independent Enable Disable commands
— Independent clock selection
— Independent period and duty cycle, with double bufferization
— Programmable selection of the output waveform polarity
— Programmable center or left aligned output waveform

10.5.8 Multimedia Card Interface
* Two double-channel Multimedia Card Interfaces, allowing concurrent transfers with 2 cards
¢ Compatibility with MultiMediaCard Specification Version 3.11
» Compatibility with SD Memory Card Specification Version 1.1
* Compatibility with SDIO Specification Version V1.0.
¢ Cards clock rate up to Master Clock divided by 2
* Embedded power management to slow down clock rate when not used
e Each MCI has two slots, each supporting
— One slot for one MultiMediaCard bus (up to 30 cards) or
— One SD Memory Card
* Support for stream, block and multi-block data read and write

10.5.9 CAN Controller

¢ Fully compliant with 16-mailbox CAN 2.0A and 2.0B CAN Controllers

e Bit rates up to 1Mbit/s.

* Object-oriented mailboxes, each with the following properties:
— CAN Specification 2.0 Part A or 2.0 Part B programmable for each message
— Object Configurable as receive (with overwrite or not) or transmit
— Local Tag and Mask Filters up to 29-bit Identifier/Channel
— 32 bits access to Data registers for each mailbox data object
— Uses a 16-bit time stamp on receive and transmit message

ATMEL 1

6249D-ATARM-20-Dec-07

ATMEL

— Hardware concatenation of ID unmasked bitfields to speedup family ID processing
— 16-bit internal timer for Time Stamping and Network synchronization

— Programmable reception buffer length up to 16 mailbox object

— Priority Management between transmission mailboxes

— Autobaud and listening mode

— Low power mode and programmable wake-up on bus activity or by the application
— Data, Remote, Error and Overload Frame handling

10.5.10 USB Host Port
e Compliant with Open HCI Rev 1.0 Specification
* Compliant with USB V2.0 full-speed and low-speed specification
* Supports both low-speed 1.5 Mbps and full-speed 12 Mbps devices
* Root hub integrated with two downstream USB ports
* Two embedded USB transceivers
¢ Supports power management
¢ Operates as a master on the matrix

10.5.11 USB Device Port
* USB V2.0 full-speed compliant, 12 Mbits per second
e Embedded USB V2.0 full-speed transceiver
¢ Embedded 2,432-byte dual-port RAM for endpoints
* Suspend/Resume logic
¢ Ping-pong mode (two memory banks) for isochronous and bulk endpoints
e Six general-purpose endpoints
— Endpoint 0 and 3: 64 bytes, no ping-pong mode
— Endpoint 1 and 2: 64 bytes, ping-pong mode
— Endpoint 4 and 5: 512 bytes, ping-pong mode

10.5.12 LCD Controller
¢ Single and Dual scan color and monochrome passive STN LCD panels supported
¢ Single scan active TFT LCD panels supported
* 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported
¢ Up to 24-bit single scan TFT interfaces supported
* Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays
¢ 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN
* 1,2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN
* 1, 2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT
* Single clock domain architecture
¢ Resolution supported up to 2048x2048
* 2D DMA Controller for management of virtual Frame Buffer

— Allows management of frame buffer larger than the screen size and moving the view
over this virtual frame buffer

44 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

* Automatic resynchronization of the frame buffer pointer to prevent flickering

10.5.13 2D Graphics Controller

* Acts as one Matrix Master

¢ Commands are passed through the APB User Interface

* Operates directly in the frame buffer of the LCD Controller
— Line draw
— Block transfer
— Polygon fill
— Clipping

¢ Commands queuing through a FIFO

10.5.14 Ethernet 10/100 MAC
» Compatibility with IEEE Standard 802.3
* 10 and 100 Mbits per second data throughput capability
¢ Full- and half-duplex operations
* MIl or RMII interface to the physical layer
* Register Interface to address, data, status and control registers
* DMA Interface, operating as a master on the Memory Controller
* Interrupt generation to signal receive and transmit completion
¢ 28-byte transmit and 28-byte receive FIFOs
* Automatic pad and CRC generation on transmitted frames
» Address checking logic to recognize four 48-bit addresses
¢ Support promiscuous mode where all valid frames are copied to memory

¢ Support physical layer management through MDIO interface control of alarm and update
time/calendar data in

10.5.15 Image Sensor Interface
* ITU-R BT. 601/656 8-bit mode external interface support
* Support for ITU-R BT.656-4 SAV and EAV synchronization
e Vertical and horizontal resolutions up to 2048 x 2048
¢ Preview Path up to 640*480
» Support for packed data formatting for YCbCr 4:2:2 formats
* Preview scaler to generate smaller size image
* Programmable frame capture rate

ATMEL s

6249D-ATARM-20-Dec-07

ATMEL

46 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

11. ARM926EJ-S Processor Overview

11.1 Overview

6249D-ATARM-20-Dec-07

The ARM926EJ-S processor is a member of the ARM9s family of general-purpose microproces-
sors. The ARM926EJ-S implements ARM architecture version 5TEJ and is targeted at multi-
tasking applications where full memory management, high performance, low die size and low
power are all important features.

The ARM926EJ-S processor supports the 32-bit ARM and 16-bit THUMB instruction sets,
enabling the user to trade off between high performance and high code density. It also supports
8-bit Java instruction set and includes features for efficient execution of Java bytecode, provid-
ing a Java performance similar to a JIT (Just-In-Time compilers), for the next generation of Java-
powered wireless and embedded devices. It includes an enhanced multiplier design for
improved DSP performance.

The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist
in both hardware and software debug.

The ARM926EJ-S provides a complete high performance processor subsystem, including:

 an ARM9EJ-S™ integer core

* a Memory Management Unit (MMU)

* separate instruction and data AMBA™ AHB bus interfaces
e separate instruction and data TCM interfaces

ATMEL 7

ATMEL

11.2 Block Diagram

Figure 11-1. ARM926EJ-S Internal Functional Block Diagram

ARM926EJ-S
<>
TCM
P Interface
P> <>
Coprocessor >
Interface
< > —
ETM A [& ‘
Interface DEXT —
>
A t A
—
Droute [- T .
<L AHB
¢ > » Interface<->
<
T < pcacHe [T
.-—= ity Bus
Interface
WDATA W RDATA Unit
ARM9EJ-S DA <
== MMU
EmbeddedICE | Processor A — Ins}tArathion
AT > Interface | AHB
INSTR
1" 1 ICACHE
Interface
>
Iroute
u h
<
IEXT

11.3 ARM9EJ-S Processor

11.3.1 ARM9EJ-S™ Operating States
The ARM9EJ-S processor can operate in three different states, each with a specific instruction
set:
¢ ARM state: 32-bit, word-aligned ARM instructions.
* THUMB state: 16-bit, halfword-aligned Thumb instructions.
¢ Jazelle state: variable length, byte-aligned Jazelle instructions.
In Jazelle state, all instruction Fetches are in words.

11.3.2 Switching State
The operating state of the ARM9EJ-S core can be switched between:

* ARM state and THUMB state using the BX and BLX instructions, and loads to the PC

48 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

* ARM state and Jazelle state using the BXJ instruction

All exceptions are entered, handled and exited in ARM state. If an exception occurs in Thumb or
Jazelle states, the processor reverts to ARM state. The transition back to Thumb or Jazelle
states occurs automatically on return from the exception handler.

1133 Instruction Pipelines

The ARM9EJ-S core uses two kinds of pipelines to increase the speed of the flow of instructions
to the processor.

A five-stage (five clock cycles) pipeline is used for ARM and Thumb states. It consists of Fetch,
Decode, Execute, Memory and Writeback stages.

A six-stage (six clock cycles) pipeline is used for Jazelle state It consists of Fetch,
Jazelle/Decode (two clock cycles), Execute, Memory and Writeback stages.

11.34 Memory Access

The ARM9EJ-S core supports byte (8-bit), half-word (16-bit) and word (32-bit) access. Words
must be aligned to four-byte boundaries, half-words must be aligned to two-byte boundaries and
bytes can be placed on any byte boundary.

Because of the nature of the pipelines, it is possible for a value to be required for use before it
has been placed in the register bank by the actions of an earlier instruction. The ARM9EJ-S con-
trol logic automatically detects these cases and stalls the core or forward data.

11.35 Jazelle Technology

The Jazelle technology enables direct and efficient execution of Java byte codes on ARM pro-
cessors, providing high performance for the next generation of Java-powered wireless and
embedded devices.

The new Java feature of ARM9EJ-S can be described as a hardware emulation of a JVM (Java
Virtual Machine). Java mode will appear as another state: instead of executing ARM or Thumb
instructions, it executes Java byte codes. The Java byte code decoder logic implemented in
ARMO9EJ-S decodes 95% of executed byte codes and turns them into ARM instructions without
any overhead, while less frequently used byte codes are broken down into optimized sequences
of ARM instructions. The hardware/software split is invisible to the programmer, invisible to the
application and invisible to the operating system. All existing ARM registers are re-used in
Jazelle state and all registers then have particular functions in this mode.

Minimum interrupt latency is maintained across both ARM state and Java state. Since byte
codes execution can be restarted, an interrupt automatically triggers the core to switch from
Java state to ARM state for the execution of the interrupt handler. This means that no special
provision has to be made for handling interrupts while executing byte codes, whether in hard-
ware or in software.

11.3.6 ARM9EJ-S Operating Modes

6249D-ATARM-20-Dec-07

In all states, there are seven operation modes:
¢ User mode is the usual ARM program execution state. It is used for executing most
application programs

¢ Fast Interrupt (FIQ) mode is used for handling fast interrupts. It is suitable for high-speed data
transfer or channel process

¢ Interrupt (IRQ) mode is used for general-purpose interrupt handling

ATMEL 19

ATMEL

¢ Supervisor mode is a protected mode for the operating system

¢ Abort mode is entered after a data or instruction prefetch abort

» System mode is a privileged user mode for the operating system

* Undefined mode is entered when an undefined instruction exception occurs

Mode changes may be made under software control, or may be brought about by external inter-
rupts or exception processing. Most application programs execute in User Mode. The non-user
modes, known as privileged modes, are entered in order to service interrupts or exceptions or to
access protected resources.

11.3.7 ARMO9EJ-S Registers
The ARM9EJ-S core has a total of 37 registers:

* 31 general-purpose 32-bit registers
* 6 32-bit status registers
Table 11-1 shows all the registers in all modes.

Table 11-1. ARM9TDMI® Modes and Registers Layout

User and Supervisor Undefined Fast Interrupt
System Mode Mode Abort Mode Mode Interrupt Mode Mode
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8_FIQ
R9 R9 R9 R9 R9 R9_FIQ
R10 R10 R10 R10 R10 R10_FIQ
R11 R11 R11 R11 R11 R11_FIQ
R12 R12 R12 R12 R12 R12_FIQ
R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ
R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ
PC PC PC PC PC PC
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_SVC SPSR_ABORT | SPSR_UNDEF SPSR_IRQ SPSR_FIQ

I:I Mode-specific banked registers

The ARM state register set contains 16 directly-accessible registers, r0 to r15, and an additional
register, the Current Program Status Register (CPSR). Registers r0 to r13 are general-purpose

50 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

registers used to hold either data or address values. Register r14 is used as a Link register that
holds a value (return address) of r15 when BL or BLX is executed. Register r15 is used as a pro-
gram counter (PC), whereas the Current Program Status Register (CPSR) contains condition
code flags and the current mode bits.

In privileged modes (FIQ, Supervisor, Abort, IRQ, Undefined), mode-specific banked registers
(r8 to r14 in FIQ mode or r13 to r14 in the other modes) become available. The corresponding
banked registers r14_fiq, r14_svc, r14_abt, r14_irq, r14_und are similarly used to hold the val-
ues (return address for each mode) of r15 (PC) when interrupts and exceptions arise, or when
BL or BLX instructions are executed within interrupt or exception routines. There is another reg-
ister called Saved Program Status Register (SPSR) that becomes available in privileged modes
instead of CPSR. This register contains condition code flags and the current mode bits saved as
a result of the exception that caused entry to the current (privileged) mode.

In all modes and due to a software agreement, register r13 is used as stack pointer.

The use and the function of all the registers described above should obey ARM Procedure Call
Standard (APCS) which defines:

e constraints on the use of registers

* stack conventions

¢ argument passing and result return
The Thumb state register set is a subset of the ARM state set. The programmer has direct
access to:

* Eight general-purpose registers r0-r7

e Stack pointer, SP

* Link register, LR (ARM r14)

* PC

* CPSR

There are banked registers SPs, LRs and SPSRs for each privileged mode (for more details see
the ARM9EJ-S Technical Reference Manual, ref. DDI0222B, revision r1p2 page 2-12).

11.3.7.1 Status Registers

6249D-ATARM-20-Dec-07

The ARM9EJ-S core contains one CPSR, and five SPSRs for exception handlers to use. The
program status registers:

¢ hold information about the most recently performed ALU operation
* control the enabling and disabling of interrupts
¢ set the processor operation mode

ATMEL 2

ATMEL

Figure 11-2. Status Register Format

3130292827 24 765 0

N|Z|C|V|Q J Reserved I |F|T Mode

J |_ |
Jazelle state bit
| Reserved Mode bits

Sticky Overflow

Overflow Thumb state bit
Carry/Borrow/Extend
Zero FIQ disable

Negative/Less than

IRQ disable

Figure 11-2 shows the status register format, where:

* N: Negative, Z: Zero, C: Carry, and V: Overflow are the four ALU flags

* The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic

instructions like QADD, QDADD, QSUB, QDSUB, SMLAxy, and SMLAWYy needed to achieve
DSP operations.

The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by

an MSR instruction writing to the CPSR. Instructions cannot execute conditionally on the
status of the Q flag.

* The J bit in the CPSR indicates when the ARM9EJ-S core is in Jazelle state, where:
— J =0: The processor is in ARM or Thumb state, depending on the T bit
— J =1: The processor is in Jazelle state.

¢ Mode: five bits to encode the current processor mode

11.3.7.2 Exceptions
Exception Types and Priorities

The ARM9EJ-S supports five types of exceptions. Each type drives the ARM9EJ-S in a privi-
leged mode. The types of exceptions are:

e Fast interrupt (FIQ)

* Normal interrupt (IRQ)

¢ Data and Prefetched aborts (Abort)

¢ Undefined instruction (Undefined)

 Software interrupt and Reset (Supervisor)
When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save the state.

More than one exception can happen at a time, therefore the ARM9EJ-S takes the arisen excep-
tions according to the following priority order:

* Reset (highest priority)

e Data Abort

* FIQ

* IRQ

¢ Prefetch Abort

* BKPT, Undefined instruction, and Software Interrupt (SWI) (Lowest priority)

52 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

The BKPT, or Undefined instruction, and SWI exceptions are mutually exclusive.

There is one exception in the priority scheme though, when FIQs are enabled and a Data Abort
occurs at the same time as an FIQ, the ARM9EJ-S core enters the Data Abort handler, and pro-
ceeds immediately to FIQ vector. A normal return from the FIQ causes the Data Abort handler to
resume execution. Data Aborts must have higher priority than FIQs to ensure that the transfer
error does not escape detection.

Exception Modes and Handling

Exceptions arise whenever the normal flow of a program must be halted temporarily, for exam-
ple, to service an interrupt from a peripheral.

When handling an ARM exception, the ARM9EJ-S core performs the following operations:

1. Preserves the address of the next instruction in the appropriate Link Register that cor-
responds to the new mode that has been entered. When the exception entry is from:
— ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction
into LR (current PC(r15) + 4 or PC + 8 depending on the exception).

— THUMB state, the ARM9EJ-S writes the value of the PC into LR, offset by a value
(current PC + 2, PC + 4 or PC + 8 depending on the exception) that causes the
program to resume from the correct place on return.

2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value that depends on the exception.
4. Forces the PC to fetch the next instruction from the relevant exception vector.

The register r13 is also banked across exception modes to provide each exception handler with
private stack pointer.

The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable
nesting of exceptions.

When an exception has completed, the exception handler must move both the return value in
the banked LR minus an offset to the PC and the SPSR to the CPSR. The offset value varies
according to the type of exception. This action restores both PC and the CPSR.

The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or
remove the requirement for register saving which minimizes the overhead of context switching.

The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be
completed. When a Prefetch Abort occurs, the ARM9EJ-S marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the Execute stage in the
pipeline. If the instruction is not executed, for example because a branch occurs while it is in the
pipeline, the abort does not take place.

The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the
problem of the Prefetch Abort. A breakpoint instruction operates as though the instruction
caused a Prefetch Abort.

A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until
the instruction reaches the Execute stage of the pipeline. If the instruction is not executed, for
example because a branch occurs while it is in the pipeline, the breakpoint does not take place.

11.3.8 ARM Instruction Set Overview
The ARM instruction set is divided into:

¢ Branch instructions

ATMEL s

6249D-ATARM-20-Dec-07

* Data processing instructions

* Status register transfer instructions

* Load and Store instructions

¢ Coprocessor instructions

¢ Exception-generating instructions
ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bits[31:28]).

Table 11-2 gives the ARM instruction mnemonic list.

Table 11-2. ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation
MOV Move MVN Move Not
ADD Add ADC Add with Carry
SuUB Subtract SBC Subtract with Carry
RSB Reverse Subtract RSC Reverse Subtract with Carry
CMP Compare CMN Compare Negated
TST Test TEQ Test Equivalence
AND Logical AND BIC Bit Clear
EOR Logical Exclusive OR ORR Logical (inclusive) OR
MUL Multiply MLA Multiply Accumulate
SMULL Sign Long Multiply UMULL Unsigned Long Multiply
MSR Move to Status Register MRS Move From Status Register
B Branch BL Branch and Link
BX Branch and Exchange Swi Software Interrupt
LDR Load Word STR Store Word
LDRSH Load Signed Halfword
LDRSB Load Signed Byte
LDRH Load Half Word STRH Store Half Word
LDRB Load Byte STRB Store Byte
LDRBT 'I|_'|?aa:1ds llzteig:]ster Byte with STRBT _Srrt;)rr]zlgfgri]ster Byte with
LopT | 4ona Segser srr | Sore egter vt
LDM Load Multiple ST™M Store Multiple
SWP Swap Word SWPB Swap Byte
MCR Move To Coprocessor MRC Move From Coprocessor
LDC Load To Coprocessor STC Store From Coprocessor
CDP Coprocessor Data

Processing

54 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

11.3.9 New ARM Instruction Set

Table 11-3. New ARM Instruction Mnemonic List

Mnemonic Operation Mnemonic Operation
BXJ Branch and exchange to MRRC Move double from
Java coprocessor
BLX Branch, Link and exchange MCR2 Alternative move of ARM reg
to coprocessor
SMLAXxy 18239??2 L\::imlply Accumulate MCRR Move double to coprocessor
SMLAL Signed Multiply Accumulate CDP2 Alternative qurocessor
Long Data Processing
Signed Multiply Accumulate .
SMLAWy 32 * 16 it BKPT Breakpoint
. . N . Soft Preload, Memory
SMULxy Signed Multiply 16 * 16 bit PLD prepare to load from address
SMULWYy Signed Multiply 32 * 16 bit STRD Store Double
QADD Saturated Add sTC2 Alternative Store from
Coprocessor
QDADD Saturated Add with Double LDRD Load Double
QSuB Saturated subtract LDC2 Alternative Load to
Coprocessor
QDSuUB c?;t::;l:ted Subtract with CLz Count Leading Zeroes

Notes: 1. A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles.

11.3.10 Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.

The Thumb instruction set is divided into:

¢ Branch instructions
* Data processing instructions
* Load and Store instructions
* Load and Store multiple instructions
* Exception-generating instruction
Table 5 shows the Thumb instruction set. Table 11-4 gives the Thumb instruction mnemonic list.

Table 11-4. Thumb Instruction Mnemonic List

Mnemonic | Operation Mnemonic | Operation

MOV Move MVN Move Not

ADD Add ADC Add with Carry
SuB Subtract SBC Subtract with Carry
CMP Compare CMN Compare Negated
TST Test NEG Negate

AND Logical AND BIC Bit Clear

ATMEL s

6249D-ATARM-20-Dec-07

ATMEL

Table 11-4. Thumb Instruction Mnemonic List (Continued)

Mnemonic | Operation Mnemonic | Operation

EOR Logical Exclusive OR ORR Logical (inclusive) OR
LSL Logical Shift Left LSR Logical Shift Right

ASR Arithmetic Shift Right ROR Rotate Right

MUL Multiply BLX Branch, Link, and Exchange
B Branch BL Branch and Link

BX Branch and Exchange Swi Software Interrupt

LDR Load Word STR Store Word

LDRH Load Half Word STRH Store Half Word

LDRB Load Byte STRB Store Byte

LDRSH Load Signed Halfword LDRSB Load Signed Byte
LDMIA Load Multiple STMIA Store Multiple

PUSH Push Register to stack POP Pop Register from stack
BCC Conditional Branch BKPT Breakpoint

11.4 CP15 Coprocessor
Coprocessor 15, or System Control Coprocessor CP15, is used to configure and control all the

items in the list below:
¢ ARM9EJ-S
¢ Caches (ICache, DCache and write buffer)
e TCM
e MMU
¢ Other system options
To control these features, CP15 provides 16 additional registers. See Table 11-5.

Table 11-5. CP15 Registers

Register Name Read/Write

0 ID Code™ Read/Unpredictable
0 Cache type" Read/Unpredictable
0 TCM status(" Read/Unpredictable
1 Control Read/write

2 Translation Table Base Read/write

3 Domain Access Control Read/write

4 Reserved None

5 Data fault Status Read/write

5 Instruction fault status(" Read/write

6 Fault Address Read/write

7 Cache Operations Read/Write

56 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 11-5. CP15 Registers

Register Name Read/Write
8 TLB operations Unpredictable/Write
9 cache lockdown® Read/write
9 TCM region Read/write
10 TLB lockdown Read/write
11 Reserved None
12 Reserved None
13 FCSE PID™ Read/write
13 Context ID(Read/Write
14 Reserved None
15 Test configuration Read/Write

Notes: 1. Register locations 0,5, and 13 each provide access to more than one register. The register
accessed depends on the value of the opcode_2 field.

2. Register location 9 provides access to more than one register. The register accessed depends
on the value of the CRm field.

11.441 CP15 Registers Access
CP15 registers can only be accessed in privileged mode by:

* MCR (Move to Coprocessor from ARM Register) instruction is used to write an ARM register
to CP15.

ATMEL 57

6249D-ATARM-20-Dec-07

ATMEL

* MRC (Move to ARM Register from Coprocessor) instruction is used to read the value of

CP15 to an ARM register.

Other instructions like CDP, LDC, STC can cause an undefined instruction exception.

The assembler code for these instructions is:

MCR/MRC{cond} pl5, opcode 1, Rd, CRn, CRm, opcode 2.

The MCR, MRC instructions bit pattern is shown below:

31 30 29 28 27 26 25 24
| cond | 1 1 | 1 0

23 22 21 20 19 18 17 16
| opcode_1 L | CRn

15 14 13 12 11 10 9 8
| Rd | 1 1 1 1

7 6 5 4 3 2 1 0
| opcode_2 | 1 | CRm

e CRm[3:0]: Specified Coprocessor Action

Determines specific coprocessor action. lts value is dependent on the CP15 register used. For details, refer to CP15 spe-
cific register behavior.

e opcode_2[7:5]
Determines specific coprocessor operation code. By default, set to 0.

* Rd[15:

12]: ARM Register

Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.

e CRn[19:16]: Coprocessor Register
Determines the destination coprocessor register.

e L: Instruction Bit

0=MCR
1=MRC

instruction

instruction

e opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is ¢15 for CP15.

e cond [31:28]: Condition

For more details, see Chapter 2 in ARM926EJ-S TRM, ref. DDI0O198B.

58

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

11.5 Memory Management Unit (MMU)

The ARM926EJ-S processor implements an enhanced ARM architecture v5 MMU to provide vir-
tual memory features required by operating systems like Symbian OS®, WindowsCE, and Linux.
These virtual memory features are memory access permission controls and virtual to physical
address translations.

The Virtual Address generated by the CPU core is converted to a Modified Virtual Address
(MVA) by the FCSE (Fast Context Switch Extension) using the value in CP15 register13. The
MMU translates modified virtual addresses to physical addresses by using a single, two-level
page table set stored in physical memory. Each entry in the set contains the access permissions
and the physical address that correspond to the virtual address.

The first level translation tables contain 4096 entries indexed by bits [31:20] of the MVA. These
entries contain a pointer to either a 1 MB section of physical memory along with attribute infor-
mation (access permissions, domain, etc.) or an entry in the second level translation tables;
coarse table and fine table.

The second level translation tables contain two subtables, coarse table and fine table. An entry
in the coarse table contains a pointer to both large pages and small pages along with access
permissions. An entry in the fine table contains a pointer to large, small and tiny pages.

Table 7 shows the different attributes of each page in the physical memory.

Table 11-6. Mapping Details

Mapping Name Mapping Size Access Permission By Subpage Size
Section 1M byte Section -

Large Page 64K bytes 4 separated subpages 16K bytes
Small Page 4K bytes 4 separated subpages 1K byte

Tiny Page 1K byte Tiny Page -

The MMU consists of:

¢ Access control logic
* Translation Look-aside Buffer (TLB)
* Translation table walk hardware

11.5.1 Access Control Logic
The access control logic controls access information for every entry in the translation table. The
access control logic checks two pieces of access information: domain and access permissions.
The domain is the primary access control mechanism for a memory region; there are 16 of them.
It defines the conditions necessary for an access to proceed. The domain determines whether
the access permissions are used to qualify the access or whether they should be ignored.

The second access control mechanism is access permissions that are defined for sections and
for large, small and tiny pages. Sections and tiny pages have a single set of access permissions
whereas large and small pages can be associated with 4 sets of access permissions, one for
each subpage (quarter of a page).

ATMEL 59

6249D-ATARM-20-Dec-07

11.5.2

11.5.3

11.5.4

ATMEL

Translation Look-aside Buffer (TLB)

The Translation Look-aside Buffer (TLB) caches translated entries and thus avoids going
through the translation process every time. When the TLB contains an entry for the MVA (Modi-
fied Virtual Address), the access control logic determines if the access is permitted and outputs
the appropriate physical address corresponding to the MVA. If access is not permitted, the MMU
signals the CPU core to abort.

If the TLB does not contain an entry for the MVA, the translation table walk hardware is invoked
to retrieve the translation information from the translation table in physical memory.

Translation Table Walk Hardware

MMU Faults

The translation table walk hardware is a logic that traverses the translation tables located in
physical memory, gets the physical address and access permissions and updates the TLB.

The number of stages in the hardware table walking is one or two depending whether the
address is marked as a section-mapped access or a page-mapped access.

There are three sizes of page-mapped accesses and one size of section-mapped access. Page-
mapped accesses are for large pages, small pages and tiny pages. The translation process
always begins with a level one fetch. A section-mapped access requires only a level one fetch,
but a page-mapped access requires an additional level two fetch. For further details on the
MMU, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual, ref. DDIO198B.

The MMU generates an abort on the following types of faults:

» Alignment faults (for data accesses only)
e Translation faults

e Domain faults

¢ Permission faults

The access control mechanism of the MMU detects the conditions that produce these faults. If
the fault is a result of memory access, the MMU aborts the access and signals the fault to the
CPU core.The MMU retains status and address information about faults generated by the data
accesses in the data fault status register and fault address register. It also retains the status of
faults generated by instruction fetches in the instruction fault status register.

The fault status register (register 5 in CP15) indicates the cause of a data or prefetch abort, and
the domain number of the aborted access when it happens. The fault address register (register 6
in CP15) holds the MVA associated with the access that caused the Data Abort. For further
details on MMU faults, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual,
ref. DDIO198B.

11.6 Caches and Write Buffer

60

The ARM926EJ-S contains a 16 KB Instruction Cache (ICache), a 16 KB Data Cache (DCache),
and a write buffer. Although the ICache and DCache share common features, each still has
some specific mechanisms.

The caches (ICache and DCache) are four-way set associative, addressed, indexed and tagged
using the Modified Virtual Address (MVA), with a cache line length of eight words with two dirty
bits for the DCache. The ICache and DCache provide mechanisms for cache lockdown, cache
pollution control, and line replacement.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

11.6.1

11.6.2

11.6.2.1

A new feature is now supported by ARM926EJ-S caches called allocate on read-miss commonly
known as wrapping. This feature enables the caches to perform critical word first cache refilling.
This means that when a request for a word causes a read-miss, the cache performs an AHB
access. Instead of loading the whole line (eight words), the cache loads the critical word first, so
the processor can reach it quickly, and then the remaining words, no matter where the word is
located in the line.

The caches and the write buffer are controlled by the CP15 register 1 (Control), CP15 register 7
(cache operations) and CP15 register 9 (cache lockdown).

Instruction Cache (ICache)

The ICache caches fetched instructions to be executed by the processor. The ICache can be
enabled by writing 1 to | bit of the CP15 Register 1 and disabled by writing 0 to this same bit.

When the MMU is enabled, all instruction fetches are subject to translation and permission
checks. If the MMU is disabled, all instructions fetches are cachable, no protection checks are
made and the physical address is flat-mapped to the modified virtual address. With the MVA use
disabled, context switching incurs ICache cleaning and/or invalidating.

When the ICache is disabled, all instruction fetches appear on external memory (AHB) (see
Tables 4-1 and 4-2 in page 4-4 in ARM926EJ-S TRM, ref. DDI0198B).

On reset, the ICache entries are invalidated and the ICache is disabled. For best performance,
ICache should be enabled as soon as possible after reset.

Data Cache (DCache) and Write Buffer

DCache

6249D-ATARM-20-Dec-07

ARM926EJ-S includes a DCache and a write buffer to reduce the effect of main memory band-
width and latency on data access performance. The operations of DCache and write buffer are
closely connected.

The DCache needs the MMU to be enabled. All data accesses are subject to MMU permission
and translation checks. Data accesses that are aborted by the MMU do not cause linefills or data
accesses to appear on the AMBA ASB interface. If the MMU is disabled, all data accesses are
noncachable, nonbufferable, with no protection checks, and appear on the AHB bus. All
addresses are flat-mapped, VA = MVA = PA, which incurs DCache cleaning and/or invalidating
every time a context switch occurs.

The DCache stores the Physical Address Tag (PA Tag) from which every line was loaded and
uses it when writing modified lines back to external memory. This means that the MMU is not
involved in write-back operations.

Each line (8 words) in the DCache has two dirty bits, one for the first four words and the other
one for the second four words. These bits, if set, mark the associated half-lines as dirty. If the
cache line is replaced due to a linefill or a cache clean operation, the dirty bits are used to decide
whether all, half or none is written back to memory.

DCache can be enabled or disabled by writing either 1 or 0 to bit C in register 1 of CP15 (see
Tables 4-3 and 4-4 on page 4-5 in ARM926EJ-S TRM, ref. DDI0222B).

The DCache supports write-through and write-back cache operations, selected by memory
region using the C and B bits in the MMU translation tables.

ATMEL o

ATMEL

The DCache contains an eight data word entry, single address entry write-back buffer used to
hold write-back data for cache line eviction or cleaning of dirty cache lines.

The Write Buffer can hold up to 16 words of data and four separate addresses. DCache and
Write Buffer operations are closely connected as their configuration is set in each section by the
page descriptor in the MMU translation table.

11.6.2.2 Write Buffer

The ARM926EJ-S contains a write buffer that has a 16-word data buffer and a four- address
buffer. The write buffer is used for all writes to a bufferable region, write-through region and
write-back region. It also allows to avoid stalling the processor when writes to external memory
are performed. When a store occurs, data is written to the write buffer at core speed (high
speed). The write buffer then completes the store to external memory at bus speed (typically
slower than the core speed). During this time, the ARM9EJ-S processor can preform other
tasks.

DCache and Write Buffer support write-back and write-through memory regions, controlled by C
and B bits in each section and page descriptor within the MMU translation tables.

Write-though Operation

When a cache write hit occurs, the DCache line is updated. The updated data is then written to
the write buffer which transfers it to external memory.

When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in
the write buffer which transfers it to external memory.

Write-back Operation

When a cache write hit occurs, the cache line or half line is marked as dirty, meaning that its
contents are not up-to-date with those in the external memory.

When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in
the write buffer which transfers it to external memory.

11.7 Tightly-Coupled Memory Interface

11.71 TCM Description
The ARM926EJ-S processor features a Tightly-Coupled Memory (TCM) interface, which
enables separate instruction and data TCMs (ITCM and DTCM) to be directly reached by the
processor. TCMs are used to store real-time and performance critical code, they also provide a
DMA support mechanism. Unlike AHB accesses to external memories, accesses to TCMs are
fast and deterministic and do not incur bus penalties.

The user has the possibility to independently configure each TCM size with values within the fol-
lowing ranges, [OKB, 64 KB] for ITCM size and [0KB, 64 KB] for DTCM size.

TCMs can be configured by two means: HMATRIX TCM register and TCM region register (regis-
ter 9) in CP15 and both steps should be performed. HMATRIX TCM register sets TCM size
whereas TCM region register (register 9) in CP15 maps TCMs and enables them.

The data side of the ARM9EJ-S core is able to access the ITCM. This is necessary to enable
code to be loaded into the ITCM, for SWI and emulated instruction handlers, and for accesses to
PC-relative literal pools.

62 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

11.7.2 Enabling and Disabling TCMs

11.7.3 TCM Mapping

Prior to any enabling step, the user should configure the TCM sizes in HMATRIX TCM register.
Then enabling TCMs is performed by using TCM region register (register 9) in CP15. The user
should use the same sizes as those put in HMATRIX TCM register. For further details and pro-
gramming tips, please refer to chapter 2.3 in ARM926EJ-S TRM, ref. DDI0222B.

The TCMs can be located anywhere in the memory map, with a single region available for ITCM
and a separate region available for DTCM. The TCMs are physically addressed and can be
placed anywhere in physical address space. However, the base address of a TCM must be
aligned to its size, and the DTCM and ITCM regions must not overlap. TCM mapping is per-
formed by using TCM region register (register 9) in CP15. The user should input the right
mapping address for TCMs.

11.8 Bus Interface Unit

The ARM926EJ-S features a Bus Interface Unit (BIU) that arbitrates and schedules AHB
requests. The BIU implements a multi-layer AHB, based on the AHB-Lite protocol, that enables
parallel access paths between multiple AHB masters and slaves in a system. This is achieved by
using a more complex interconnection matrix and gives the benefit of increased overall bus
bandwidth, and a more flexible system architecture.

The multi-master bus architecture has a number of benefits:
* |t allows the development of multi-master systems with an increased bus bandwidth and a
flexible architecture.

* Each AHB layer becomes simple because it only has one master, so no arbitration or master-
to-slave muxing is required. AHB layers, implementing AHB-Lite protocol, do not have to
support request and grant, nor do they have to support retry and split transactions.

¢ The arbitration becomes effective when more than one master wants to access the same
slave simultaneously.

11.8.1 Supported Transfers

6249D-ATARM-20-Dec-07

The ARM926EJ-S processor performs all AHB accesses as single word, bursts of four words, or
bursts of eight words. Any ARM9EJ-S core request that is not 1, 4, 8 words in size is split into
packets of these sizes. Note that the Atmel bus is AHB-Lite protocol compliant, hence it does not
support split and retry requests.

ATMEL :

Table 11-7.

ATMEL

Table 8 gives an overview of the supported transfers and different kinds of transactions they are

used for.

Supported Transfers

HBurst[2:0]

Description

Single transfer of word, half word, or byte:
 data write (NCNB, NCB, WT, or WB that has missed in DCache)

SINGLE Single transfer * data read (NCNB or NCB)

* NC instruction fetch (prefetched and non-prefetched)

* page table walk read
INCR4 Four-word incrementing burst :glg!irx_ﬁzcihve\zlév;vitﬁt-:éck, Instruction prefetch, if enabled. Four-word burst NCNB,
INCR8 Eight-word incrementing burst | Full-line cache write-back, eight-word burst NCNB, NCB, WT, or WB write.
WRAP8 Eight-word wrapping burst Cache linefill

11.8.2 Thumb Instruction Fetches

All instructions fetches, regardless of the state of ARM9EJ-S core, are made as 32-bit accesses
on the AHB. If the ARM9EJ-S is in Thumb state, then two instructions can be fetched at a time.

11.8.3 Address Alignment
The ARM926EJ-S BIU performs address alignment checking and aligns AHB addresses to the
necessary boundary. 16-bit accesses are aligned to halfword boundaries, and 32-bit accesses
are aligned to word boundaries.

64 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

12. AT91SAM9263 Debug and Test

12.1 Description

6249D-ATARM-20-Dec-07

The AT91SAM9263 features a number of complementary debug and test capabilities. A com-
mon JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions, such as
downloading code and single-stepping through programs. An ETM (Embedded Trace Macrocell)
provides more sophisticated debug features such as address and data comparators, half-rate
clock mode, counters, sequencer and FIFO. The Debug Unit provides a two-pin UART that can
be used to upload an application into internal SRAM. It manages the interrupt handling of the
internal COMMTX and COMMRX signals that trace the activity of the Debug Communication
Channel.

A set of dedicated debug and test input/output pins gives direct access to these capabilities from
a PC-based test environment.

ATMEL o

ATMEL

12.2 Block Diagram

Figure 12-1. Debug and Test Block Diagram

T™MS

TCK

TDI

NTRST

?\f\

J..J

+_

|
I | | O | [

ICENTAG
Boundary TAP

Port
|

JTAGSEL

TDO

_/;
L

RTCK

Reset
and
Test

TST

[

TPKO-TPK15

TPSO-TPS2

PIO

ARM9YEJ-S ICE-RT | |>| ETM

TSYNC

I |

TCLK

ARMO926EJ-S

DTXD

PDC DBGU

i
L}

DRXD

TAP: Test Access Port

66 AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

12.3 Application Examples

12.3.1 Debug Environment
Figure 12-2 on page 67 shows a complete debug environment example. The ICE/JTAG inter-
face is used for standard debugging functions, such as downloading code and single-stepping
through the program. The Trace Port interface is used for tracing information. A software debug-
ger running on a personal computer provides the user interface for configuring a Trace Port
interface utilizing the ICE/JTAG interface.

Figure 12-2. Application Debug and Trace Environment Example

/ Host Debugger \

ICEJTAG Trace Port
Interface Interface
ICENTAG Trace
Connector Connector
AT91SAMoZ63 || RS282 Terminal
Connector
AT91SAM9263-based Application

12.3.2 Test Environment
Figure 12-3 on page 67 shows a test environment example. Test vectors are sent and inter-
preted by the tester. In this example, the “board in test” is designed using a number of JTAG-
compliant devices. These devices can be connected to form a single scan chain.

Figure 12-3. Application Test Environment Example

Test Adaptor
Tester

JTAG
Interface

ICENTAG . .
Connector [—|Chip nf---Chip2

AT91SAM9263 Chip 1

AT91SAM9263-based Application Board In Test

ATMEL o7

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

12.4 Debug and Test Pin Description

Table 12-1. Debug and Test Pin List

Pin Name Function Type Active Level
Reset/Test
NTRST Test Reset Signal Input Low
NRST Microcontroller Reset Input/Output Low
TST Test Mode Select Input High
ICE and JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
TMS Test Mode Select Input
RTCK Returned Test Clock Output
JTAGSEL JTAG Selection Input
ETM
TSYNC Trace Synchronization Signal Output
TCLK Trace Clock Output
TPSO - TPS2 Trace ARM Pipeline Status Output
TPKO - TPK15 Trace Packet Port Output
Debug Unit
DRXD Debug Receive Data Input
DTXD Debug Transmit Data Output

12.5 Functional Description

12.5.1 Test Pin
One dedicated pin, TST, is used to define the device operating mode. The user must make sure
that this pin is tied at low level to ensure normal operating conditions. Other values associated
with this pin are reserved for manufacturing test.

12.5.2 Embedded In-circuit Emulator

The ARM9EJ-S Embedded In-Circuit Emulator-RT is supported via the ICE/JTAG port. It is con-
nected to a host computer via an ICE interface. Debug support is implemented using an
ARMO9EJ-S core embedded within the ARM926EJ-S. The internal state of the ARM926EJ-S is
examined through an ICE/JTAG port which allows instructions to be serially inserted into the
pipeline of the core without using the external data bus. Therefore, when in debug state, a store-
multiple (STM) can be inserted into the instruction pipeline. This exports the contents of the
ARMO9EJ-S registers. This data can be serially shifted out without affecting the rest of the
system.

ATMEL o8

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

There are two scan chains inside the ARM9EJ-S processor which support testing, debugging,
and programming of the Embedded ICE-RT. The scan chains are controlled by the ICE/JTAG
port.

Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly
between ICE and JTAG operations. A chip reset must be performed after JTAGSEL is changed.

For further details on the Embedded In-Circuit-Emulator-RT, see the ARM document:

ARMO9EJ-S Technical Reference Manual (DDI 0222A).

12.5.3 JTAG Signal Description

12.5.4 Debug Unit

6249D-ATARM-20-Dec-07

TMS is the Test Mode Select input which controls the transitions of the test interface state
machine.

TDI is the Test Data Input line which supplies the data to the JTAG registers (Boundary Scan
Register, Instruction Register, or other data registers).

TDO is the Test Data Output line which is used to serially output the data from the JTAG regis-
ters to the equipment controlling the test. It carries the sampled values from the boundary scan
chain (or other JTAG registers) and propagates them to the next chip in the serial test circuit.

NTRST (optional in IEEE Standard 1149.1) is a Test-ReSeT input which is mandatory in ARM
cores and used to reset the debug logic. On Atmel ARM926EJ-S-based cores, NTRST is a
Power On Reset output. It is asserted on power on. If necessary, the user can also reset the
debug logic with the NTRST pin assertion during 2.5 MCK periods.

TCK is the Test ClocK input which enables the test interface. TCK is pulsed by the equipment
controlling the test and not by the tested device. It can be pulsed at any frequency. Note the
maximum JTAG clock rate on ARM926EJ-S cores is 1/6th the clock of the CPU. This gives 5.45
kHz maximum initial JTAG clock rate for an ARM9E running from the 32.768 kHz slow clock.

RTCK is the Return Test Clock. Not an IEEE Standard 1149.1 signal added for a better clock
handling by emulators. From some ICE Interface probes, this return signal can be used to syn-
chronize the TCK clock and take not care about the given ratio between the ICE Interface clock
and system clock equal to 1/6th. This signal is only available in JTAG ICE Mode and not in
boundary scan mode.

The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several
debug and trace purposes and offers an ideal means for in-situ programming solutions and
debug monitor communication. Moreover, the association with two peripheral data controller
channels permits packet handling of these tasks with processor time reduced to a minimum.

The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals
that come from the ICE and that trace the activity of the Debug Communication Channel.The
Debug Unit allows blockage of access to the system through the ICE interface.

A specific register, the Debug Unit Chip ID Register, gives information about the product version
and its internal configuration.

The AT91SAM9263 Debug Unit Chip ID value is 0x0196 07A0 on 32-bit width.

For further details on the Debug Unit, see the Debug Unit section.

ATMEL o9

e A T91SAM9263 Preliminary

12.5.5

12.5.5.1

Embedded Trace Macrocell

Trace Port

6249D-ATARM-20-Dec-07

The AT91SAM9263 features an Embedded Trace Macrocell (ETM), which is closely connected
to the ARM926EJ-S Processor. The Embedded Trace is a standard Medium+ level implementa-
tion and contains the following resources:

¢ Four pairs of address comparators

* Two data comparators

* Eight memory map decoder inputs

* Two 16-bits counters

* One 3-stage sequencer

* Four external inputs

¢ One external output

¢ One 45-byte FIFO

The Embedded Trace Macrocell of the AT91SAM9263 works in half-rate clock mode and thus
integrates a clock divider. This allows the maximum frequency of all the trace port signals not to
exceed one half of the ARM926EJ-S clock speed.

The Embedded Trace Macrocell input and output resources are not used in the AT91SAM9263.

The Embedded Trace is a real-time trace module with the capability of tracing the ARM9EJ-S
instruction and data.

For further details on Embedded Trace Macrocell, see the ARM documents:

* ETM9 (Rev2p2) Technical Reference Manual (DDI 0157F)
e Embedded Trace Macrocell Specification (IHI 0014J)

The Trace Port is made up of the following pins:
* TSYNC - the synchronization signal (Indicates the start of a branch sequence on the trace
packet port.)
* TCLK - the Trace Port clock, half-rate of the ARM926EJ-S processor clock.
* TPSO0 to TPS2 - indicate the processor state at each trace clock edge.
* TPKO to TPK15 - the Trace Packet data value.

The trace packet information (address, data) is associated with the processor state indicated by
TPS. Some processor states have no additional data associated with the Trace Packet Port (i.e.
failed condition code of an instruction). The packet is 8-bits wide, and up to two packets can be
output per cycle.

ATMEL 79

e A T91SAM9263 Preliminary

Figure 12-4. ETM9 Block

> TPS-TPSO
ARMO926EJ-S || Trace FIFO N R
Bus Tracker Control TPK15-TPKO
>TSYNC
Trace Enable, View Data|
TAP Trigger, Sequencer, Counters
Controller
A A A A
Scan Chain 6
‘_; ETM9
o|x| — To
SOl aola
FlFl =Y

12.5.5.2 Implementation Details

This section gives an overview of the Embedded Trace resources.

Three-state Sequencer

Address Comparator

Data Comparator

6249D-ATARM-20-Dec-07

The sequencer has three possible next states (one dedicated to itself and two others) and can
change on every clock cycle. The sate transition is controlled with internal events. If the user
needs multiple-stage trigger schemes, the trigger event is based on a sequencer state.

In single mode, address comparators compare either the instruction address or the data address
against the user-programmed address.

In range mode, the address comparators are arranged in pairs to form a virtual address range
resource.

Details of the address comparator programming are:

* The first comparator is programmed with the range start address.
* The second comparator is programmed with the range end address.
* The resource matches if the address is within the following range:
— (address > = range start address) AND (address < range end address)

* Unpredictable behavior occurs if the two address comparators are not configurated in the
same way.

Each full address comparator is associated with a specific data comparator. A data comparator
is used to observe the data bus only when load and store operations occur.

A data comparator has both a value register and a mask register, therefore it is possible to com-
pare only certain bits of a preprogrammed value against the data bus.

ATMEL g

e A T91SAM9263 Preliminary

Memory Decoder Inputs

The eight memory map decoder inputs are connected to custom address decoders. The
address decoders divide the memory into regions of on-chip SRAM, on-chip ROM, and peripher-
als. The address decoders also optimize the ETM9 trace trigger.

Table 12-2. ETM Memory Map Inputs Layout

Product Resource Area Access Type | Start Address | End Address
SRAM Internal Data 0x0000 0000 0x002F FFFF
SRAM Internal Fetch 0x0000 0000 0x002F FFFF
ROM Internal Data 0x0040 0000 0x004F FFFF
ROM Internal Fetch 0x0040 0000 0x004F FFFF
External Bus Interface | External Data 0x1000 0000 Ox9FFF FFFF
External Bus Interface | External Fetch 0x1000 0000 Ox9FFF FFFF
User Peripherals Internal Data 0xF000 0000 OxFFFF BFFF
System Peripherals Internal Data OxFFFF C000 | OxFFFF FFFF

FIFO

A 45-byte FIFO is used to store data tracing. The FIFO is used to separate the pipeline status
from the trace packet. So, the FIFO can be used to buffer trace packets.

A FIFO overflow is detected by the embedded trace macrocell when the FIFO is full or when the
FIFO has less bytes than the user-programmed number.

Half-rate Clocking Mode

The ETM9 is implemented in half-rate mode that allows both rising and falling edge data tracing
of the trace clock.

The half-rate mode is implemented to maintain the signal clock integrity of high speed systems
(up to 100 MHz).

Figure 12-5. Half-rate Clocking Mode

ARM920T Clock _I

Trace Clock

m\ [TBRY [
TraceData) {| {1} {

L

-\
/

Half-rate Clocking Mode

Care must be taken on the choice of the trace capture system as it needs to support half-rate
clock functionality.

ATMEL 7

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

12.5.5.3 Application Board Restriction

The TCLK signal needs to be set with care, some timing parameters are required. See “ETM
Timings” for more details.

The specified target system connector is the AMP Mictor connector.

The connector must be oriented on the application board as described below in Figure 12-6. The
view of the PCB is shown from above with the trace connector mounted near the edge of the
board. This allows the Trace Port Analyzer to minimize the physical intrusiveness of the inter-
connected target.

Figure 12-6. AMP Mictor Connector Orientation

NADIA2-based

Application Board
38 37

Pin 1Chamfer

12.5.6 IEEE 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST
and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds
with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1
JTAG-compliant.

It is not possible to switch directly between JTAG and ICE operations. A chip reset must be per-
formed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.

12.5.6.1 JTAG Boundary-scan Register

6249D-ATARM-20-Dec-07

The Boundary-scan Register (BSR) contains 664 bits that correspond to active pins and associ-
ated control signals.

Each AT91SAM9263 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT
bit contains data that can be forced on the pad. The INPUT bit facilitates the observability of data
applied to the pad. The CONTROL bit selects the direction of the pad.

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register

Bit Associated
Number Pin Name Pin Type BSR Cells
663 INPUT
662 PA19 IN/OUT OUTPUT

661 CONTROL

ATMEL 7

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
660 INPUT
659 PA20 IN/OUT OUTPUT
658 CONTROL
657 INPUT
656 PA21 IN/OUT OUTPUT
655 CONTROL
654 INPUT
653 PA22 IN/OUT OUTPUT
652 CONTROL
651 INPUT
650 PA23 IN/OUT OUTPUT
649 CONTROL
648 INPUT
647 PA24 IN/OUT OUTPUT
646 CONTROL
645 INPUT
644 PA25 IN/OUT OUTPUT
643 CONTROL
642 INPUT
641 PA26 IN/OUT OUTPUT
640 CONTROL
639 INPUT
638 PA27 IN/OUT OUTPUT
637 CONTROL
636 INPUT
635 PA28 IN/OUT OUTPUT
634 CONTROL
633 INPUT
632 PA29 IN/OUT OUTPUT
631 CONTROL
630 INPUT
629 PA30 IN/OUT OUTPUT
628 CONTROL

74 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
627 INPUT
626 PA31 IN/OUT OUTPUT
625 CONTROL
624 EBI1_AO0_NBSO ouT OUTPUT
623 EBI1_A[7:0] CONTROL
622 INPUT
EBI1_A1_NWR2 IN/OUT
621 OUTPUT
620 EBI1_A2 ouT OUTPUT
619 EBI1_A3 ouT OUTPUT
618 EBI1_A4 ouT OUTPUT
617 EBI1_A5 ouT OUTPUT
616 EBI1_A6 ouT OUTPUT
615 EBI1_A7 ouT OUTPUT
614 EBI1_A8 ouT OUTPUT
613 EBI1_A[15:8] CONTROL
612 EBI1_A9 ouT OUTPUT
611 EBI1_A10 ouT OUTPUT
610 EBI1_A11 ouT OUTPUT
609 EBI1_A12 ouT OUTPUT
608 EBI1_A13 ouT OUTPUT
607 EBI1_A14 ouT OUTPUT
606 EBI1_A15 ouT OUTPUT
605 EBI1_A16_BAO ouT OUTPUT
604 EBI1_A[22:16] CONTROL
603 EBIH_A17 ouT OUTPUT
602 EBI1_A18 ouT OUTPUT
601 EBI1_A19 ouT OUTPUT
600 EBI1_A20 ouT OUTPUT
599 EBI1_A21 ouT OUTPUT
598 EBI1_A22 ouT OUTPUT
597 EBI1_NCSO ouT OUTPUT
596 EBI1_NCSO/IIEEsll::sVI?/EF){/_E'\?\}Jﬁ:IWR_NWRO/ CONTROL
595 EBI1_NRD ouT OUTPUT
594 INPUT
EBI1_NWR_NWRO0 IN/OUT
593 OUTPUT

ATMEL 7

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
592 INPUT
EBI1_NWR_NWR1 IN/OUT
591 OUTPUT
590 INPUT
589 EBI1_DO IN/OUT OUTPUT
588 CONTROL
587 INPUT
586 EBI1_D1 IN/OUT OUTPUT
585 CONTROL
584 INPUT
583 EBI1_D2 IN/OUT OUTPUT
582 CONTROL
581 INPUT
580 EBI1_D3 IN/OUT OUTPUT
579 CONTROL
578 INPUT
577 EBI1_D4 IN/OUT OUTPUT
576 CONTROL
575 INPUT
574 EBI1_D5 IN/OUT OUTPUT
573 CONTROL
572 INPUT
571 EBI1_D6 IN/OUT OUTPUT
570 CONTROL
569 INPUT
568 EBI1_D7 IN/OUT OUTPUT
567 CONTROL
566 INPUT
565 EBI1_D8 IN/OUT OUTPUT
564 CONTROL
563 INPUT
562 EBI1_D9 IN/OUT OUTPUT
561 CONTROL
560 INPUT
559 EBI1_D10 IN/OUT OUTPUT
558 CONTROL

76 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
557 INPUT
556 EBI1_D11 IN/OUT OUTPUT
555 CONTROL
554 INPUT
553 EBI1_D12 IN/OUT OUTPUT
552 CONTROL
551 INPUT
550 EBI1_D13 IN/OUT OUTPUT
549 CONTROL
548 INPUT
547 EBI1_D14 IN/OUT OUTPUT
546 CONTROL
545 INPUT
544 EBI1_D15 IN/OUT OUTPUT
543 CONTROL
542 INPUT
541 PE20 IN/OUT OUTPUT
540 CONTROL
539 INPUT
538 PE21 IN/OUT OUTPUT
537 CONTROL
536 INPUT
535 PE22 IN/OUT OUTPUT
534 CONTROL
533 INPUT
532 PE23 IN/OUT OUTPUT
531 CONTROL
530 INPUT
529 PE24 IN/OUT OUTPUT
528 CONTROL
527 INPUT
526 PE26 IN/OUT OUTPUT
525 CONTROL

ATMEL r

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
524 INPUT
523 PE25 IN/OUT OUTPUT
522 CONTROL
521 INPUT
520 PE27 IN/OUT OUTPUT
519 CONTROL
518 internal
517 internal
516 internal
515 INPUT
514 PE28 IN/OUT OUTPUT
513 CONTROL
512 INPUT
511 PE29 IN/OUT OUTPUT
510 CONTROL
509 INPUT
508 PE30 IN/OUT OUTPUT
507 CONTROL
506 INPUT
505 PE31 IN/OUT OUTPUT
504 CONTROL
503 RTCK ouT OUTPUT
502 CONTROL
501 INPUT
500 PAO IN/OUT OUTPUT
499 CONTROL
498 INPUT
497 PA1 IN/OUT OUTPUT
496 CONTROL
495 INPUT
494 PA2 IN/OUT OUTPUT
493 CONTROL
492 INPUT
491 PA3 IN/OUT OUTPUT
490 CONTROL

78 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
489 INPUT
488 PA4 IN/OUT OUTPUT
487 CONTROL
486 INPUT
485 PA5 IN/OUT OUTPUT
484 CONTROL
483 INPUT
482 PAG6 IN/OUT OUTPUT
481 CONTROL
480 INPUT
479 PA7 IN/OUT OUTPUT
478 CONTROL
477 INPUT
476 PA8 IN/OUT OUTPUT
475 CONTROL
474 INPUT
473 PA9 IN/OUT OUTPUT
472 CONTROL
471 INPUT
470 PA10 IN/OUT OUTPUT
469 CONTROL
468 INPUT
467 PA11 IN/OUT OUTPUT
466 CONTROL
465 INPUT
464 PA12 IN/OUT OUTPUT
463 CONTROL
462 INPUT
461 PA13 IN/OUT OUTPUT
460 CONTROL
459 INPUT
458 PA14 IN/OUT OUTPUT
457 CONTROL

ATMEL 79

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
456 INPUT
455 PA15 IN/OUT OUTPUT
454 CONTROL
453 INPUT
452 PBO IN/OUT OUTPUT
451 CONTROL
450 INPUT
449 PB1 IN/OUT OUTPUT
448 CONTROL
447 INPUT
446 PB2 IN/OUT OUTPUT
445 CONTROL
444 INPUT
443 PB3 IN/OUT OUTPUT
442 CONTROL
441 INPUT
440 PB4 IN/OUT OUTPUT
439 CONTROL
438 INPUT
437 PB5 IN/OUT OUTPUT
436 CONTROL
435 INPUT
434 PB6 IN/OUT OUTPUT
433 CONTROL
432 INPUT
431 PB7 IN/OUT OUTPUT
430 CONTROL
429 INPUT
428 PB8 IN/OUT OUTPUT
427 CONTROL
426 INPUT
425 PB9 IN/OUT OUTPUT
424 CONTROL

80 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
423 INPUT
422 PB10 IN/OUT OUTPUT
421 CONTROL
420 INPUT
419 PB11 IN/OUT OUTPUT
418 CONTROL
417 INPUT
416 PB12 IN/OUT OUTPUT
415 CONTROL
414 INPUT
413 PB13 IN/OUT OUTPUT
412 CONTROL
411 INPUT
410 PB14 IN/OUT OUTPUT
409 CONTROL
408 INPUT
407 PB15 IN/OUT OUTPUT
406 CONTROL
405 INPUT
404 PB16 IN/OUT OUTPUT
403 CONTROL
402 INPUT
401 PB17 IN/OUT OUTPUT
400 CONTROL
399 INPUT
398 PB18 IN/OUT OUTPUT
397 CONTROL
396 INPUT
395 PB19 IN/OUT OUTPUT
394 CONTROL
393 INPUT
392 PB20 IN/OUT OUTPUT
391 CONTROL

ATMEL o

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
390 INPUT
389 PB21 IN/OUT OUTPUT
388 CONTROL
387 INPUT
386 PB22 IN/OUT OUTPUT
385 CONTROL
384 INPUT
383 PB23 IN/OUT OUTPUT
382 CONTROL
381 INPUT
380 PB24 IN/OUT OUTPUT
379 CONTROL
378 INPUT
377 PB25 IN/OUT OUTPUT
376 CONTROL
375 INPUT
374 PB26 IN/OUT OUTPUT
373 CONTROL
372 INPUT
371 PB27 IN/OUT OUTPUT
370 CONTROL
369 INPUT
368 PB28 IN/OUT OUTPUT
367 CONTROL
366 INPUT
365 PB29 IN/OUT OUTPUT
364 CONTROL
363 INPUT
362 PB30 IN/OUT OUTPUT
361 CONTROL
360 INPUT
359 PB31 IN/OUT OUTPUT
358 CONTROL

82 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
357 INPUT
356 PCO IN/OUT OUTPUT
355 CONTROL
354 INPUT
353 PC1 IN/OUT OUTPUT
352 CONTROL
351 INPUT
350 PC2 IN/OUT OUTPUT
349 CONTROL
348 INPUT
347 PC3 IN/OUT OUTPUT
346 CONTROL
345 INPUT
344 PC4 IN/OUT OUTPUT
343 CONTROL
342 INPUT
341 PC5 IN/OUT OUTPUT
340 CONTROL
339 INPUT
338 PC6 IN/OUT OUTPUT
337 CONTROL
336 INPUT
335 PC7 IN/OUT OUTPUT
334 CONTROL
333 INPUT
332 PC8 IN/OUT OUTPUT
331 CONTROL
330 INPUT
329 PC9 IN/OUT OUTPUT
328 CONTROL
327 INPUT
326 PC10 IN/OUT OUTPUT
325 CONTROL

ATMEL s

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
324 INPUT
323 PC11 IN/OUT OUTPUT
322 CONTROL
321 INPUT
320 PC12 IN/OUT OUTPUT
319 CONTROL
318 INPUT
317 PC13 IN/OUT OUTPUT
316 CONTROL
315 INPUT
314 PC14 IN/OUT OUTPUT
313 CONTROL
312 INPUT
311 PC15 IN/OUT OUTPUT
310 CONTROL
309 INPUT
308 PC16 IN/OUT OUTPUT
307 CONTROL
306 INPUT
305 PC17 IN/OUT OUTPUT
304 CONTROL
303 INPUT
302 PC18 IN/OUT OUTPUT
301 CONTROL
300 INPUT
299 PC19 IN/OUT OUTPUT
298 CONTROL
297 INPUT
296 PC20 IN/OUT OUTPUT
295 CONTROL
294 INPUT
293 PC21 IN/OUT OUTPUT
292 CONTROL

84 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
291 INPUT
290 pPC22 IN/OUT OUTPUT
289 CONTROL
288 INPUT
287 PC23 IN/OUT OUTPUT
286 CONTROL
285 INPUT
284 PC24 IN/OUT OUTPUT
283 CONTROL
282 INPUT
281 PC25 IN/OUT OUTPUT
280 CONTROL
279 INPUT
278 PC26 IN/OUT OUTPUT
277 CONTROL
276 INPUT
275 pPC27 IN/OUT OUTPUT
274 CONTROL
273 INPUT
272 PC28 IN/OUT OUTPUT
271 CONTROL
270 INPUT
269 PC29 IN/OUT OUTPUT
268 CONTROL
267 INPUT
266 PC30 IN/OUT OUTPUT
265 CONTROL
264 INPUT
263 PC31 IN/OUT OUTPUT
262 CONTROL
261 INPUT
260 PDO IN/OUT OUTPUT
259 CONTROL

ATMEL :

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
258 INPUT
257 PD1 IN/OUT OUTPUT
256 CONTROL
255 INPUT
254 PD2 IN/OUT OUTPUT
253 CONTROL
252 INPUT
251 PD3 IN/OUT OUTPUT
250 CONTROL
249 INPUT
248 PD4 IN/OUT OUTPUT
247 CONTROL
246 N.C. ouT OUTPUT
245 EBIO_AO0_NBSO ouT OUTPUT
244 EBIO_A[7:0] CONTROL
243 INPUT
EBIO_A1_NBS2_NWR2 IN/OUT
242 OUTPUT
241 EBIO_A2 ouT OUTPUT
240 EBIO_A3 ouT OUTPUT
239 EBIO_A4 ouT OUTPUT
238 EBIO_A5 ouT OUTPUT
237 EBIO_A6 ouT OUTPUT
236 EBIO_A7 ouT OUTPUT
235 EBIO_A8 ouT OUTPUT
234 EBIO_A[15:8] CONTROL
233 EBIO_A9 ouT OUTPUT
232 EBIO_A10 ouT OUTPUT
231 EBIO_SDA10 ouT OUTPUT
229 EBIO_A11 ouT OUTPUT
228 EBIO_A12 ouT OUTPUT
227 EBIO_A13 ouT OUTPUT
226 EBIO_A14 ouT OUTPUT
225 EBIO_A15 ouT OUTPUT
224 EBIO_A16_BAO ouT OUTPUT

86 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
223 EBIO_A[22:16] CONTROL
222 EBIO_A17_BA1 ouT OUTPUT
221 EBIO_A18 ouT OUTPUT
220 EBIO_A19 ouT OUTPUT
219 EBIO_A20 ouT OUTPUT
218 EBIO_A21 ouT OUTPUT
217 EBIO_A22 ouT OUTPUT
216 EBIO_NCSO0 ouT OUTPUT
215 | 510 WA NWROEBIO NBSI NWATIEBI0 NBS3 NWR3 CONTROL
214 EBIO_NCS1_SDCS ouT OUTPUT
213 EBIO_NRD ouT OUTPUT
212 EBIO_NWR_NWRO0 IN/OUT NPUT
211 OUTPUT
210 INPUT
EBIO_NBS1_NWRH1 IN/OUT
209 OUTPUT
208 INPUT
EBIO_NBS3_NWR3 IN/OUT
207 OUTPUT
206 internal
205 internal
204 internal
203 EBIO_SDCK ouT OUTPUT
202 EBIO_RAS ouT OUTPUT
201 EBIO_CAS ouT OUTPUT
200 EBIO_SDWE ouT OUTPUT
199 EBIO_NANDOE ouT OUTPUT
198 EBIO_NANDWE ouT OUTPUT
197 INPUT
196 EBIO_DO IN/OUT OUTPUT
195 CONTROL
194 INPUT
193 EBIO_D1 IN/OUT OUTPUT
192 CONTROL
191 INPUT
190 EBIO_D2 IN/OUT OUTPUT
189 CONTROL

ATMEL o

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
188 INPUT
187 EBIO_D3 IN/OUT OUTPUT
186 CONTROL
185 INPUT
184 EBIO_D4 IN/OUT OUTPUT
183 CONTROL
182 INPUT
181 EBIO_D5 IN/OUT OUTPUT
180 CONTROL
179 INPUT
178 EBIO_D6 IN/OUT OUTPUT
177 CONTROL
176 INPUT
175 EBIO_D7 IN/OUT OUTPUT
174 CONTROL
173 INPUT
172 EBIO_D8 IN/OUT OUTPUT
171 CONTROL
170 INPUT
169 EBIO_D9 IN/OUT OUTPUT
168 CONTROL
167 INPUT
166 EBIO_D10 IN/OUT OUTPUT
165 CONTROL
164 INPUT
163 EBIO_D11 IN/OUT OUTPUT
162 CONTROL
161 INPUT
160 EBIO_D12 IN/OUT OUTPUT
159 CONTROL
158 INPUT
157 EBIO_D13 IN/OUT OUTPUT
156 CONTROL

88 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
155 INPUT
154 EBIO_D14 IN/OUT OUTPUT
153 CONTROL
152 INPUT
151 EBIO_D15 IN/OUT OUTPUT
150 CONTROL
149 INPUT
148 PD5 IN/OUT OUTPUT
147 CONTROL
146 INPUT
145 PD6 IN/OUT OUTPUT
144 CONTROL
143 INPUT
142 PD12 IN/OUT OUTPUT
141 CONTROL
140 INPUT
139 PD7 IN/OUT OUTPUT
138 CONTROL
137 INPUT
136 PD8 IN/OUT OUTPUT
135 CONTROL
134 INPUT
133 PD9 IN/OUT OUTPUT
132 CONTROL
131 INPUT
130 PD10 IN/OUT OUTPUT
129 CONTROL
128 INPUT
127 PD11 IN/OUT OUTPUT
126 CONTROL
125 INPUT
124 PD13 IN/OUT OUTPUT
123 CONTROL

ATMEL o

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
122 INPUT
121 PD14 IN/OUT OUTPUT
120 CONTROL
119 INPUT
118 PD15 IN/OUT OUTPUT
117 CONTROL
116 INPUT
115 PD16 IN/OUT OUTPUT
114 CONTROL
113 INPUT
112 PD17 IN/OUT OUTPUT
111 CONTROL
110 INPUT
109 PD18 IN/OUT OUTPUT
108 CONTROL
107 INPUT
106 PD19 IN/OUT OUTPUT
105 CONTROL
104 INPUT
103 PD20 IN/OUT OUTPUT
102 CONTROL
101 INPUT
100 PD21 IN/OUT OUTPUT
929 CONTROL
98 INPUT
97 PD22 IN/OUT OUTPUT
96 CONTROL
95 INPUT
94 PD23 IN/OUT OUTPUT
93 CONTROL
92 INPUT
91 PD24 IN/OUT OUTPUT
90 CONTROL

90 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
89 INPUT
88 PD25 IN/OUT OUTPUT
87 CONTROL
86 INPUT
85 PD26 IN/OUT OUTPUT
84 CONTROL
83 INPUT
82 PD27 IN/OUT OUTPUT
81 CONTROL
80 INPUT
79 PD28 IN/OUT OUTPUT
78 CONTROL
77 INPUT
76 PD29 IN/OUT OUTPUT
75 CONTROL
74 INPUT
73 PD30 IN/OUT OUTPUT
72 CONTROL
71 INPUT
70 PD31 IN/OUT OUTPUT
69 CONTROL
68 INPUT
67 PEO IN/OUT OUTPUT
66 CONTROL
65 INPUT
64 PE1 IN/OUT OUTPUT
63 CONTROL
62 INPUT
61 PE2 IN/OUT OUTPUT
60 CONTROL
59 INPUT
58 PE3 IN/OUT OUTPUT
57 CONTROL

ATMEL o

6249D-ATARM-20-Dec-07

ATMEL

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
56 INPUT
55 PE4 IN/OUT OUTPUT
54 CONTROL
53 INPUT
52 PE5 IN/OUT OUTPUT
51 CONTROL
50 INPUT
49 PE6 IN/OUT OUTPUT
48 CONTROL
47 INPUT
46 PE7 IN/OUT OUTPUT
45 CONTROL
44 INPUT
43 PE8 IN/OUT OUTPUT
42 CONTROL
41 INPUT
40 PE9 IN/OUT OUTPUT
39 CONTROL
38 INPUT
37 PE10 IN/OUT OUTPUT
36 CONTROL
35 INPUT
34 PE11 IN/OUT OUTPUT
33 CONTROL
32 INPUT
31 PE12 IN/OUT OUTPUT
30 CONTROL
29 INPUT
28 PE13 IN/OUT OUTPUT
27 CONTROL
26 INPUT
25 PE14 IN/OUT OUTPUT
24 CONTROL

92 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 12-3. AT91SAM9263 JTAG Boundary Scan Register (Continued)

Bit Associated
Number Pin Name Pin Type | BSR Cells
23 INPUT
22 PE15 IN/OUT OUTPUT
21 CONTROL
20 INPUT
19 PE16 IN/OUT OUTPUT
18 CONTROL
17 INPUT
16 PE17 IN/OUT OUTPUT
15 CONTROL
14 INPUT
13 PE18 INJOUT | OUTPUT
12 CONTROL
11 INPUT
10 PE19 IN/OUT OUTPUT
09 CONTROL
08 INPUT
07 PA16 IN/OUT OUTPUT
06 CONTROL
05 INPUT
04 PA17 IN/OUT OUTPUT
03 CONTROL
02 INPUT
01 PA18 IN/OUT OUTPUT
00 CONTROL

ATMEL s

6249D-ATARM-20-Dec-07

ATMEL

12.5.7 ID Code Register
Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

¢ MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

Bit[0] Required by IEEE Std. 1149.1.
Set to Ox1.
JTAG ID Code value is 0x05B0_CO3F.

e PART NUMBER[27:12]: Product Part Number
Product part Number is 0x5B0C

e VERSION[31:28]: Product Version Number
Set to 0x0.

94 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

13. AT91SAM9263 Boot Program

13.1 Description

13.2 Flow Diagram

6249D-ATARM-20-Dec-07

The Boot Program integrates different programs permitting download and/or upload into the dif-
ferent memories of the product.

First, it initializes the Debug Unit serial port (DBGU) and the USB Device Port.

Then the SD Card Boot program is executed. It looks for a boot.bin file in the root directory of a
FAT12/16/32 formatted SD Card. If such a file is found, code is downloaded into the internal
SRAM. This is followed by a remap and a jump to the first address of the SRAM.

If the SD Card is not formatted or if boot.bin file is not found, NANDFlash Boot program is then
executed. First, as for SD Card Boot part, it looks for a boot.bin file in the root directory of a
FAT12/16/32 formatted NANDFlash. If such a file is found, the code is downloaded into the inter-
nal SRAM. This is followed by a remap and a jump to the first address of the SRAM.

If the NANDFlash is not formatted, the NANDFlash Boot program looks for a sequence of seven
valid ARM exception vectors. If such a sequence is found, code is downloaded into the internal
SRAM. This is followed by a remap and a jump to the first address of the SRAM.

If no valid ARM vector sequence is found, the DataFlash® Boot program is executed. It looks for
a sequence of seven valid ARM exception vectors in a DataFlash connected to the SPI. All
these vectors must be B-branch or LDR load register instructions except for the sixth vector.
This vector is used to store the size of the image to download.

If a valid sequence is found, code is downloaded into the internal SRAM. This is followed by a
remap and a jump to the first address of the SRAM.

If no boot.bin file is found, SAM-BA® Boot is then executed. It waits for transactions either on the
USB device, or on the DBGU serial port.

The Boot Program implements the algorithm in Figure 13-1.

ATMEL s

ATMEL

Figure 13-1. Boot Program Algorithm Flow Diagram

Start
< . . Enable
Main Oscillator Bypass Main Oscillator

Yes <+

Input Frequency
Table

Download from
SD Card (MCI)

SD Card Boot SD Card Boot

No —Timeout<1s

Download from

NandFlash Boot NandFlash

NandFlash Boot

No —Timeout<1s

Download from

SPI DataFlash Boot DataFlash (NPCS0)

DataFlash Boot

No - Timeout <1s No

No
USB Enumeration > Character(s) received
Successful ? on DBGU ?
SAM-BA Boot
Run SAM-BA Boot Run SAM-BA Boot

96 AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

13.3 Device Initialization
Initialization follows the steps described below:

o0k~

Stack setup for ARM supervisor mode
External Clock Detection

Switch Master Clock on Main Oscillator
C variable initialization

Main oscillator frequency detection

PLL setup: PLLB is initialized to generate a 48 MHz clock necessary to use the USB
Device. A register located in the Power Management Controller (PMC) determines the
frequency of the main oscillator and thus the correct factor for the PLLB.

Table 13-1 defines the crystals supported by the Boot Program.

Table 13-1. Crystals Supported by Software Auto-detection (MHz)

3.0 3.2768 3.6864 3.84 4.0

4.433619 4.608 4.9152 5.0 5.24288

6.0 6.144 6.4 6.5536 7.159090

7.3728 7.864320 8.0 9.8304 10.0

11.05920 12.0 12.288 13 13.56

14.31818 14.7456 16.0 16.367667 17.734470

18.432 20.0

7. Initialization of the DBGU serial port (115200 bauds, 8, N, 1)

8. Enable the User Reset

9. Jump to SD Card Boot sequence. If SD Card Boot succeeds, perform a remap and
jump to 0x0.

10. Jump to NANDFlash Boot sequence. If NANDFlash Boot succeeds, perform a remap
and jump to 0x0.

11. Jump to DataFlash Boot sequence through NPCSO. If DataFlash Boot succeeds, per-
form a remap and jump to 0xO.

12. Activation of the Instruction Cache

13. Jump to SAM-BA Boot sequence

14. Disable the WatchDog

15. Initialization of the USB Device Port

6249D-ATARM-20-Dec-07

ATMEL o7

e A T91SAM9263 Preliminary

Figure 13-2. Remap Action after Download Completion

0x0000_0000,

0x0030_0000

13.4 DataFlash Boot

The DataFlash Boot program searches for a valid application in the SPI DataFlash memory. If a
valid application is found, this application is loaded into internal SRAM and executed by branch-
ing at address 0x0000_0000 after remap. This application may be the application code or a
second-level bootloader.

0x0000_0000

Internal Internal
ROM SRAM
REMAP
> 0x0040_0000
Internal Internal
SRAM ROM

All the calls to functions are PC relative and do not use absolute addresses.

After reset, the code in internal ROM is mapped at both addresses 0x0000_0000 and 0x0010_0000:

400000
400004
400008
40000c
400010
400014
400018
40001c

13.4.1 Valid Image Detection

ea000006
eafffffe
ea00002f
eafffffe
eafffffe
eafffffe
eafffffe
eafffffe

W W W W w w W w

0x20
0x04

_main

0x0c
0x10
0x14
0x18
0xlc

00ea000006B0x20
O4eafffffeBOx04
08ea00002fB main
OceafffffeB0x0c
l0eafffffeB0x10
l4eafffffeB0x14
18eafffffeB0x18
lceafffffeBOxlc

The DataFlash Boot software looks for a valid application by analyzing the first 28 bytes corre-
sponding to the ARM exception vectors. These bytes must implement ARM instructions for
either branch or load PC with PC relative addressing.

The sixth vector, at offset 0x14, contains the size of the image to download. The user must
replace this vector with his own vector (see “Structure of ARM Vector 6” on page 99).

Figure 13-3. LDR Opcode

Figure 13-4. B Opcode

31 28|27 24|23 20|19 16|15 12|11 0
111 00O 1 I P|U O W 1 Rn Rd Addressing Mode

31 28|27 24|23 0
11 1 01T 0 1 O Offset (24 bits)

6249D-ATARM-20-Dec-07

Unconditional instruction: OxE for bits 31 to 28

Load PC with PC relative addressing instruction:

ATMEL o8

e A T91SAM9263 Preliminary

— Rn=Rd=PC =0xF

— |==1

— P==

— U offset added (U==1) or subtracted (U==0)
— W==

13.4.2 Structure of ARM Vector 6
The ARM exception vector 6 is used to store information needed by the DataFlash boot pro-
gram. This information is described below.

Figure 13-5. Structure of the ARM Vector 6

31 0

Size of the code to download in bytes

13.4.2.1 Example
An example of valid vectors follows:

00 ea000006 B 0x20

04 eafffffe B 0x04

08 €a00002f B _main

Oc eafffffe B 0x0c

10 eafffffe B 0x10

14 00001234 B 0x14 <- Code size = 4660 bytes

18 eafffffe B 0x18
The size of the image to load into SRAM is contained in the location of the sixth ARM vector.
Thus the user must replace this vector by the correct vector for his application.

13.4.3 DataFlash Boot Sequence
The DataFlash boot program performs device initialization followed by the download procedure.

The DataFlash boot program supports all Atmel DataFlash devices. Table 13-2 summarizes the
parameters to include in the ARM vector 6 for all devices.

Table 13-2. DataFlash Device

Device Density Page Size (bytes) Number of Pages
AT45DB011 1 Mbit 264 512
AT45DB021 2 Mbits 264 1024
AT45DB041 4 Mbits 264 2048
AT45DB081 8 Mbits 264 4096
AT45DB161 16 Mbits 528 4096
AT45DB321 32 Mbits 528 8192
AT45DB642 64 Mbits 1056 8192

ATMEL o

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

The DataFlash has a Status Register that determines all the parameters required to access the
device. The DataFlash boot is configured to be compatible with the future design of the
DataFlash.

Figure 13-6. Serial DataFlash Download

(Start)

Send status command

No Jump to next boot
— > .
solution

Yes

Read the first 7 instructions (28 bytes).
Decode the sixth ARM vector

7 vectors
(except vector 6) are LDR
or Branch instruction

Read the DataFlash into the internal SRAM.
(code size to read in vector 6)

Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP
to jump to the downloaded application

End

13.5 SD Card Boot
The SD Card Boot program searches for a valid application in the SD Card memory.

It looks for a boot.bin file in the root directory of a FAT12/16/32 formatted SD Card. If a valid file
is found, this application is loaded into internal SRAM and executed by branching at address
0x0000_0000 after remap. This application may be the application code or a second-level
bootloader.

A ||'|E|%D 100

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

13.6 NANDFlash Boot
The NANDFlash Boot program searches for a valid application in the NANDFlash memory.

First, it looks for a boot.bin file in the root directory of a FAT12/16/32 formatted NANDFlash. If a
valid file is found, this application is loaded into internal SRAM and executed by branching at
address 0x0000_0000 after remap. This application may be the application code or a second-
level bootloader.

If NANDFlash is not formatted, the NANDFlash Boot program searches for a valid application in
the NANDFlash memory. If a valid application is found, this application is loaded into internal
SRAM and executed by branching at address 0x0000_0000 after remap. See “DataFlash Boot”
on page 98 for more information on Valid Image Detection.

13.6.1 Supported NANDFlash Devices
Any 8 or 16-bit NANDFlash devices are supported.

13.7 SAM-BA Boot
If no valid DataFlash device has been found during the DataFlash boot sequence, the SAM-BA
boot program is performed.

The SAM-BA boot principle is to:
— Check if USB Device enumeration has occured.

— Check if character(s) have been received on the DBGU.

— Once the communication interface is identified, the application runs in an infinite
loop waiting for different commands as in Table 13-3.

Table 13-3. Commands Available through the SAM-BA Boot
Command Action Argument(s) Example
(0] write a byte Address, Valuet# 0200001,CA#
o] read a byte Address,# 0200001, #
H write a half word Address, Value# H200002,CAFE#
h read a half word Address,# h200002,#
w write a word Address, Value# W200000,CAFEDECA#
w read a word Address, # w200000,#
S send a file Address, # S$200000,#
R receive a file Address, NbOfBytes# R200000,1234#
G go Address# G200200#
\' display version No argument V#

* Write commands: Write a byte (0O), a halfword (H) or a word (W) to the target.

— Address: Address in hexadecimal.

— Value: Byte, halfword or word to write in hexadecimal.

— Output: *>'.
* Read commands: Read a byte (0), a halfword (h) or a word (w) from the target.

— Address: Address in hexadecimal

6249D-ATARM-20-Dec-07

ATMEL

101

e A T91SAM9263 Preliminary

— Output. The byte, halfword or word read in hexadecimal following by ‘>’
¢ Send a file (S): Send a file to a specified address

— Address: Address in hexadecimal

— Output: *>'.

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the
end of the command execution.

¢ Receive a file (R): Receive data into a file from a specified address
— Address: Address in hexadecimal
— NbOfBytes: Number of bytes in hexadecimal to receive
— Output. >’
¢ Go (G): Jump to a specified address and execute the code
— Address: Address to jump in hexadecimal
— Output. >’
¢ Get Version (V): Return the SAM-BA boot version
— Output. >’

13.71 DBGU Serial Port
Communication is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1.
The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of

the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory to work.

13.7.2 Xmodem Protocol

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-charac-
ter CRC-16 to guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

— <SOH> =01 hex

— <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not
to 01)

— <255-blk #> = 1’s complement of the blk#.
— <checksum> = 2 bytes CRC16
Figure 13-7 shows a transmission using this protocol.

A ||'|E|,® 102

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 13-7. Xmodem Transfer Example

Host Device

Cc

<
<

SOH 01 FE Data[128] CRC CRC

ACK

<
<

SOH 02 FD Data[128] CRC CRC

ACK

<

SOH 03 FC Data[100] CRC CRC

ACK

<

EOT

\/

ACK

13.7.3 USB Device Port
A 48 MHz USB clock is necessary to use the USB Device port. It has been programmed earlier
in the device initialization procedure with PLLB configuration.

The device uses the USB communication device class (CDC) drivers to take advantage of the
installed PC RS-232 software to talk over the USB. The CDC class is implemented in all
releases of Windows®, from Windows 98SE to Windows XP. The CDC document, available at
www.usb.org, describes a way to implement devices such as ISDN modems and virtual COM
ports.

The Vendor ID is Atmel’s vendor ID 0xO3EB. The product ID is 0x6124. These references are
used by the host operating system to mount the correct driver. On Windows systems, the INF
files contain the correspondence between vendor ID and product ID.

Atmel provides an INF example to see the device as a new serial port and also provides another
custom driver used by the SAM-BA application: atm6124.sys. Refer to the document “USB Basic
Application”, literature number 6123, for more details.

13.7.3.1 Enumeration Process
The USB protocol is a master/slave protocol. This is the host that starts the enumeration send-
ing requests to the device through the control endpoint. The device handles standard requests
as defined in the USB Specification.

Table 13-4. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.
SET_ADDRESS Sets the device address for all future device access.
SET_CONFIGURATION Sets the device configuration.
GET_CONFIGURATION Returns the current device configuration value.

A ||'|E|%D 103

6249D-ATARM-20-Dec-07

www.usb.org

e A T91SAM9263 Preliminary

Table 13-4. Handled Standard Requests (Continued)

Request Definition

GET_STATUS Returns status for the specified recipient.
SET_FEATURE Used to set or enable a specific feature.
CLEAR_FEATURE Used to clear or disable a specific feature.

The device also handles some class requests defined in the CDC class.

Table 13-5. Handled Class Requests

Request Definition

Configures DTE rate, stop bits, parity and number of

SET_LINE_CODING character bits.

Requests current DTE rate, stop bits, parity and number
of character bits.

RS-232 signal used to tell the DCE device the DTE
device is now present.

GET_LINE_CODING

SET_CONTROL_LINE_STATE

Unhandled requests are STALLed.

13.7.3.2 Communication Endpoints

There are two communication endpoints and endpoint 0 is used for the enumeration process.
Endpoint 1 is a 64-byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-
BA Boot commands are sent by the host through the endpoint 1. If required, the message is split
by the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

13.8 Hardware and Software Constraints
¢ SAM-BA boot disposes of two blocks of internal SRAM. The first block is available for user
code. lts size is 73728 bytes. The second block is used for variables and stacks.
Table 13-6. User Area Address
Start Address End Address Size (bytes)
0x3000000 0x312000 73728

¢ The SD Card, NANDFlash and DataFlash downloaded code size must be inferior to 72 K
bytes.

¢ The code is always downloaded from the DataFlash or NANDFlash device address
0x0000_0000 to the address 0x0000_0000 of the internal SRAM (after remap).

¢ The downloaded code must be position-independent or linked at address 0x0000_0000.
¢ The DataFlash must be connected to NPCSO0 of the SPI.
¢ USB requirements:

— Crystal or Input Frequencies supported by Software Auto-detection. See Table 13-1
on page 97 for more informations.

The MCI, the SPI and NandFlash drivers use several PlOs in alternate functions to communi-
cate with devices. Care must be taken when these PIOs are used by the application. The

A ||'|E|,® 104

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

6249D-ATARM-20-Dec-07

devices connected could be unintentionally driven at boot time, and electrical conflicts between
peripherals output pins and the connected devices may appeatr.

To assure correct functionality, it is recommended to plug in critical devices to other pins.

Table 13-7 contains a list of pins that are driven during the boot program execution. These pins
are driven during the boot sequence for a period of less than 1 second if no correct boot program
is found.

For the DataFlash driven by the SPCK signal at 8 MHz, the time to download 72 KBytes is
reduced to 200 ms.

Before performing the jump to the application in internal SRAM, all the P1Os and peripherals
used in the boot program are set to their reset state.

Table 13-7. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
MCI1 MCCK PIOA6
MCI1 MCCDA PIOA7
MCI1 MCDAO PIOA8
MCI1 MCDA1 PIOA9
MCI1 MCDA2 PIOA10
MCI1 MCDAS3 PIOA11
SPIO MOSI PIOA1
SPIO MISO PIOAO
SPIO SPCK PIOA2
SPIO NPCSO0 PIOA5
PIOD NANDCS PIOD15
DBGU DRXD PIOC30
DBGU DTXD PIOC31

A ||'|E|,® 105

ATMEL

106 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

14. Reset Controller (RSTC)

14.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the sys-
tem without any external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.

14.2 Block Diagram

Figure 14-1. Reset Controller Block Diagram

Reset Controller
Main Supply
POR
Backup Supply Startup _ ——> rste_irq
POR Counter
Reset
State
Manager
> proc_nreset
user_reset
NRST
D NRST > periph_nreset
Manager
nrst_out
exter_nreset
> backup_neset
WDRPROC
wd_fault >

SLCK

14.3 Functional Description

14.3.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager, a Startup Counter and a Reset State
Manager. It runs at Slow Clock and generates the following reset signals:
* proc_nreset: Processor reset line. It also resets the Watchdog Timer.
* backup_nreset: Affects all the peripherals powered by VDDBU.
* periph_nreset: Affects the whole set of embedded peripherals.
e nrst_out: Drives the NRST pin.

These reset signals are asserted by the Reset Controller, either on external events or on soft-
ware action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.

A ||'|E|,® 107

6249D-ATARM-20-Dec-07

14.3.2

ATMEL

The startup counter waits for the complete crystal oscillator startup. The wait delay is given by
the crystal oscillator startup time maximum value that can be found in the section Crystal Oscil-
lator Characteristics in the Electrical Characteristics section of the product documentation.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Con-
troller, is powered with VDDBU, so that its configuration is saved as long as VDDBU is on.

NRST Manager

The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 14-2 shows the block diagram of the NRST Manager.

Figure 14-2. NRST Manager

14.3.2.1

14.3.2.2

108

NRST

(-

RSTC_MR

RSTC._SR URSTIEN
URSTS
——> rstc_irq
NRSTL | RsTC_MR Other [

URSTEN interrupt
sources
—| > user_reset

RSTC_MR

nrst_out)
I = External Reset Timer le«——————— exter_nreset

NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.

NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) Slow Clock cycles. This gives the approximate duration of an assertion between 60 ps
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

14.3.3 BMS Sampling

As the field is within RSTC_MR, which is backed-up, this field can be used to shape the system

power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.

The product matrix manages a boot memory that depends on the level on the BMS pin at reset.
The BMS signal is sampled three slow clock cycles after the Core Power-On-Reset output rising

edge.

Figure 14-3. BMS Sampling

s L LML L L L LY L L L L LT

Core Supply
POR output
XXX HorlL
BMS Signal -
BMS sampling delay
=3 cycles

proc_nreset

14.3.4 Reset States

)

The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.

14.3.4.1 General Reset

6249D-ATARM-20-Dec-07

A general reset occurs when VDDBU and VDDCORE are powered on. The backup supply POR
cell output rises and is filtered with a Startup Counter, which operates at Slow Clock. The pur-
pose of this counter is to make sure the Slow Clock oscillator is stable before starting up the
device. The length of startup time is hardcoded to comply with the Slow Clock Oscillator startup
time.

After this time, the processor clock is released at Slow Clock and all the other signals remain
valid for Y cycles for proper processor and logic reset. Then, all the reset signals are released
and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR is reset, the
NRST line rises 2 cycles after the backup_nreset, as ERSTL defaults at value 0xO.

When VDDBU is detected low by the Backup Supply POR Cell, all resets signals are immedi-
ately asserted, even if the Main Supply POR Cell does not report a Main Supply shutdown.

VDDBU only activates the backup_nreset signal.

The backup_nreset must be released so that any other reset can be generated by VDDCORE
(Main Supply POR output).

Figure 14-4 shows how the General Reset affects the reset signals.

A ||'|E|%D 109

ATMEL

Figure 14-4. General Reset State

S S i L L L L L L
LI LT LT L

MCK

Backup Supply /
POR output

Main Supply /
POR output

))
))
))
))
))
))
))
)

Startup Time

Processor Startup
=3 cycles

proc_nreset <

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

TBMS Sampling

EXTERNAL RESET LENGTH
=2 cycles

110 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

14.3.4.2 Wake-up Reset
The Wake-up Reset occurs when the Main Supply is down. When the Main Supply POR output
is active, all the reset signals are asserted except backup_nreset. When the Main Supply pow-
ers up, the POR output is resynchronized on Slow Clock. The processor clock is then re-enabled
during Y Slow Clock cycles, depending on the requirements of the ARM processor.

At the end of this delay, the processor and other reset signals rise. The field RSTTYP in
RSTC_SR is updated to report a Wake-up Reset.

The “nrst_out” remains asserted for EXTERNAL_RESET_LENGTH cycles. As RSTC_MR is
backed-up, the programmed number of cycles is applicable.

When the Main Supply is detected falling, the reset signals are immediately asserted. This tran-
sition is synchronous with the output of the Main Supply POR.

Figure 14-5. Wake-up State

soc LML

[L
MCK r|_

Main Supply
POR output J

Resynch. Processor Startup
2 cycles =3 cycles
proc_nreset < > >

RSTTYP XXX 0x1 = WakeUp Reset XXX

periph_nreset

)
)
))
)
)
)
)

NRST /7]
(nrst_out) —

<
<

EXTERNAL RESET LENGT}—T
=4 cycles (ERSTL =1)

14.3.4.3 User Reset

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behav-
ior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a Y-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.

A ||'|E|,® 111

6249D-ATARM-20-Dec-07

ATMEL

When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. How-
ever, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.

Figure 14-6. User Reset State

so L[LMLy
MK on L L L
NRST /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =3 cycles
proc_nreset
RSTTYP Any XXX X 0x4 = User Reset
periph_nreset
NRST /
(nrst_out)

<
<

>= EXTERNAL RESET LENGTH

14.3.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These

commands are performed by writing the Control Register (RSTC_CR) with the following bits at
1:

* PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.

* PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.

* EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these com-

mands can be performed independently or simultaneously. The software reset lasts Y Slow
Clock cycles.

12 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; syn-
chronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in
Progress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is
left. No other software reset can be performed while the SRCMP bit is set, and writing any value
in RSTC_CR has no effect.

Figure 14-7. Software Reset

SLCK

MCK

Write RSTC_CR

proc_nreset
if PROCRST=1

RSTTYP

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1

SRCMP in RSTC_SR

14.3.4.5

6249D-ATARM-20-Dec-07

L L

Any
Freq.

Lo L

L LU

LML L L

L
JERSREN SN

Resynch!|
1 cycle

>
<

Processor Startup
=3 cycles

A

-

Any XXX 0x3 = Software Reset

S XK A D

A

Y

EXTERN
8 cy)|

AL RESET LENGTH
cles (ERSTL=2)

S

Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts Y Slow Clock
cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:

¢ [f WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.

113

ATMEL

ATMEL

* If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.

Figure 14-8. Watchdog Reset

Al
MCKK o T L LT LT LT
wd_fault /—N
Processor Startup
=3 cycles

/ :

RSTTYP Any XXX 0x2 = Watchdog Reset

[
1

proc_nreset

periph_nreset

Only if
WDRPROC =0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

14.3.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,
given in descending order:
¢ Backup Reset
e Wake-up Reset
¢ Watchdog Reset
* Software Reset
¢ User Reset
Particular cases are listed below:

* When in User Reset:

— A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.

— A software reset is impossible, since the processor reset is being activated.
* When in Software Reset:

— A watchdog event has priority over the current state.

— The NRST has no effect.

14 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

* When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

14.3.6 Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:

* RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

* SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.

* NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.

¢ URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
14-9). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 14-9. Reset Controller Status and Interrupt

read
Peripheral Access RSTC SR
2 cycle 2 cycle

resyn¢hronizatipn resynchtonization

NRST _\/f\ \
NRSTL

URSTS /

rstc_irq
if (URSTEN = 0) and
(URSTIEN = 1)

14.4 Reset Controller (RSTC) User Interface

Table 14-1. Reset Controller (RSTC) Register Mapping

Back-up Reset
Offset Register Name Access Reset Value Value
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0001 0x0000_0000
0x08 Mode Register RSTC_MR Read/Write - 0x0000_0000

Note: 1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply.

A ||'|E|,® 115

6249D-ATARM-20-Dec-07

ATMEL

16 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

14.41 Reset Controller Control Register

Register Name: RSTC_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - - I - I - I I - |
7 6 5 4 3 2 1 0

| - [- [- - [EXTRST [PERRST | - [PROCRST |

e PROCRST: Processor Reset

0 = No effect.

1 = If KEY is correct, resets the processor.

¢ PERRST: Peripheral Reset

0 = No effect.

1 = If KEY is correct, resets the peripherals.

e EXTRST: External Reset

0 = No effect.

1 = If KEY is correct, asserts the NRST pin.

e KEY: Password

Should be written at value OxA5. Writing any other value in this field aborts the write operation.

6249D-ATARM-20-Dec-07

ATMEL

117

14.4.2 Reset Controller Status Register

ATMEL

Register Name: RSTC_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

- T - T - — [- T - T - —]
23 22 21 20 19 18 17 16

| - | - | - - | - [- [SRCMP NRSTL |
15 14 13 12 11 10 9 8

| - | - | - - | - | RSTTYP |
7 6 5 4 3 2 1 0

r - [- [- - - [- - URSTS |

¢ URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

e RSTTYP: Reset Type

Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

Table 1.
RSTTYP Reset Type Comments
0 0 0 General Reset Both VDDCORE and VDDBU rising
0 0 1 Wake Up Reset VDDCORE rising
0 1 0 Watchdog Reset Watchdog fault occurred
0 1 1 Software Reset Processor reset required by the software
1 0 0 User Reset NRST pin detected low

e NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

e SRCMP: Software Reset Command in Progress

0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

118

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

14.4.3 Reset Controller Mode Register
Register Name: RSTC_MR
Access Type: Read/Write
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
. - r - ¢ - [- 1] ERSTL |
7 6 5 4 3 2 1 0
| - | - | | URSTIEN | - - - URSTEN |
¢ URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.
1 = The detection of a low level on the pin NRST triggers a User Reset.
¢ URSTIEN: User Reset Interrupt Enable
0 = USRTS bitin RSTC_SR at 1 has no effect on rstc_irqg.
1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.
e ERSTL: External Reset Length
ERSTL+1

This field defines the external reset length. The external reset is asserted during a time of 2!
allows assertion duration to be programmed between 60 ps and 2 seconds.

e KEY: Password

Should be written at value OxA5. Writing any other value in this field aborts the write operation.

6249D-ATARM-20-Dec-07

ATMEL

) Slow Clock cycles. This

119

ATMEL

120 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A ||'|E|,® 121

6249D-ATARM-20-Dec-07

ATMEL

122 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A ||'|E|,® 123

6249D-ATARM-20-Dec-07

ATMEL

124 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A ||'|E|,® 125

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A ||'|E|,® 126

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A ||'|E|,® 127

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

A ||'|E|,® 128

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

15. Real-time Timer (RTT)

15.1 Overview

The Real-time Timer is built around a 32-bit counter and used to count elapsed seconds. It gen-
erates a periodic interrupt and/or triggers an alarm on a programmed value.

15.2 Block Diagram

Figure 15-1. Real-time Timer

RTT_MR RTT_MR
| RTTRST | | RTPRES

RTT_MR
reload RTTINCIEN
SLCKLS 16ebit
Divider 0 set

RTT_MR l RTT_SR | RTTING |
RTTRST |—A\1 0 / reset
|
rtt_int
32-bit D—>
> Counter

read o RTT_MR

RTT_SR
ALMIEN

;

RTT VR | CRTV | reset
RTT_SR ALMS |

set
RTT_AR ALMV

rtt_alarm

=

15.3 Functional Description
The Real-time Timer is used to count elapsed seconds. It is built around a 32-bit counter fed by

Slow Clock divided by a programmable 16-bit value. The value can be programmed in the field
RTPRES of the Real-time Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 Hz). The 32-bit counter can count up to 2%2 seconds, corre-
sponding to more than 136 years, then roll over to 0.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.

A ||'|E|,® 129

6249D-ATARM-20-Dec-07

ATMEL

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advis-
able to read this register twice at the same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to OxFFFF_FFFF,
after a reset.

The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is pro-
grammed with 0x8000 and Slow Clock equal to 32.768 Hz.

Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).

Figure 15-2. RTT Counting

130

RTPRES - 1

e
Prescaler / /
0 L u

APB cycle APB cycle

o ULV UUUUUUUUU VUL

=t

N\

RTT 0 ALMV{T | X ALMV | XALMV+1 | X ALMV+2 <ALM +3
RTTINC (RTT_SR) / /
ALMS (RTT_SR) / _
APB Interface AN
read RTT_SR

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

15.4 Real-time Timer (RTT) User Interface

15.4.1 Register Mapping

Table 15-1. Real-time Timer Register Mapping

Offset Register Name Access Reset Value
0x00 Mode Register RTT_MR Read/Write 0x0000_8000
0x04 Alarm Register RTT_AR Read/Write OxFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000

A ||'|E|,® 131

6249D-ATARM-20-Dec-07

15.4.2 Real-time Timer Mode Register

Register Name: RTT_MR
Access Type: Read/Write
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - -
23 22 21 20 19 18 17 16
| — | — | - | - | - | RTTRST | RTTINCIEN | ALMIEN
15 14 13 12 11 10 9 8
| RTPRES
7 6 5 4 3 2 1 0
| RTPRES

¢ RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 21

RTPRES = 0: The prescaler period is equal to RTPRES.

e ALMIEN: Alarm Interrupt Enable

0 = The bit ALMS in RTT_SR has no effect on interrupt.

1 = The bit ALMS in RTT_SR asserts interrupt.

¢ RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 = The bit RTTINC in RTT_SR has no effect on interrupt.

1 =The bit RTTINC in RTT_SR asserts interrupt.

* RTTRST: Real-time Timer Restart
1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

132 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

15.4.3 Real-time Timer Alarm Register

Register Name: RTT_AR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

e ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.

15.4.4 Real-time Timer Value Register

Register Name: RTT_VR

Access Type: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

A ||'|E|%D 133

6249D-ATARM-20-Dec-07

15.4.5 Real-time Timer Status Register

Register Name: RTT_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RTTINC | ALMS |

e ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occured since the last read of RTT_SR.

1 = The Real-time Alarm occured since the last read of RTT_SR.
¢ RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

13¢ AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

16. Periodic Interval Timer (PIT)

16.1 Overview

The Periodic Interval Timer (PIT) provides the operating system’s scheduler interrupt. It is
designed to offer maximum accuracy and efficient management, even for systems with long
response time.

16.2 Block Diagram

Figure 16-1. Periodic Interval Timer

PIT_MR
PIV
v
E PIT_MR
PITIEN
set o
0 PT_SR [piTs _ pitJirg
l ¢ reset
0 0 1
[
12-bit
o1 Adder
read PIT_PIVR
MCK 20-bit
Counter
MCK/16
Prescaler > | CPIV | PIT_PIVR | PICNT |
[cpv | PIT_PIIR [PonT |

A ||'|E|,® 135

6249D-ATARM-20-Dec-07

ATMEL

16.3 Functional Description

136

The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems.

The PIT provides a programmable overflow counter and a reset-on-read feature. It is built
around two counters: a 20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at
Master Clock /16.

The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the
field PIV of the Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to
0 and increments the Periodic Interval Counter, PICNT. The status bit PITS in the Status Regis-
ter (PIT_SR) rises and triggers an interrupt, provided the interrupt is enabled (PITIEN in
PIT_MR).

Writing a new PIV value in PIT_MR does not reset/restart the counters.

When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register
(PIT_PIVR), the overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging
the interrupt. The value of PICNT gives the number of periodic intervals elapsed since the last
read of PIT_PIVR.

When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register
(PIT_PIIR), there is no effect on the counters CPIV and PICNT, nor on the bit PITS. For exam-
ple, a profiler can read PIT_PIIR without clearing any pending interrupt, whereas a timer
interrupt clears the interrupt by reading PIT_PIVR.

The PIT may be enabled/disabled using the PITEN bit in the PIT_MR register (disabled on
reset). The PITEN bit only becomes effective when the CPIV value is 0. Figure 16-2 illustrates
the PIT counting. After the PIT Enable bit is reset (PITEN= 0), the CPIV goes on counting until
the PIV value is reached, and is then reset. PIT restarts counting, only if the PITEN is set again.

The PIT is stopped when the core enters debug state.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 16-2. Enabling/Disabling PIT with PITEN

APB cycle APB cycle
<> <>
e [UUUL TULUL
15
estarts MCK Prescaler
MCK Prescaler 0 N
PITEN
CPV | 0 1 v - 1 PIv 0 X1

PICNT 0 1 0

PITS (PIT_SR)
APB Interface ><

read PIT_PIVR

A ||'|E|%e 137

6249D-ATARM-20-Dec-07

16.4 Periodic Interval Timer (PIT) User Interface

Table 16-1. Periodic Interval Timer (PIT) Register Mapping

Offset Register Name Access Reset Value
0x00 Mode Register PIT_MR Read/Write 0x000F_FFFF
0x04 Status Register PIT_SR Read-only 0x0000_0000
0x08 Periodic Interval Value Register PIT_PIVR Read-only 0x0000_0000
0x0C Periodic Interval Image Register PIT_PIIR Read-only 0x0000_0000

133 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

16.4.1 Periodic Interval Timer Mode Register

Register Name: PIT_MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| — | — | - | - | - - PITIEN PITEN |
23 22 21 20 19 18 17 16

I - I - I - I - I PIV |
15 14 13 12 11 10 9 8

| PIV |
7 6 5 4 3 2 1 0

| PIV |

¢ PIV: Periodic Interval Value
Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to
(PIV + 1).

¢ PITEN: Period Interval Timer Enabled

0 = The Periodic Interval Timer is disabled when the PIV value is reached.
1 = The Periodic Interval Timer is enabled.

¢ PITIEN: Periodic Interval Timer Interrupt Enable

0 = The bit PITS in PIT_SR has no effect on interrupt.

1 = The bit PITS in PIT_SR asserts interrupt.

16.4.2 Periodic Interval Timer Status Register

Register Name: PIT_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - r - -+ - 1 - ¢ = [= |
23 22 21 20 19 18 17 16

. - r - r - -+ - {r - ¢ - [- |
15 14 13 12 11 10 9 8

. - r - r - -+ - 1 - ¢ = [= |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | PTS |

¢ PITS: Periodic Interval Timer Status
0 = The Periodic Interval timer has not reached PIV since the last read of PIT_PIVR.

1 = The Periodic Interval timer has reached PIV since the last read of PIT_PIVR.

A ||'|E|%D 139

6249D-ATARM-20-Dec-07

ATMEL

16.4.3 Periodic Interval Timer Value Register

Register Name: PIT_PIVR

Access Type: Read-only
31 30 29 28 27 26 25 24

| PICNT |
23 22 21 20 19 18 17 16

| PICNT CPIV |
15 14 13 12 11 10 9 8

| CPIV |
7 6 5 4 3 2 1 0

| CPIV |

Reading this register clears PITS in PIT_SR.

e CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.

¢ PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

16.4.4 Periodic Interval Timer Image Register

Register Name: PIT_PIIR

Access Type: Read-only
31 30 29 28 27 26 25 24

| PICNT |
23 22 21 20 19 18 17 16

| PICNT CPIV |
15 14 13 12 11 10 9 8

| CPIV |
7 6 5 4 3 2 1 0

| CPIV |

e CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.

¢ PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.

120 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

17. Watchdog Timer (WDT)

17.1 Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.

17.2 Block Diagram

Figure 17-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR Wov
|WDRSTT | reload - l

r \1_0;

12-bit Down
Counter
WDT_MR
reload
WDD Current .
Value < 1128 SLCK
A
<=WDD
WDT_MR
1 WDRSTEN
-0
:' N\ wdt_fault
I_J N (to Reset Controller)

\ set

WDLE')) wdt_int
set reset

WDERRI r
read WDT_SR reset WDFIEN
or

reset WDT_MR

A ||'|E|,® 141

6249D-ATARM-20-Dec-07

ATMEL

17.3 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.

The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer under-
flow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an inter-
rupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

122 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

ATMEL

Figure 17-2. Watchdog Behavior

Watchdog Error — Watchdog Underflow
if WDRSTEN is 1
FFF
Normal behavior if WDRSTEN is 0
WDV \
Forbidden
Window oo

s N N 7N

WDT_CR = WDRSTT

<

o Watchdog
Fault

123 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

17.4 Watchdog Timer (WDT) User Interface

Table 17-1. Watchdog Timer Registers

Offset Register Name Access Reset Value
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read/Write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

124 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

17.41 Watchdog Timer Control Register

Register Name: WDT_CR
Access Type: Write-only
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10
I - I - I - I - I - I - I - I - |
6 5 4 3 2 1 0

| - | - | - | - | - | - | - | WORSTT |

e WDRSTT: Watchdog Restart
0: No effect.

1: Restarts the Watchdog.

¢ KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

125 AT91SAM9263 Preliminary m———

6249D-ATARM-20-Dec-07

17.4.2 Watchdog Timer Mode Register

Register Name: WDT_MR

Access Type: Read/Write Once
31 30 29 28 27 26 25 24

| | | WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[WDDIS | wprPROC | WDRSTEN | WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

e WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

¢ WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.
1: A Watchdog fault (underflow or error) asserts interrupt.

e WDRSTEN: Watchdog Reset Enable
: A Watchdog fault (underflow or error) has no effect on the resets.

o

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

e WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

¢ WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.
e WDDBGHLT: Watchdog Debug Halt

0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

WDIDLEHLT: Watchdog Idle Halt
: The Watchdog runs when the system is in idle mode.

- O

: The Watchdog stops when the system is in idle state.

WDDIS: Watchdog Disable
: Enables the Watchdog Timer.

o

126 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

1: Disables the Watchdog Timer.

147 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

17.4.3 Watchdog Timer Status Register

Register Name: WDT_SR
Access Type: Read-only
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - -
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - -
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - -
7 6 5 4 3 2 1 0

| - | - [- | - | - | - [WDERR | WDUNF

WDUNF: Watchdog Underflow
: No Watchdog underflow occurred since the last read of WDT_SR.

o

1: At least one Watchdog underflow occurred since the last read of WDT_SR.

WDERR: Watchdog Error
: No Watchdog error occurred since the last read of WDT_SR.

o

1: At least one Watchdog error occurred since the last read of WDT_SR.

128 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

18. Shutdown Controller (SHDWC)

18.1 Description

The Shutdown Controller controls the power supplies VDDIO and VDDCORE and the wake-up
detection on debounced input lines.

18.2 Block Diagram

Figure 18-1. Shutdown Controller Block Diagram

SLCK

Shutdown Controller

SYSC_SHMR read SYSC_SHSR

CPTWKO oset l
WKMODEO | WAKEUPO| SYSC_SHSR
set T

WKUPO | I

read SYSC_SHSR
Wake-up
reset

SYSC_SHMR | RTTWK |SYSC?SHSR Shutdown SHDN
setT Output D

Controller
SYSC_SHCR

RTT Alarm

Shutdown

18.3 /O Lines Description

Table 18-1. I/O Lines Description
Name Description Type
WKUPO Wake-up 0 input Input
SHDN Shutdown output Output

18.4 Product Dependencies

18.4.1 Power Management

The Shutdown Controller is continuously clocked by Slow Clock. The Power Management Con-

troller has no effect on the behavior of the Shutdown Controller.

18.5 Functional Description

The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU
and manages wake-up input pins and one output pin, SHDN.

6249D-ATARM-20-Dec-07

ATMEL

149

150

ATMEL

A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter pro-
viding the main power supplies of the system, and especially VDDCORE and/or VDDIO. The
wake-up inputs (WKUPOQ) connect to any push-buttons or signal that wake up the system.

The software is able to control the pin SHDN by writing the Shutdown Control Register
(SHDW_CR) with the bit SHDW at 1. The shutdown is taken into account only 2 slow clock
cycles after the write of SHDW_CR. This register is password-protected and so the value written
should contain the correct key for the command to be taken into account. As a result, the system
should be powered down.

A level change on WKUPO is used as wake-up. Wake-up is configured in the Shutdown Mode
Register (SHDW_MR). The transition detector can be programmed to detect either a positive or
negative transition or any level change on WKUPO. The detection can also be disabled. Pro-
gramming is performed by defining WKMODEDO.

Moreover, a debouncing circuit can be programmed for WKUPO. The debouncing circuit filters
pulses on WKUPO shorter than the programmed number of 16 SLCK cycles in CPTWKO of the
SHDW_MR register. If the programmed level change is detected on a pin, a counter starts.
When the counter reaches the value programmed in the corresponding field, CPTWKO, the
SHDN pin is released. If a new input change is detected before the counter reaches the corre-
sponding value, the counter is stopped and cleared. WAKEUPO of the Status Register
(SHDW_SR) reports the detection of the programmed events on WKUPO, with a reset after the
read of SHDW_SR.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

18.6 Shutdown Controller (SHDWC) User Interface

Table 18-2. Shutdown Controller (SHDWC) Registers

Offset Register Name Access Reset Value
0x00 Shutdown Control Register SHDW_CR Write-only -

0x04 Shutdown Mode Register SHDW_MR Read-Write 0x0000_0103
0x08 Shutdown Status Register SHDW_SR Read-only 0x0000_0000

18.6.1 Shutdown Control Register

Register Name: SHDW_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

. - r - r - -+ - {r - ¢ - [- |
15 14 13 12 11 10 9 8

. - r - r - -+ - 1 - ¢ = [= |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | SHOW |

e SHDW: Shutdown Command
0 = No effect.

1 = If KEY is correct, asserts the SHDN pin.

* KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.

A ||'|E|,® 151

6249D-ATARM-20-Dec-07

18.6.2 Shutdown Mode Register

Register Name: SHDW_MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | RTTWKEN |
15 14 13 12 11 10 9 8

I - I - I - I - |
7 6 5 4 3 2 1 0

| CPTWKO | - | - | WKMODEO |

¢ WKMODEO: Wake-up Mode 0

WKMODE[1:0] Wake-up Input Transition Selection
0 0 None. No detection is performed on the wake-up input
0 1 Low to high level
1 0 High to low level
1 1 Both levels change

e CPTWKO: Counter on Wake-up 0

Defines the number of 16 Slow Clock cycles, the level detection on the corresponding input pin shall last before the wake-
up event occurs. Because of the internal synchronization of WKUPO , the SHDN pin is released

(CPTWK x 16 + 1) Slow Clock cycles after the event on WKUP.

¢ RTTWKEN: Real-time Timer Wake-up Enable
0 = The RTT Alarm signal has no effect on the Shutdown Controller.

1 = The RTT Alarm signal forces the de-assertion of the SHDN pin.

152 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

18.6.3 Shutdown Status Register

Register Name: SHDW_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | RTTWK |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | WAKEUPO |

e WAKEUPO: Wake-up 0 Status
0 = No wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.

1 = At least one wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.
¢ RTTWK: Real-time Timer Wake-up
0 = No wake-up alarm from the RTT occurred since the last read of SHDW_SR.

1 = At least one wake-up alarm from the RTT occurred since the last read of SHDW_SR.

A ||'|E|,® 153

6249D-ATARM-20-Dec-07

ATMEL

154 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19. AT91SAM9263 Bus Matrix

19.1

Description

Bus Matrix implements a multi-layer AHB, based on AHB-Lite protocol, that enables parallel
access paths between multiple AHB masters and slaves in a system, which increases the over-
all bandwidth. Bus Matrix interconnects 9 AHB Masters to 8 AHB Slaves. The normal latency to
connect a master to a slave is one cycle except for the default master of the accessed slave
which is connected directly (zero cycle latency).

The Bus Matrix user interface is compliant with ARM Advanced Peripheral Bus and provides a
Chip Configuration User Interface with Registers that allow the Bus Matrix to support application
specific features.

19.2 Memory Mapping

Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB
Master several memory mappings. In fact, depending on the product, each memory area may be
assigned to several slaves. Booting at the same address while using different AHB slaves (i.e.,
external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that
allows to perform remap action for every master independently.

19.3 Special Bus Granting Techniques

19.3.1

19.3.2

19.3.3

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism allows to reduce latency at first accesses of a
burst or single transfer. The bus granting mechanism allows to set a default master for every
slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master, suits low power mode.

Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

Fixed Default Master

6249D-ATARM-20-Dec-07

At the end of the current access, if no other request is pending, the slave connects to itsfixed
default master. Unlike last access master, the fixed master doesn’t change unless the user mod-
ifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that allow to set a default master for each
slave. The Slave Configuration Register contains two fields:

DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose
the default master type (no default, last access master, fixed default master) whereas the 4-bit

A ||'|E|,® 155

19.4 Arbitration

ATMEL

FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE
is set to fixed default master. Please refer to the Bus Matrix user interface description.

The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict
cases occur, basically when two or more masters try to access the same slave at the same time.
One arbiter per AHB slave is provided, allowing to arbitrate each slave differently.

The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and
this for each slave:

1. Round-Robin Arbitration (the default)

2. Fixed Priority Arbitration
This choice is given through the field ARBT of the Slave Configuration Registers
(MATRIX_SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration has to be done, it is realized only under some specific conditions detailed
in the following paragraph.

19.4.1 Arbitration rules

Each arbiter has the ability to arbitrate between two or more different master’s requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: when a slave is not connected to any master or is connected to a master
which is not currently accessing it.

2. Single Cycles: when a slave is currently doing a single access.

3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst (See “Undefined Length Burst Arbitration” on
page iv.).

4. Slot Cycle Limit: when the slot cycle counter has reach the limit value indicating that the
current master access is too long and must be broken (See “Slot Cycle Limit Arbitra-
tion” on page iv.).

19.4.1.1 Undefined Length Burst Arbitration

In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix
provides specific logic in order to re-arbitrate before the end of the INCR transfer.

A predicted end of burst is used as for defined length burst transfer, which is selected between
the following:

1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will
never be broken.

2. Four beat bursts: predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.

3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.

4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.

156 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).

19.4.1.2 Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a
very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.

19.4.2 Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master’s requests arise at the same
time, the master with the lowest number is first serviced then the others are serviced in a round-
robin manner.

There are three round-robin algorithm implemented:

¢ Round-Robin arbitration without default master
¢ Round-Robin arbitration with last access master
¢ Round-Robin arbitration with fixed default master

19.4.2.1 Round-Robin Arbitration without Default Master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

19.4.2.2 Round-Robin Arbitration with Last Access Master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performs the access. Other non privileged masters will still get one latency cycle
if they want to access the same slave. This technique can be used for masters that mainly per-
form single accesses.

19.4.2.3 Round-Robin Arbitration with Fixed Default Master
This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

19.4.3 Fixed Priority Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master’'s requests
are active at the same time, the master with the highest priority number is serviced first. If two or

A mEIZ@ 157

6249D-ATARM-20-Dec-07

ATMEL

more master’s requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).

158 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19.5 Bus Matrix User Interface

Table 19-1. Register Mapping
Offset Register Name Access Reset
0x0000 Master Configuration Register 0 MATRIX_MCFGO Read/Write 0x00000000
0x0004 Master Configuration Register 1 MATRIX_MCFGH1 Read/Write 0x00000000
0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read/Write 0x00000000
0x000C Master Configuration Register 3 MATRIX_MCFG3 Read/Write 0x00000000
0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read/Write 0x00000000
0x0014 Master Configuration Register 5 MATRIX_MCFG5 Read/Write 0x00000000
0x0018 Master Configuration Register 6 MATRIX_MCFG6 Read/Write 0x00000000
0x001C Master Configuration Register 7 MATRIX_MCFG7 Read/Write 0x00000000
0x0020 Master Configuration Register 8 MATRIX_MCFG8 Read/Write 0x00000000
0x0024 - 0x003C | Reserved - - -
0x0040 Slave Configuration Register 0 MATRIX_SCFGO Read/Write 0x00010010
0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read/Write 0x00050010
0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 MATRIX_SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 MATRIX_SCFG7 Read/Write 0x00000010
0x0060 - 0x007C | Reserved - - -
0x0080 Priority Register A for Slave 0 MATRIX_PRASO Write-only 0x00000000
0x0084 Priority Register B for Slave 0 MATRIX_PRBSO0 Write-only 0x00000000
0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Write-only 0x00000000
0x008C Priority Register B for Slave 1 MATRIX_PRBS1 Write-only 0x00000000
0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Write-only 0x00000000
0x0094 Priority Register B for Slave 2 MATRIX_PRBS2 Write-only 0x00000000
0x0098 Priority Register A for Slave 3 MATRIX_PRASS3 Write-only 0x00000000
0x009C Priority Register B for Slave 3 MATRIX_PRBS3 Write-only 0x00000000
0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Write-only 0x00000000
0x00A4 Priority Register B for Slave 4 MATRIX_PRBS4 Write-only 0x00000000
0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Write-only 0x00000000
0x00AC Priority Register B for Slave 5 MATRIX_PRBS5 Write-only 0x00000000
0x00B0O Priority Register A for Slave 6 MATRIX_PRAS6 Write-only 0x00000000
0x00B4 Priority Register B for Slave 6 MATRIX_PRBS6 Write-only 0x00000000
0x00B8 Priority Register A for Slave 7 MATRIX_PRAS7 Write-only 0x00000000
0x00BC Priority Register B for Slave 7 MATRIX_PRBS7 Write-only 0x00000000
0x00CO0 - 0xO0FC | Reserved - - -
0x0100 Master Remap Control Register MATRIX_MRCR Read/Write 0x00000000
0x0104 - 0x010C | Reserved - - -

6249D-ATARM-20-Dec-07

ATMEL

159

e A T91SAM9263 Preliminary

19.5.1 Bus Matrix Master Configuration Registers

Register Name: MATRIX_MCFGO...MATRIX_MCFG8

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | uLeT |

¢ ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing rearbitration at each beat of the INCR
burst.

2: Four-beat Burst

The undefined length burst is split into four-beat burst allowing rearbitration at each four-beat burst end.
3: Eight-beat Burst

The undefined length burst is split into eight-beat burst allowing rearbitration at each eight-beat burst end.
4: Sixteen-beat Burst

The undefined length burst is split into sixteen-beat burst allowing rearbitration at each sixteen-beat burst end.

A ||'|E|%D 160

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19.5.2 Bus Matrix Slave Configuration Registers

Register Name: MATRIX_SCFGO...MATRIX_SCFG7

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | - - - = [ARBT |
23 22 21 20 19 18 17 16

| - [[FIXED_DEFMSTR [DEFMSTR_TYPE |
15 14 13 12 11 10 9 8

- T - T = - - G —]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

e SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

Note that an unreasonably small value breaks every burst and the Bus Matrix then arbitrates without performing any data
transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

e DEFMASTR_TYPE: Default Master Type

0: No Default Master

At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in a one-cycle latency for the first acccess of a burst transfer or for a single access.

1: Last Default Master

At the end of current slave access, if no other master request is pending, the slave remains connected to the last master
that accessed it.

This results in not having the one cycle latency when the last master tries access to the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number of which has been written in the FIXED_DEFMSTR field.

This results in not having the one cycle latency when the fixed master tries access to the slave again.
¢ FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMASTR_TYPE is 2. Specifying the number of a
master which is not connected to the selected slave is equivalent to setting DEFMASTR_TYPE to 0.

¢ ARBT: Arbitration Type
0: Round-Robin Arbitration
1: Fixed Priority Arbitration
2: Reserved

3: Reserved

A ||'|E|,® 161

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19.5.3 Bus Matrix Priority Registers A For Slaves

Register Name: MATRIX_PRASO...MATRIX_PRAS7

Access Type: Write-only
31 30 29 28 27 26 25 24

| - [- | M7PR [- [- [M6PR |
23 22 21 20 19 18 17 16

| - [- | M5PR [- [- [M4PR |
15 14 13 12 11 10 9 8

| - [- | M3PR [- [- [M2PR |
7 6 5 4 3 2 1 0

| - | - | M1PR | - | - | MOPR |

* MxPR: Master x Priority
Fixed prority of Master x for accessing to the selected slave.The higher the number, the higher the priority.

19.5.4 Bus Matrix Priority Registers B For Slaves

Register Name: MATRIX_PRBSO0...MATRIX_PRBS7

Access Type: Write -only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I M8PR |

* M8PR: Master 8 Priority
Fixed prority of Master 8 for accessing to the selected slave. The higher the number, the higher the priority.

A ||'|E|,® 162

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19.5.5 Bus Matrix Master Remap Control Register

Register Name: MATRIX_MRCR

Access Type: Read/Write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

- T - 1T -1 - — 1 - — T -]
23 22 21 20 19 18 17 16

- T - 1T -1 - — 1 - — T -]
15 14 13 12 11 10 9 8

I - I - I - I - - I . - [RoBs |
7 6 5 4 3 2 1 0

| RCB7 [RCB6 [RCB5 [RCB4 RCB3 [RCB2 RCB1 [RCBO |

¢ RCBx: Remap Command Bit for AHB Master x

0: Disable remapped address decoding for the selected Master.

1: Enable remapped address decoding for the selected Master.

RCBx Master

RCBO ARM926 Instruction

RCBH1 ARM926 Data

RCB2 Peripheral DMA Controller
RCB3 LCD Controller

RCB4 Ethernet EMAC

RCB5 DMA Controller

RCB6 2D Graphic Controller
RCB7 Image Sensor Interface
RCB8 OHCI USB Host Controller

6249D-ATARM-20-Dec-07

ATMEL

163

e A T91SAM9263 Preliminary

19.6 Chip Configuration User Interface

Table 19-2. Chip Configuration User Interface

Offset Register Name Access Reset
0x0110 Reserved - - -
0x0114 Bus Matrix TCM Configuration Register MATRIX_TCMR Read/Write 0x00000000
0x0118 - 0x011C | Reserved - - -
0x0120 EBIO Chip Select Assignment Register EBIO_CSA Read/Write 0x00010000
0x0124 EBI1 Chip Select Assignment Register EBI1_CSA Read/Write 0x00010000
0x0128 - 0x01FC | Reserved - - -

19.6.1 Bus Matrix TCM Configuration Register

Register Name: MATRIX_TCR

Access Type: Read/Write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I . I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| DTCM_SIZE [ITCM_SIZE |

e ITCM_SIZE: Size of ITCM enabled memory block
0000: 0 KB (No ITCM Memory)

0101: 16 KB

0110: 32 KB

Others: Reserved

e DTCM_SIZE: Size of DTCM enabled memory block
0000: 0 KB (No DTCM Memory)

0101: 16 KB

0110: 32 KB

Others: Reserved

A ||'|E|,® 164

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19.6.2 EBIO Chip Select Assignment Register

Register Name: EBIO_CSA

Access Type: Read/Write

Reset: 0x0001_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - [- [- [- [- [- [- | VDDIOMSEL |
15 14 13 12 11 10 9 8

| - [- [- [- [- [- [- [EBI0O_DBPUC |
7 6 5 4 3 2 1 0

| - [- | EBIO_CSSA™ T EBIO_CS4A [EBIO_CS3A | - [EBIO_CSTA] - |

EBIO_CS1A: EBIO Chip Select 1 Assignment
0 = EBIO Chip Select 1 is assigned to the Static Memory Controller.

1 = EBIO Chip Select 1 is assigned to the SDRAM Controller.

EBIO_CS3A: EBIO Chip Select 3 Assignment
0 = EBIO Chip Select 3 is only assigned to the Static Memory Controller and EBIO_NCS3 behaves as defined by the SMC.

1 = EBIO Chip Select 3 is assigned to the Static Memory Controller and the SmartMedia Logic is activated.

EBIO_CS4A: EBIO Chip Select 4 Assighment
0 = EBIO Chip Select 4 is only assigned to the Static Memory Controller and EBI0O_NCS4 behaves as defined by the SMC.

1 = EBIO Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic (first slot) is activated.

EBIO_CS5A: EBIO Chip Select 5 Assignment
0 = EBIO Chip Select 5 is only assigned to the Static Memory Controller and EBIO_NCS5 behaves as defined by the SMC.

1 = EBIO Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic (second slot) is activated.

EBIO_DBPUC: EBIO Data Bus Pull-Up Configuration
0 = EBIO DO - D15 Data Bus bits are internally pulled-up to the VDDIOMO power supply.

1 = EBIO DO - D15 Data Bus bits are not internally pulled-up.

VDDIOMSEL: Memory voltage selection
0 = Memories are 1.8V powered.

1 = Memories are 3.3V powered.

A ||'|E|,® 165

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

19.6.3 EBI1 Chip Select Assignment Register

Register Name: EBI1_CSA

Access Type: Read/Write

Reset: 0x0001_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - [- [- [- [- [- [- | VDDIOMSEL |
15 14 13 12 11 10 9 8

| - [- [- [- [- [- [- [EBI1_DBPUC |
7 6 5 4 3 2 1 0

| — | _ | - | — | EBI1_CS2A | - | EBI1_CS1A | - |

e EBI1_CS1A: EBI1 Chip Select 1 Assignment
0 = EBI1 Chip Select 1 is assigned to the Static Memory Controller.

1 = EBI1 Chip Select 1 is assigned to the SDRAM Controller.

e EBI1_CS2A: EBI1 Chip Select 2 Assignment

0 = EBI1 Chip Select 2 is only assigned to the Static Memory Controller and EBI1_NCS2 behaves as defined by the SMC.
1 = EBI1 Chip Select 2 is assigned to the Static Memory Controller and the SmartMedia Logic is activated.

e EBI1_DBPUC: EBI1 Data Bus Pull-Up Configuration

0 = EBI1 DO - D15 Data Bus bits are internally pulled-up to the VDDIOM1 power supply.

1 = EBI1 DO - D15 Data Bus bits are not internally pulled-up.

e VDDIOMSEL: Memory voltage selection

0 = Memories are 1.8V powered.

1 = Memories are 3.3V powered.

A ||'|E|%D 166

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20. External Bus Interface (EBI)

20.1 Description

6249D-ATARM-20-Dec-07

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an ARM-based device. The
Static Memory, SDRAM and ECC Controllers are all featured external Memory Controllers on
the EBI. These external Memory Controllers are capable of handling several types of external
memory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and
SDRAM.

The EBIO also supports the CompactFlash and the NANDFlash protocols via integrated circuitry
that greatly reduces the requirements for external components. Furthermore, the EBIO handles
data transfers with up to six external devices, each assigned to six address spaces defined by
the embedded Memory Controller. Data transfers are performed through a 16-bit or 32-bit data
bus, an address bus of up to 26 bits, up to six chip select lines (NCS[5:0]) and several control
pins that are generally multiplexed between the different external Memory Controllers.

The EBI1 also supports the NANDFlash protocols via integrated circuitry that greatly reduces the
requirements for external components. Furthermore, the EBI1 handles data transfers with up to
three external devices, each assigned to three address spaces defined by the embedded Mem-
ory Controller. Data transfers are performed through a 16-bit or 32-bit data bus, an address bus
of up to 23 bits, up to three chip select lines (NCS[2:0]) and several control pins that are gener-
ally multiplexed between the different external Memory Controllers.

A ||'|E|,® 167

ATMEL

20.2 Block Diagram

20.2.1 External Bus Interface 0
Figure 20-1 shows the organization of the External Bus Interface 0.

Figure 20-1. Organization of the External Bus Interface 0

Bus Matrix External Bus Interface 0

D[15:0]

AO/NBSO
A1/NWR2/NBS2
A[15:2], A[20:18]
A16/BAO

A17/BA1

NCSO0
NCS1/SDCS
NCS3/NANDCS
NRD/CFOE
NWRO/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK

SDCKE

RAS

CAS

SDWE

SDA10

NANDOE
NANDWE
A21/NANDALE
A22/NANDCLE

AHB _,| SDRAM ¢ N

Controller

MUX

Static Logic

Memory

< > Controller ¢—p

CompactFlash
Logic

NAND Flash
Logic

!

ECC
Controller N >

» PIO «——] A[25:23]
> «—]] CFRNW

Chip Select

Assignor » «——[] NCS4/CFCS0
N ——[] NCSS5/CFCST
, ——[] NCS2
e ——[] NWAIT
N ——[] CFCE1

T . «——[] CFCE2

—

APB

>
éﬂﬁhlﬁlﬁlﬁlﬁl’jl’jlﬁlﬁlﬁlﬁlﬁlﬁlﬁlﬁ[ﬁ[ﬁ[ﬁ[ﬁ[ﬁ[ﬁ

D[31:16]

Address Decoders

User Interface

18 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.2.2

External Bus Interface 1
Figure 20-2 shows the organization of the External Bus Interface 1.

Figure 20-2. Organization of the External Bus Interface 1

Bus Matrix

AHB

External Bus Interface 1

Address Decoders

>
SDRAM ¢ N
Controller
Static
Memory
p| Controller | ——
A
—> g
NAND Flash
Logic
—> ECC
Controller
Chip Select
Assignor

User Interface

T

MUX
Logic

A

Y

A

A4

A

A

Y

A

A4

A

oooooooon

A

OO

A

PIO

bhbbabbbabbn

N

APB

6249D-ATARM-20-Dec-07

ATMEL

D[15:0]
AO/NBSO
A1/NWR2/NBS2
A[15:2], A[20:18]
A16/BAO
A17/BA1

NCS0

NRD
NWRO/NWE
NWR1/NBS1

A21/NANDALE
A22/NANDCLE

SDWE
SDA10
NANDOE
NANDWE
D[31:16]
NWR3/NBS3
NCS1/SDCS
NCS2/NANDCS
SDCK
SDCKE
NWAIT
RAS

CAS

169

e A T91SAM9263 Preliminary

20.3 /O Lines Description

Table 20-1. EBIO I/O Lines Description

Name Function Type Active Level
EBI
EBIO_DO - EBIO_D31 Data Bus I/0
EBIO_AO - EBIO_A25 Address Bus Output
EBIO_NWAIT External Wait Signal Input Low
smMC
EBIO_NCSO - EBIO_NCS5 Chip Select Lines Output Low
EBIO_NWRO - EBIO_NWR3 Write Signals Output Low
EBIO_NRD Read Signal Output Low
EBIO_NWE Write Enable Output Low
EBIO_NBSO - EBIO_NBS3 Byte Mask Signals Output Low
EBI for CompactFlash Support
EBIO_CFCE1 - EBIO_CFCE2 | CompactFlash Chip Enable Output Low
EBIO_CFOE CompactFlash Output Enable Output Low
EBIO_CFWE CompactFlash Write Enable Output Low
EBIO_CFIOR CompactFlash I/O Read Signal Output Low
EBIO_CFIOW CompactFlash 1/0 Write Signal Output Low
EBIO_CFRNW CompactFlash Read Not Write Signal Output
EBIO_CFCSO0 - EBIO_CFCS1 | CompactFlash Chip Select Lines Output Low
EBI for NAND Flash Support
EBIO_NANDCS NAND Flash Chip Select Line Output Low
EBIO_NANDOE NAND Flash Output Enable Output Low
EBIO_NANDWE NAND Flash Write Enable Output Low
SDRAM Controller
EBIO_SDCK SDRAM Clock Output
EBIO_SDCKE SDRAM Clock Enable Output High
EBIO_SDCS SDRAM Controller Chip Select Line Output Low
EBIO_BAO - EBIO_BA1 Bank Select Output
EBIO_SDWE SDRAM Write Enable Output Low
EBIO_RAS - EBIO_CAS Row and Column Signal Output Low
EBIO_NWRO - EBIO_NWR3 Write Signals Output Low
EBIO_NBSO - EBIO_NBS3 Byte Mask Signals Output Low
EBIO_SDA10 SDRAM Address 10 Line Output
170

6249D-ATARM-20-Dec-07

ATMEL

e A T91SAM9263 Preliminary

Table 20-2. EBI1 I/O Lines Description
Name Function Type Active Level
EBI
EBI1_DO - EBI1_D31 Data Bus I/O
EBI1_AO - EBI1_A22 Address Bus Output
EBI1_NWAIT External Wait Signal Input Low
smMC
EBI1_NCSO - EBI1_NCS2 Chip Select Lines Output Low
EBI1_NWRO - EBI1_NWR3 Write Signals Output Low
EBI1_NRD Read Signal Output Low
EBI1_NWE Write Enable Output Low
EBI1_NBSO - EBI1_NBS3 Byte Mask Signals Output Low
EBI for NAND Flash Support
EBI1_NANDCS NAND Flash Chip Select Line Output Low
EBI1_NANDOE NAND Flash Output Enable Output Low
EBI1_NANDWE NAND Flash Write Enable Output Low
SDRAM Controller
EBI1_SDCK SDRAM Clock Output
EBI1_SDCKE SDRAM Clock Enable Output High
EBI1_SDCS SDRAM Controller Chip Select Line Output Low
EBI1_BAO - EBI1_BA1 Bank Select Output
EBI1_SDWE SDRAM Write Enable Output Low
EBI1_RAS - EBI1_CAS Row and Column Signal Output Low
EBI1_NWRO - EBI1_NWR3 Write Signals Output Low
EBI1_NBSO - EBI1_NBS3 Byte Mask Signals Output Low
EBI1_SDA10 SDRAM Address 10 Line Output

6249D-ATARM-20-Dec-07

The connection of some signals through the MUX logic is not direct and depends on the Memory

Controller in use at the moment.

Table 20-3 on page 171 details the connections between the two Memory Controllers and the

EBI pins.
Table 20-3. EBIx Pins and Memory Controllers I/O Lines Connections"

EBIx Pins™" SDRAMC /O Lines SMC I/O Lines
EBIx_NWR1/NBS1/CFIOR NBS1 NWR1/NUB
EBIx_AO0/NBSO Not Supported SMC_AO/NLB
EBIx_A1/NBS2/NWR2 Not Supported SMC_A1
EBIx_A[11:2] SDRAMC_A[9:0] SMC_A[11:2]
EBIx_SDA10 SDRAMC_A10 Not Supported
EBIx_A12 Not Supported SMC_A12

ATMEL

171

e A T91SAM9263 Preliminary

Table 20-3. EBIx Pins and Memory Controllers I/O Lines Connections"

EBIx Pins(" SDRAMC I/O Lines SMC I/O Lines
EBIx_A[14:13] SDRAMC_A[12:11] SMC_A[14:13]
EBIx_A[22:15] Not Supported SMC_A[22:15]
EBIx_A[25:23]@ Not Supported SMC_A[25:23]
EBIx_D[31:0] D[31:0] D[31:0]

Note: 1. xindicates O or 1
2. Only for EBIO

A ||'|E|,® 172

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.3.1 Hardware Interface
Table 20-4 details the connections to be applied between the EBI pins and the external devices
for each Memory Controller.
Table 20-4. EBI Pins and External Static Devices Connections
Pins of the Interfaced Device
Signals: B'Bi;\ﬁgic 2Sxta?t-igit 16'[§’gvisct:tic 4SXt:t-i2It : gga(tsi-cbit 32'[5’2“80‘:‘“
EBIO_, EBI1_ Devices Devices Devices
Controller MC
DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 DO - D7 DO - D7
D8 - D15 - D8 - D15 D8 - D15 D8 - D15 D8 - 15 D8 - 15
D16 - D23 - - - D16 - D23 D16 - D23 D16 - D23
D24 - D31 - - - D24 - D31 D24 - D31 D24 - D31
AO/NBSO A0 - NLB - NLB® BEO®
A1/NWR2/NBS2 Al A0 AO WE® NLB® BE2®
A2 - A22 A[2:22] Al1:21] All:21] A[0:20] A[0:20] A[0:20]
A23 - A250) A[23:25] A[22:24] A[22:24] A[21:23] A[21:23] A[21:23]
NCSO0 Cs cS CS cs cs CS
NCS1/SDCS CS cs CS cs cs cSs
NCS2©) cS cs cSs cS cs cSs
NCS2/NANDCS™ CS cs CS cS cs CS
NCS3/NANDCS® cs cs cs cs cS cSs
NCS4/CFCS0® cs cs cSs cs cs cSs
NCS5/CFCS1®) CS cs CS cs cs CS
NRD/CFOE OE OE OE OE OE OE
NWRO/NWE WE WE® WE WE® WE WE
NWR1/NBS1 - WE® NUB WE® NUB® BE1®
NWR3/NBS3 - - - WE® NUB® BE3®)

Notes: 1. NWR1 enables upper byte writes. NWRO enables lower byte writes.

NWRXx enables corresponding byte x writes. (x = 0,1,2 or 3)

NBSO and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
EBIO signals only.

BEx: Byte x Enable (x =0,1,2 or 3).

EBI1 signals only.

No ok obd

AIMEL 173

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 20-5. EBI Pins and External Devices Connections

Pins of the Interfaced Device

. CompactFlash CompactFlash
Signals: SDRAM (EBIO only) True IDE Mode NAND Flash
EBIO_, EBI1_ (EBIO only)
Controller SDRAMC SMC
DO - D7 DO - D7 DO - D7 DO - D7 1/00-1/07
D8 - D15 D8 - D15 D8 - 15 D8 - 15 1/08-1/015®
D16 - D31 D16 - D31 - - -
AO/NBSO DQMO A0 A0 -
A1/NWR2/NBS2 DQM2 Al At -
A2 - A10 A[0:8] A[2:10] A[2:10] -
A1 A9 - - -
SDA10 A10 - - -
A12 - - - -
A13-A14 A[11:12] - - _
A15 - - - -
A16/BAO BAO - - -
A17/BA1 BA1 - - -
A18 - A20 - - - -
A21/NANDALE - - - ALE
A22/NANDCLE - REG REG CLE
A23 - A240 - - - -
A250) - CFRNW™ CFRNW() -
NCSO0 - - - -
NCS1/SDCS cs - - -
NCS26) - - - -
NCS2/NANDCS™ - - - -
NCS3/NANDCS® - - - CE®
NCS4/CFCS0® - CFcso CFcso -
NCS5/CFCS1® - CFCs1™ CFCs1™ -
NANDOE - - - OE
NANDWE - - - WE
NRD/CFOE - OE - -
NWRO/NWE/CFWE - WE WE -
NWR1/NBS1/CFIOR DQM1 IOR IOR -
NWR3/NBS3/CFIOW DQM3 oW oW -
CFCE1® - CEf1 CSso -
CFCE2® - CE2 Cs1 -

6249D-ATARM-20-Dec-07

ATMEL

174

e A T91SAM9263 Preliminary

Table 20-5. EBI Pins and External Devices Connections (Continued)
Pins of the Interfaced Device
CompactFlash

Signals: SDRAM C?én;gcg';:;s h True IpDE Mode NAND Flash
EBIO_, EBI1_ (EBIO only)
Controller SDRAMC SMC
SDCK CLK - - -
SDCKE CKE - - -
RAS RAS - - -
CAS CAS - - -
SDWE WE - - -
NWAIT®) - WAIT WAIT -
Pxx® - CD1 or CD2 CD1 or CD2 -
Pxx® - - - CE®
Pxx@ - - - RDY

Notes: 1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer between the EBI data bus and

the CompactFlash slot.
Any PIO line.
EBIO signals only

ok b

EBI1 signals only

CE connection depends on the NAND Flash.
For standard NAND Flash devices, it must be connected to any free PIO line.

For "CE don't care" NAND Flash devices, it can be either connected to NCS3/NANDCS or to any free PIO line.

o

I/08 - /015 pins used only for 16-bit NANDFlash device.

7. EBIO_NWAIT signal is multiplexed with PD5. EBI1_NWAIT signal is multiplexed with PE20.

6249D-ATARM-20-Dec-07

ATMEL

175

AT91SAM9263 Preliminary

20.3.2 Connection Examples
Figure 20-3 shows an example of connections between the EBI and external devices.

Figure 20-3. EBI Connections to Memory Devices

EBI
DO-D31
RAS| h
cas[T\ 2M x 8 2M x 8
SDCKL__ N SDRAM SDRAM
SDCKE| D007 | oo pe-D1s| oo
SDWE| N\
AO/NBSO N cs cs
NWR1/NBS1 N CLK CLK
A1/NWR2/NBS2 R\ poo AO-A9, A11] A2-A11,A13 prowd A0-A9, AT1| A2-A11,A13
NWR3/NBS3, N DWE] e A10 SOWE| e A0
NRD/NOE N\ RAS BAD RAS BAO
NWRO/NWE N\ cas BA1 [_AT7/BAT cas BA1 [_A17/BAT
——pawm ~5sT| P
N
SDA10 —\ K
A2-A15 N
A16/BA0[N
A17/BA1 \] /
A18-A25 N\ AN
N 2M x 8 2M x 8
D16-023 | o o7 SDRAM D24-D31 SDRAM
- D0-D7
NCS0
NCS1/SDC: cs cs
NCS CLK CLK
NGS3 CKE A0-A9, A11|AZATT A13 5wl CFE AO-A9, AT1
NCS4 WE A10 WE A10) A2-AT1,A13
NGS5 RAS BAO RAS BAO SDA10
A1 [ALZ/BA1 cAS BA1 A16/BAO
pam A17/BA1
NBS3
>
\ / 3
((/
128K x 8 128K x 8
SRAM SRAM
AT-A17 AT-A17
00-07 D0-D7 AO-A16 D8-D15 D0-D7 AO-A16
cs cs
NFDNOE | O o
AO/NWRO/NBSO NWR1/NBST
\

20.4 Product Dependencies

20.41 I/O Lines
The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If 1/O lines of the External Bus Interface are not used by the applica-
tion, they can be used for other purposes by the PIO Controller.

20.5 Functional Description
The EBI transfers data between the internal AHB Bus (handled by the Bus Matrix) and the exter-
nal memories or peripheral devices. It controls the waveforms and the parameters of the
external address, data and control buses and is composed of the following elements:
e the Static Memory Controller (SMC)
» the SDRAM Controller (SDRAMC)

AIMEL 176

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.5.1

20.5.2

20.5.3

20.5.4

20.5.5

20.5.6

6249D-ATARM-20-Dec-07

¢ the ECC Controller (ECC)

* a chip select assignment feature that assigns an AHB address space to the external devices
* a multiplex controller circuit that shares the pins between the different Memory Controllers

* programmable CompactFlash support logic (EBIO only)

* programmable NAND Flash support logic

Bus Multiplexing
The EBIO and EBI1 offers a complete set of control signals that share the 32-bit data lines, the
address lines of up to 26 bits and the control signals through a multiplex logic operating in func-
tion of the memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

Pull-up Control
The EBIO_CSA and EBI1_CSA registers in the Chip Configuration User Interface permit
enabling of on-chip pull-up resistors on the data bus lines not multiplexed with the PIO Controller
lines. The pull-up resistors are enabled after reset. Setting the EBIx_DBPUC bit disables the
pull-up resistors on the DO to D15 lines. Enabling the pull-up resistor on the D16-D31 lines can
be performed by programming the appropriate PIO controller.

Static Memory Controller
For information on the Static Memory Controller, refer to the Static Memory Controller section.

SDRAM Controller
For information on the SDRAM Controller, refer to the SDRAM section.

ECC Controller
For information on the ECC Controller, refer to the ECC section.

CompactFlash Support (EBIO only)
The External Bus Interface 0 integrates circuitry that interfaces to CompactFlash devices.

The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or
NCS5 address space. Programming the EBIO_CS4A and/or EBIO_CSS5A bit of the EBIO_CSA
Register in the Chip Configuration User Interface to the appropriate value enables this logic. For
details on this register, refer to the in the Bus Matrix Section. Access to an external Compact-
Flash device is then made by accessing the address space reserved to NCS4 and/or NCS5 (i.e.,
between 0x5000 0000 and Ox5FFF FFFF for NCS4 and between 0x6000 0000 and Ox6FFF
FFFF for NCS5).

All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are sup-
ported but the signals _10IS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are
not handled.

A mEIZ@ 177

e A T91SAM9263 Preliminary

20.5.6.1

I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode

Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish
I/O mode, common memory mode, attribute memory mode and True IDE mode.

The different modes are accessed through a specific memory mapping as illustrated on Figure
20-4. A[23:21] bits of the transfer address are used to select the desired mode as described in
Table 20-6 on page 178.

Figure 20-4. CompactFlash Memory Mapping

20.5.6.2

6249D-ATARM-20-Dec-07

A

True IDE Alternate Mode Space

Offset 0XO0EO 0000
True IDE Mode Space
Offset 0x00C0O 0000
CF Address Space I/0 Mode Space

Offset 0x0080 0000

Common Memory Mode Space
Offset 0x0040 0000

Attribute Memory Mode Space

v Offset 0x0000 0000

Note: The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE
mode).

Table 20-6. CompactFlash Mode Selection

A[23:21] Mode Base Address
000 Attribute Memory
010 Common Memory
100 1/0O Mode

110 True IDE Mode

111 Alternate True IDE Mode

CFCE1 and CFCEZ2 Signals

To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to
drive 8-bit memory devices on the corresponding NCS pin (NCS4 or NCS5). The Chip Select
Register (DBW field in the corresponding Chip Select Register) of the NCS4 and/or NCS5
address space must be set as shown in Table 20-7 to enable the required access type.

NBS1 and NBSO are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.

AIMEL 178

e A T91SAM9263 Preliminary

The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the Static Memory Controller section.

Table 20-7. CFCE1 and CFCE2 Truth Table

Mode CFCE2 CFCE1 DBW Comment SMC Access Mode
Attribute Memory NBSH1 NBSO 16 bits Access to Even Byte on D[7:0] Byte Select
A to E Byt D[7:0
NBS1 NBSO tebits | AccesstoBvenByteon DI7Z:01 | g ooy
Common Memory Access to Odd Byte on D[15:8]
1 0 8 bits Access to Odd Byte on D[7:0]
A to E Byt D[7:0
NBS1 NBSO 16bits | ccesstoBvenByteon D70l | g o0y
I/0O Mode Access to Odd Byte on D[15:8]
1 0 8 bits Access to Odd Byte on D[7:0]
True IDE Mode
) . Access to Even Byte on D[7:0]
Task File 1 0 8 bits
Access to Odd Byte on D[7:0]
)) Access to Even Byte on D[7:0]
Data Register 1 0 16 bits Byte Select
9 Access to Odd Byte on D[15:8] y
Alternate True IDE Mode
Control Register Don’t
1 A to E Byt D[7: Don’t
Alternate Status Read 0 Care ccess to Even Byte on D[7:0] on’t Care
Drive Address 0 1 8 bits Access to Odd Byte on D[7:0]
Standby Mode or
Address Space is not 1 1 - - -
assigned to CF

20.5.6.3 Read/Write Signals
In 1/0O mode and True IDE mode, the CompactFlash logic drives the read and write command
signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deac-
tivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are
driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure
20-5 on page 180 demonstrates a schematic representation of this logic.

Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.
For details on these signal waveforms, please refer to the section: Setup and Hold Cycles of the
Static Memory Controller section.

AIMEL 179

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 20-5. CompactFlash Read/Write Control Signals

External Bus Interface
SMC CompactFlash Logic
A23
1 —b'\ -
1—)° N
0—>, > » CFOE
1 —r/r > 1 » CFWE
A22 >
NRD_NOE >
NWRO_NWE »© » CFIOR
1—> » CFIOW
1Y
Table 20-8. CompactFlash Mode Selection
Mode Base Address CFOE CFWE CFIOR CFIOW
Attri M
ttribute Memory NRD NWRO_NWE 1 1
Common Memory
1/0 Mode 1 1 NRD NWRO_NWE
True IDE Mode 0 1 NRD NWRO_NWE

20.5.6.4 Multiplexing of CompactFlash Signals on EBI Pins

Table 20-9 on page 180 and Table 20-10 on page 181 illustrate the multiplexing of the Compact-
Flash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 20-9 are strictly
dedicated to the CompactFlash interface as soon as the EBIO_CS4A and/or EBIO_CS5A field of
the EBIO_CSA Register in the Chip Configuration User Interface is set. These pins must not be
used to drive any other memory devices.

The EBI pins in Table 20-10 on page 181 remain shared between all memory areas when the
corresponding CompactFlash interface is enabled (EBIO_CS4A = 1 and/or EBIO_CS5A = 1).

Table 20-9. Dedicated CompactFlash Interface Multiplexing

Pins CompactFlash Signals EBI Signals
CS4A =1 CS5A =1 CS4A=0 CS5A =0

NCS4/CFCS0 CFCS0 NCS4

NCS5/CFCS1 CFCS1 NCS5

6249D-ATARM-20-Dec-07

A ||'|E|%D 180

e A T91SAM9263 Preliminary

Table 20-10. Shared CompactFlash Interface Multiplexing

Access to CompactFlash Device Access to Other EBI Devices
Pins CompactFlash Signals EBI Signals
NRD/CFOE CFOE NRD
NWRO/NWE/CFWE CFWE NWRO/NWE
NWR1/NBS1/CFIOR CFIOR NWR1/NBS1
NWR3/NBS3/CFIOW CFIOW NWR3/NBS3
A25/CFRNW CFRNW A25

20.5.6.5 Application Example

Figure 20-6 on page 182 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direc-
tion and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCSO signal is identical to the NCS4 signal. Moreover, the CFRNW signal
remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT sig-
nal is connected to the NWAIT input of the Static Memory Controller. For details on these
waveforms and timings, refer to the Static Memory Controller Section.

A ||'|E|,® 181

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 20-6. CompactFlash Application Example

EBI CompactFlash Connector
D[15:0] |' D || D[15:0]
DIR /OE
A25/CFRNW !
NCS4/CFCS0 ﬁ
CD (PIO) ((-o1
(L N\ _CcD2
JOE
A[10:0] 'l> A[10:0]
A22/REG > _REG
NOE/CFOE ll> _OE
NWE/CFWE > _WE
NWR1/CFIOR > _IORD
NWR3/CFIOW > _IOWR
CFCE1 ll> _CET1
CFCE2 > _CE2
NWAIT <} _WAIT

20.5.7 NAND Flash Support

External Bus Interfaces 0 and 1 integrate circuitry that interfaces to NAND Flash devices.

20.5.7.1 External Bus Interface O

6249D-ATARM-20-Dec-07

The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the EBIO_CS3A field in the EBIO_CSA Register in the Chip Configuration User
Interface to the appropriate value enables the NAND Flash logic. For details on this register,
refer to the Bus Matrix Section. Access to an external NAND Flash device is then made by
accessing the address space reserved to NCS3 (i.e., between 0x4000 0000 and Ox4FFF FFFF).

The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. See Figure “NAND Flash
Signal Multiplexing on EBI Pins” on page 183 for more information. For details on these wave-
forms, refer to the Static Memory Controller section.

A ||'|E|,® 182

e A T91SAM9263 Preliminary

Figure 20-7. NAND Flash Signal Multiplexing on EBI Pins

SMC NAND Flash Logic
T NANDOE
NCSx > | > NANDOE
NRD >) J
ﬁ_\ NANDWE NANDWE
NWRO_NWE >]

20.5.7.2 External Bus Interface 1
The NAND Flash logic is driven by the Static Memory Controller on the NCS2 address space.
Programming the EBI1_CS2A field in the EBI1_CSA Register in the Chip Configuration User
Interface to the appropriate value enables the NAND Flash logic. For details on this register,
refer to the Bus Matrix Section. Access to an external NAND Flash device is then made by
accessing the address space reserved to NCS2 (i.e., between 0x9000 0000 and Ox9FFF FFFF).

The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS2 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS2 address space. See Figure 20-7 on page
183 for more information. For details on these waveforms, refer to the Static Memory Controller
section.

20.5.7.3 NAND Flash Signals
The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21 of the EBI address bus. The command, address or data
words on the data bus of the NAND Flash device are distinguished by using their address within
the NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B)
signals are connected to PIO lines. The CE signal then remains asserted even when NCSx is
not selected, preventing the device from returning to standby mode.

A ||'|E|%D 183

6249D-ATARM-20-Dec-07

Figure 20-8. NAND Flash Application Example

D[7:0
<] [7:0] P AD[7:0]
A[22:21
[] P ALE
» CLE
NCSx/NANDCS Not Connected
EBI
NAND Flash
NANDOE »| NOE
NANDWE »| NWE
P1O » CE

Note: The External Bus Interfaces 0 and 1 are also able to support 16-bit devices.

184 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.6 Implementation Examples
The following hardware configurations are given for illustration only. The user should refer to the
memory manufacturer web site to check current device availability.

20.6.1 16-bit SDRAM

20.6.1.1 Hardware Configuration

D[0..15]
Al0..14] Se—
U1
(Not used A12) Ao v ., o
A3 54 | A0 wrasrciemieaz PO [
Ad Al DQ1 D
25 | 5
AG A2 DQ2 b
D 26 |
A3 DQ3
A6 29 g D
A7 2] A4 DQ4 (—i—p¢
A5 DQ5
A8 31 11 D6
A6 DQ6 =
A9 32 | 13 D
A7 DQ7
A10 33 4 D
A8 DQ8
All 34 44 D
SDATO A9 DQ9 =515
SDA10 >=00 22 1 aq DQ10
A13 35 47 D
A1 DQ11 5
BAO Q12 HE—p
BAO ;jsm BAO DQ13 [~y
BA1 BA1 DQ14 [—F7E
ro

Al4 36 | aqo DQ15

w

V.
1 1 (03]
»—401 N c VDD [{ 4
SDCKE VoD)
SDCKE [_>>=2C= 371 cke voD -2] gi
vDDQ

SDCK SDCK CLK vDDQ -2 | G5
A0 NBSO voDQ 22 P
NEeT 151 pamL vDDQ 42 i c7

CFIOR_NBS1_NWR1 [>NBSL 39 { povn =

vss 22— =

o Fme—ios ves
RAS RAS VSS 5
VvsSQ
VSSQ

SDWE 7 46
SDWE WE vSsQ
SDCS_NCS1 Bj: cs vssQ 22—
256 Mbits =
TSOP54 PACKAGE

20.6.1.2 Software Configuration
The following configuration has to be performed:

* Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space.
¢ Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.
The Data Bus Width is to be programmed to 16 bits.

EBI1 SDCS, SDWE, SDCKE, SDA10, RAS and CAS signals are multiplexed with PIO lines and
thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller.

The SDRAM initialization sequence is described in the section “SDRAM Device Initialization” in
“SDRAM Controller (SDRAMC)”.

A ||'|E|,® 185

6249D-ATARM-20-Dec-07

ATMEL

20.6.2 32-bit SDRAM

20.6.2.1 Hardware Configuration

D[0..31]
Al..14] >
U1 U2
(Not used A12) o »a 5> D A o > D16
A 24| A% wmasrcremenz D0 [0 D Al 24| A9 wraszciemieaz DQO [D17
A o A1 pat H—p Y 241 At pat (4 bis
A2 DQ2 A2 DQ2
A 26 D A 26 9
A3 DQ3 A3 DQ3
Al 29 8 D Al 29 8 20
A4 DQ4 5 A4 DQ4
A 30 10 D A 30 10 D21
A5 DQ5 = A5 DQ5
Al 31 11D Al 31 11 D22
A6 DQ6 5 A6 DQ6
A 321 A7 pa7 HE—5 A 321 A7 pa7 (Ha D23
A10 33 42 D A10 33 42 24 /|
A8 DQ8 A8 DQ8
ATl 34| o DQo | 44D Al 34| o Qs |44 25 /]
SDATO 45 D10 SDAT0 45 D26
a3 SDA10 [>R 224 g0 DQ10 5 Al3 A10 DQ10 Do7
351 A1 pat1 H—¢ — A 38 ap patt [
48 D 48 28 /]
50 DQi2 48 —7 BAO 20 bat2 7o 25 /]
BAO Bﬁ BAO pQ13 [20—p BAT BAO pQ13 24 Dso
D BAT o] 30/
BA1 BA1 Q14 -i—7 BA1 Q14 5L Bt
DQ15 = DQ15
Ald 361 A1p CEY A S8, CER
N.C voD (1] C1 100NF %401\ c vop] C8 100NF
SDOKE VDD 314 C2 100NF SDOKE voD [44 Co 100NF
SDCKE CKE VDD N C3 100NF SDCKE a7 | e VDD N C10 100NF
SDoK vDDQ C4 100NF SDoK voba |2 §1—$ C11 100NF
sbck [>==0—38 {1k vDDQ j] N gg lggnﬁ =838 1ok vDDQ jq] g:g}ggmi
VDD! VDD
0 R 151 pamL Vhba |22 i C7 100NF AL W2 15 pou Vbba 22 i C14 100NF
CFIOR_NBS1_NWR{__>NBSL 39 f pov = CFIOW_NBS3 NWR{__SNBS3 39 | oy L
vss § vss §
_ _
CAS ens CAS vss T 2 vss
BAS g
RAS RAS vss RAS VsS
vssQ vssQ
vssQ vSsQ
_ _
SDWE SOWE 161 e vSSQ SDWE__16 | wg vssQ
S vssQ S vssQ
256 Mbits = 256 Mbits =
SDCS_NCS1 >

TSOP54 PACKAGE

20.6.2.2 Software Configuration
The following configuration has to be performed:

* Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space.
¢ |nitialize the SDRAM Controller depending on the SDRAM device and system bus frequency.

The Data Bus Width is to be programmed to 32 bits. The data lines D[16..31] are multiplexed
with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO
controller.

EBI1 SDCS, SDWE, SDCKE, SDA10, RAS and CAS signals are multiplexed with PIO lines and
thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller.

The SDRAM initialization sequence is described in the section “SDRAM Device Initialization” in
“SDRAM Controller (SDRAMC)”.

188 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.6.3 8-bit NANDFlash

20.6.3.1 Hardware Configuration

D[0..7] <>
U1 K9F2G08UOM

CLE 16 | o9 DO,

ALE VA by o1 [2—DL
NANDOE 8 | RE /o2 31 D2,
NANDWE 18 WE /03 u
ANY PIO 9 | == | 49 D4,

() CE 1104 D5
(o) 2 - 1/05 H
ANY PI0)< » R/B 1106 [F43——=2-
R1 10 o7 |44 D7,
3v. 19 1 wp
R2 10K NG 485
—Line N.C 46—
*—2- N.C N.C 48—
34 Ne N.C [FA2—
—4NCe N.C 32—
»—31NGe PRE —35—||I
x—8INc N.C 38—
111N N.C 38—
x—14 1\ c N.C [F2B—
EETH Bips NG 27— 3V3
x—201 N.C
211 NC Yol
*—22 N.C VCe co
x—231 N.C
e 25 | “8 VSS 36 T T100NF
261 NC vss Hi—e-a
> Gb _|_100NF
TSOP48 PACKAGE

20.6.3.2 Software Configuration
The following configuration has to be performed:

* Assign the EBI CS3 to the NANDFlash by setting the bit EBI_CS3A in the EBI Chip Select
Assignment Register located in the bus matrix memory space

¢ Reserve A21 / A22 for ALE / CLE functions. Address and Command Latches are controlled
respectively by setting to 1 the address bit A21 and A22 during accesses.

* EBI1 NANDOE and NANDWE signals are multiplexed with PIO lines and thus the dedicated
PIOs must be programmed in peripheral mode in the PIO controller.

* Configure a PIO line as an input to manage the Ready/Busy signal.

* Configure Static Memory Controller CS3 Setup, Pulse, Cycle and Mode accordingly to
NANDFlash timings, the data bus width and the system bus frequency.

A ||'|E|,® 187

6249D-ATARM-20-Dec-07

20.6.4 16-bit NANDFlash

20.6.4.1 Hardware Configuration

D[0..15] <_>

U1 MT29F2G16AABWP-ET

16
CLE CLE 1100 D1

ALE 171 ALE 1101
NANDOE 8 RE /o2 |30 D2,

NANDWE 18 WE /03 | 30 D3,

(ANY PIO) 2 CE 1104 40
105 |42 D5,

_ D6

(ANY PI0)< » 7 { r/B 1106 |FA4—=2-
Bl 10 o yo7 [H48—B%

3V 19 /08 | 27 Do,
R2 10K /09 _29%

/1010 —SJT
/1011 JSW
/1012 —‘uTs
11013 J“?’W
11014 F4—==

1/1015

[47 D15
NC 32—
il ==

VCC
VCC

48 c2
VSS
ves 52 T T100NF

VSS €1

2 G b ___1 OONF
TSOP48 PACKAGE)

i

F

=
3

L

20.6.4.2 Software Configuration
The software configuration is the same as for an 8-bit NANDFlash except the data bus width
programmed in the mode register of the Static Memory Controller.

188 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.6.5 NOR Flash on NCSO

20.6.5.1 Hardware Configuration

DI[0..15] <>
U1
Al o DO
Sl oo 22—t
NAS__ 23], D2 33— D2/
o224 3 pQ3 [F5—2%
AS 21 f a4 DQa |28—D4.
& 20 {45 DQs [F40—35~
AL 191 pe DQs [H42—35
A8 18 | 5 DQ7 | 44 D7,
N Das [-30—p8~
A0 7 19 Qg |-32—D9,
A1 6 fa10 pQio |-34—D10
NA2 5 15,3 pQ11 (36— B1t
AS 41012 pQ12 (32—D12
ANE S T (A DQ13 |F41—D13
NALS 2 194y DQ14 43— Did/
A6 1115 DQ15 |-45—D18.
N A17 48 A6
A18 17 A17
A19 16 | A4g aTa9BVE416
A20 15 A19
\A21 10 A20 3v3
A22 9
A21 T
veea 4L
NRST }f RESET
NWE WE
14 1 wp vee 3L c2
3vao—e—13 | ypp 1 Lioonr
NCSO0 26 | GE - o=
NRD 28 1 O vss |46
vss 2L
C1
100NF

TSOP48 PACKAGE =

20.6.5.2 Software Configuration
The default configuration for the Static Memory Controller, byte select mode, 16-bit data bus,
Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory at slow clock.

For another configuration, configure the Static Memory Controller CSO Setup, Pulse, Cycle and
Mode depending on Flash timings and system bus frequency.

A ||'|E|%D 189

6249D-ATARM-20-Dec-07

ATMEL

20.6.6 Compact Flash

20.6.6.1 Hardware Configuration

D[0..15] < MEMORY & I/O MODE
3va
MN1A J1 Q
D A2 AS CF_D15 CE D15 39 38 1 C1
D14 Al 13; 12; A6 CF_D14 CE D14 30 B}i vee 1 100NF
D B2 |1g3 1as B2 CEDI3 i) 291 p13 vec Ha—e o 2
D B1 Bg __ CF Di2 CED12__og 1 100NF
184 1A4 = = D12
D C2 | 4g5 1p5 [-G5—CEDI CED 221 pyq
D10 C1 Ccs___CF D10 CF D10__49 50
1B6 1A6 = = D10 GND
D! D2 D5 CF_D! CF_D: 48 1
5 D2+ 457 1a7 FRA—F05 SF D 481 b9 GND
1B8 1A8 CE D 5 D8 —
== D7 =
ha 108 Grpe—o0°
10E <F D3 D5
74ALVCH32245 CF D > Bg
MN1B CF_D: 23 1 by
D7 E2 E5 o] CF D 22
D6 Eom1 om FEE— SF D02 D!
DE Elioee on2 -EE— Do
b E2qo83 2a3FE— cp2
5 tose oa i —rxp SbT—22- cD2#
2B5 2A5 v =———26 1 cp1#
D Gl {585 2p6 [FG6 D: sys
D Hp | 288 6 Hs __CFD Q CE A0 g
DO H1 287 2ATIMg P Do CFAS 49| A0
8 8 CF A 1] A9
A25/CFRNW[> H3 {55 CF_A 12 2?
H4 v CF_A6 14,
CFCSX > 4 208 wnea R R2 CFAS 45 A%
MN2B 74ALVCHB32245 g\7un voan 47K 47K CF_Ad 15 Ai
(CFCS0 or CFCS1) SN74ALVC32 CF A 17 %
1 CD2 CF_A! 18
(ANY PIO)<_} a (CEAT 19|42
\ ° cD1 CF A0 20 ':(1)
CARD DETECT .
RE 44
MN1C REG#
A[0..10] D— A0 Y ovvummenn I WE
T 81 3a1 381 L2 o8 wE# CsEL# 32—
3A2 3B2 Bawr——2 oE#
IOWR 35 |
E K513a3 3B3 2 o IOWR# INPACK# 43—
IORD 34|
A5 E3as 3ma [IORD#
A5 N DAl ! CE2 BVD2 48—
5 CE2 3o |
v Lo 3A6 3B6 [o o] CE2# BVD1 [46—x
A3 3A7 g7 M2 =T CE1#
= ME 1 3a8 3B8
—24 wp
3V30 131 5piR vso# (40—
OE AT a—
14 308 WAITE WAIT# vst# Fa3—x
RESET 41 | | a7 RDY/BSY
K[m.gcmzms RESET RESET RDYV/BSY RDY/BSY
A2 A DT CF_A2 N7E50-7516VY-20
AT Mot aa1 481 M —37
20 N an2 42 CE A
Ea4ns 483 FE2——=teek
A22/REG e 4A4 4B4 _EI—WE
CFWE BStaas aps H2—7FF
CFOE 46 4B6 OWR
CFIOW 16147 4B7
T5 T IORD
CFIOR 4A8 4B8
T3
4DIR
T4 40
74ALVCH32245
) MN3A
SN74ALVC125
CFCE2[> 2 a CE2
1 MN3B
SN74ALVC125
CFCE1 > 5 6 CE1
p! o
—v\l\r\msc
SN74ALVC125
(ANY PIO) CFRST 9 8 RESET
< [
MN3D R3
SN74ALVC125 10K
(ANY PI0) < }-CFIRQ 11 12 RDY/BSYA A ~__oava

MN4
3veo—avce 1

R4
10K

NWAIT <] 4 2 WATE s\ ~03V3

Ay

ND
SN74LVC1G125-Q1

190 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.6.6.2 Software Configuration
The following configuration has to be performed:

¢ Assign the EBI CS4 and/or EBI_CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the
bit EBI_CS4A or/and EBI_CS5A in the EBI Chip Select Assignment Register located in the
bus matrix memory space.

* The address line A23 is to select I/O (A23=1) or Memory mode (A23=0) and the address line
A22 for REG function.

* A23, CFRNW, CFS0, CFCS1, CFCE1 and CFCEZ2 signals are multiplexed with PIO lines and
thus the dedicated PIOs must be programmed in peripheral mode in the P1O controller.

¢ Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and
CARD DETECT functions respectively.

¢ Configure SMC CS4 and/or SMC_CSS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode
accordingly to Compact Flash timings and system bus frequency.

A ||'|E|,® 191

6249D-ATARM-20-Dec-07

20.6.7 Compact Flash True IDE

20.6.7.1 Hardware Configuration

D0..15] < Swmmmm— TRUE IDE MODE
3v3
MN1A J1 o
D15 A2 A5 D15 CF_D15 31 38 3 C1
D14 a1 1BY 1M Tae D14 CF D14 39| D1® vee 17 Joone
D B2 {13 1a3 B2 D13 CED 29 { py3 vee Ha—e— ¢ $2
D B1 B6 D12 CF D 28 | 100NF
: B e Sepi—2H o
D10 c1 | 185 S Cca D10 CF D10__49 50
186 1A6 5 D10 GND
) D2 1457 a7 (25 D CEDS 43 1pg GND H
D8 D1 D6 D CF_D8 47
1B8 1A8 CF D7 5108 =
= D7 -
A3 1DIR C:,)E 5 D6
aq | 128 CF_D5 2
10E F o 4 os
74ALVCH32245 CF D! > Bg
MN1B CF_D: 23 1 by
gz E2 1 o81 oa1 BB g; g 22 { py
El o8> op2 |-EG D0 211,
D5 E2 E5
Da E2283 2a3 BB cp2
b3 Floms 2a4pEE o2 coa#
321285 2A5 |G 26 cpi#
D2 a1 Ga 3v3
2B6 2A6
D1 Ho HS Q 8
2B7 287 | A10
Do H1 H6 10
2B8 2A8 10 A
A25/CFRNW, H3 12| A8
— i ey
CFeSx[—> 4 2% | ynea R R2 15| A
MN2B 74ALVCH32245 47KQ & 47K 1] A5
(CFCSO0 or CFCS1) SN74ALVC32 v
SN74ALVC32 17 {3
/ 1 CD2 CF_A2 18 105
3 CF AT 19
(ANY PI0)y<_} (> cp1 CF A0 oo | A
CARD DETECT A0
A[0..10] > MN1C 3V REG#
L0 Bysa1 gp1 2 i WE# CSEL# —33—||I
3A2 3B2 ' |—"— ATA SEL#
IOWR 35 |
A8 K5 13a3 3m3 K2 IOWR IOWR# INPACK# |F43—x
& KSiaaa ame K1 10RD IORD#
A2 Ho3as 3ms 2 CE2 DASP# 48—
5 CE2 3|
~ 3A6 3B6 o] cst# PDIAG# [F48—x
M5 1307 gp7 M2 ~=—— 7 {cso#
A3 M6 M1
3A8 3B8
. i —24 |oi1s16#
3DIR vs2# [F40—x
OE ORDY 42 |
141 308 IORDY IORDY vsi# 33X
Zﬁm.s/cmzms RESET# 41 | pecrre INTRQ 82— INTRQ
3 % z
ﬁ? mg 1 2; :g; Nh 21 g;ﬁf N7E50-7516VY-20
A0 5 | A B [CF_A0
A22/REG PG| 57 4ng | BL__ PEG
CFWE B5 | 4a5 45 B2 WE
CFOE B6 1 4n6 4B6 OF
CFIO T6 TOWR
FIOW 1o 4A7 487 ORD
CFIOR 4p8 4Bg F2—T—
T3
4DIR
T4 408
74ALVCH32245
1 MN3A
SN74ALVC125
CFCE2[> 2 3 CE2
1 MN3B
SN74ALVC125
CFCE1 > 5 6 CE1
p o
MN3C
:l SN74ALVC125
(ANY PIO) CFRST 9 8 RESET#
p (2]
MN3D R3
SN74ALVC125 10K
(ANY PIO)<__}-CFIRQ 11 12 INTRQ A\ ~ ~__cav3

MN4
3v3o—3Vvce 1 R4
10K
NWAIT <} 4 2 IORDY A ~—03V3

/X

ND
SN74LVC1G125-Q1

192 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

20.6.7.2 Software Configuration
The following configuration has to be performed:

¢ Assign the EBI CS4 and/or EBI_CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the
bit EBI_CS4A or/and EBI_CS5A in the EBI Chip Select Assignment Register located in the
bus matrix memory space.

* The address line A21 is to select Alternate True IDE (A21=1) or True IDE (A21=0) modes.

* CFRNW, CFS0, CFCS1, CFCE1 and CFCEZ2 signals are multiplexed with PIO lines and thus
the dedicated PIOs must be programmed in peripheral mode in the PIO controller.

* Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and
CARD DETECT functions respectively.

* Configure SMC CS4 and/or SMC_CSS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode
accordingly to Compact Flash timings and system bus frequency.

A ||'|E|%D 193

6249D-ATARM-20-Dec-07

ATMEL

194 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21. Static Memory Controller (SMC)

21.1 Description

The Static Memory Controller (SMC) generates the signals that control the access to the exter-
nal memory devices or peripheral devices. It has 8 Chip Selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, 16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write

signal waveforms are fully parametrizable.

The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from user-
programmed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.

21.2 1/0 Lines Description

Table 21-1. 1/O Line Description

Name Description Type Active Level
NCS[7:0] Static Memory Controller Chip Select Lines Output Low
NRD Read Signal Output Low
NWRO/NWE Write 0/Write Enable Signal Output Low
AO0/NBSO Address Bit 0/Byte 0 Select Signal Output Low
NWR1/NBS1 Write 1/Byte 1 Select Signal Output Low
A1/NWR2/NBS2 Address Bit 1/Write 2/Byte 2 Select Signal Output Low
NWR3/NBS3 Write 3/Byte 3 Select Signal Output Low
A[25:2] Address Bus Output

D[31:0] Data Bus I/0

NWAIT External Wait Signal Input Low

21.3 Multiplexed Signals

Table 21-2. Static Memory Controller (SMC) Multiplexed Signals

Multiplexed Signals Related Function
NWRO NWE Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page 197
A0 NBSO 8-bit or 16-/32-bit data bus, see “Data Bus Width” on page 197
NWR1 NBS1 Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 197
Al NWR2 NBS2 g-;:ee-xll'?tgroe;zt;zéiaetlzguasé::ss, IZt"f:}:aa“g;tsev\\/l\llcrjittz oornBF;/?S eS;I\Z:.t Access” on page 197
NWR3 NBS3 Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 197

6249D-ATARM-20-Dec-07

ATMEL

195

21.4 Application Example

2141

Figure 21-1.

Hardware Interface

DO0-D31

ATMEL

SMC Connections to Static Memory Devices

N/

AONBSO
AR N\ 128K x 8 128K x 8
NWR1/NBS1 frmi 00- D7 SRAM D8-D15 SRAM
ANWRZNBS2 [———— D0-D7 D0-D7
NWRS/NBS3 ———
cs cs
A0-Ate [A2-A18 A0 - A6 |A2:-A18
NCS0 NRD
NCS1 OF e
NCS2 NWRONWE |\e NwWE1INBST | e
NCS3 Y
NCS4
NCS5 N\
NCS6 /
NCS7
[|
128K x 8 128K x 8
A2 A2S D16 - D23 SRAM D24-D31 SRAM
—\ D0-D7 D0-D7
cS Ccs
A2-A18
AO-A16ﬂ< AO-AwH
NRD
L OE OE
. AUNWR2NBS2 | |\ o Nwf/NBSS ||, o
Static Memory
Controller
\ / /

21.5 Product Dependencies

21.5.1

196

I/0 Lines

The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO
lines. The programmer must first program the PIO controller to assign the Static Memory Con-
troller pins to their peripheral function. If I/O Lines of the SMC are not used by the application,
they can be used for other putposes by the PIO Controller.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.6 External Memory Mapping

The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64 Mbytes of memory.

If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 21-1).

A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.

Figure 21-2. Memory Connections for Eight External Devices

N - NCS[7
CS[0] - NCS[7] NCS7 M Memory Enable
NRD NCS6 [. -
Memory Enable
SMC NWE NCS5 I
o Memory Enable
5:
NCS4 I Memory Enable
D[31:0] NCS3 | Memory Enable
NCS2 I Memory Enable [
NCS1 IMemory Enable —
NCSO0
Memory Enable [
Output Enable —
Write Enable —
A[25:0] —
8 or16 or 32 D[31:0] or D[15:0] or}—
D[7:0]

21.7 Connection to External Devices

21.7.1 Data Bus Width

A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is con-
trolled by the field DBW in SMC_MODE (Mode Register) for the corresponding chip select.

Figure 21-3 shows how to connect a 512K x 8-bit memory on NCS2. Figure 21-4 shows how to
connect a 512K x 16-bit memory on NCS2. Figure 21-5 shows two 16-bit memories connected
as a single 32-bit memory

21.7.2 Byte Write or Byte Select Access

6249D-ATARM-20-Dec-07

Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the BAT field of the
SMC_MODE register for the corresponding chip select.

A ||'|E|,® 197

Figure 21-3. Memory Connection for an 8-bit Data Bus

D[7:0] D[7:0]
A[18:2] A[18:2]
A0 A0
SMC Al Al
NWE Write Enable
NRD Qutput Enable
NCS[2] Memory Enable

Figure 21-4. Memory Connection for a 16-bit Data Bus

D[15:0] D[15:0]
A[19:2] A[18:1]
A1 A[0]
SMC NBSO Low Byte Enable

NBS1 High Byte Enable
NWE Write Enable
NRD Output Enable

NCSI[2] Memory Enable

Figure 21-5. Memory Connection for a 32-bit Data Bus

D[31:16] D[31:16]
D[15:0] D[15:0]
A[20:2] A[18:0]
SMC NBSO Byte 0 Enable
NBS1 Byte 1 Enable
NBS2 Byte 2 Enable
NBS3 Byte 3 Enable
NWE Write Enable
NRD Output Enable
NCS|2] Memory Enable

198 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.7.2.1 Byte Write Access
Byte write access supports one byte write signal per byte of the data bus and a single read
signal.

Note that the SMC does not allow boot in Byte Write Access mode.
* For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.
Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.
* For 32-bit devices: NWRO, NWR1, NWR2 and NWR3, are the write signals of byteO (lower

byte), byte1, byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided.

Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory.

Byte Write option is illustrated on Figure 21-6.

21.7.2.2 Byte Select Access
In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.

* For 16-bit devices: the SMC provides NBS0O and NBS1 selection signals for respectively
byteO (lower byte) and byte1 (upper byte) of a 16-bit bus.
Byte Select Access is used to connect one 16-bit device.

* For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower

byte), byte1, byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to
connect two 16-bit devices.

Figure 21-7 shows how to connect two 16-bit devices on a 32-bit data bus in Byte Select Access
mode, on NCS3 (BAT = Byte Select Access).

A ||'|E|%D 199

6249D-ATARM-20-Dec-07

ATMEL

Figure 21-6. Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option

21.7.2.3

200

D[7:0] D[7:0]
D[15:8] |—
A[24:2] A[23:1]
SMC A1 Al0]
NWRO Write Enable
NWR1
NRD Read Enable
NCSI3] Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
Memory Enable

Signal Multiplexing

Depending on the BAT, only the write signals or the byte select signals are used. To save 10s at
the external bus interface, control signals at the SMC interface are multiplexed. Table 21-3
shows signal multiplexing depending on the data bus width and the byte access type.

For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused.

When Byte Select Option is selected, NWR1 to NWRS3 are unused. When Byte Write option is
selected, NBSO to NBS3 are unused.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 21-7. Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option)

D[15:0] D[15:0]
D[31:16] |—
A[25:2] A[23:0]
NWE Write Enable
NBSO Low Byte Enable
NBS1 High Byte Enable
SMC NBS2
NBS3
NRD Read Enable
NCS[3] Memory Enable
D[31:16]
A[23:0]
Write Enable
Low Byte Enable
High Byte Enable
Read Enable
L__| Memory Enable

Table 21-3. SMC Multiplexed Signal Translation

Signal Name 32-bit Bus 16-bit Bus 8-bit Bus
Device Type 1x32-bit 2x16-bit 4 x 8-bit 1x16-bit 2 x 8-bit 1 x 8-bit
Byte Access Type (BAT) Byte Select Byte Select Byte Write Byte Select Byte Write

NBSO_AO0 NBSO NBSO NBSO A0
NWE_NWRO0 NWE NWE NWRO0 NWE NWRO NWE
NBS1_NWR1 NBS1 NBS1 NWR1 NBS1 NWR1

NBS2_NWR2_A1 NBS2 NBS2 NWR2 A1l Al A1l
NBS3_NWR3 NBS3 NBS3 NWR3

21.8 Standard Read and Write Protocols

In the following sections, the byte access type is not considered. Byte select lines (NBSO to
NBS3) always have the same timing as the A address bus. NWE represents either the NWE sig-
nal in byte select access type or one of the byte write lines (NWRO0 to NWR3) in byte write
access type. NWRO to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..7] chip select lines.

A ||'|E|,® 201

6249D-ATARM-20-Dec-07

ATMEL

21.8.1 Read Waveforms
The read cycle is shown on Figure 21-8.

The read cycle starts with the address setting on the memory address bus, i.e.:
{A[25:2], A1, A0} for 8-bit devices
{A[25:2], A1} for 16-bit devices
A[25:2] for 32-bit devices.

Figure 21-8. Standard Read Cycle

MCK ! |
|
| | | | | | |
! | | | | 1 |
| | | | | | |
) | T T T t
A[25:2] | | | | 1 X
! : I T T t +
' ' ' ' ' l l
| | | | |
NBSO,NBST, | T T T T T
NBS2,NBS3, :.K I ! ! ! : : >C
AO, Al | : | | | | |
| | | | | | |
T T | | t t
| |
NRD : : ?\\ ! : | |
| | | | | |
| | | | | |
| | I +
NCS I 1N\ I I ! :
| t t
:				
D[31:0] ' ; ' {	\ I I			
I) W £ I I				
NRD_SETUP | ' - |
' I |

NRD_PULSE | NRD_HOLD
. 1
I
|
|
|

|
|
NCS_RD_HOLD

NCS_RD_PULSE

NRD_CYCLE

I
I
I
I
I
NCS_RD_SETUP
I
I
I
I

21.8.1.1 NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD

falling edge;

2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD
rising edge;

3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD
rising edge.

22 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.8.1.2 NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:
1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

21.8.1.3 Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD
=NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define
the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time
and NCS hold time as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

21.8.1.4 Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 21-9).

A ||'|E|%D 203

6249D-ATARM-20-Dec-07

ATMEL

Figure 21-9. No Setup, No Hold On NRD and NCS Read Signals

21.8.1.5

21.8.2

21.8.2.1

204

|
|
|

A[25:2] 3(><

)
|
|

NBSO,NBS1,

NBS2,NBS3, 3(|><
|
|
|
|
I
|
|
|
|
|
|
|

A0, A1

|
|
I
D[31:0] . . .
| | | :
| NRD_PULSE | NRD_PULSE NRD_PULSE |
| | | |
| | | :
I I I
| NCS_RD_PULSE | NCS_RD_PULSE | NCS_RD_PULSE |
I 1 | |
| | | :
| | |
i NRD_CYCLE | NRD_CYCLE 1 NRD_CYCLE !
| d |
| 1 1 1
| 1 | 1
| | | |
| | |
I
Null Pulse

Read Mode

PR e T e O s O e O O
|
|
|

NRD _i’\
I
NCS '—E\

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD tim-
ings to know which signal rises first. The READ_MODE parameter in the SMC_MODE register
of the corresponding chip select indicates which signal of NRD and NCS controls the read
operation.

Read is Controlled by NRD (READ_MODE = 1):

Figure 21-10 shows the waveforms of a read operation of a typical asynchronous RAM. The
read data is available tp,cc after the falling edge of NRD, and turns to ‘Z’ after the rising edge of
NRD. In this case, the READ_MODE must be set to 1 (read is controlled by NRD), to indicate
that data is available with the rising edge of NRD. The SMC samples the read data internally on
the rising edge of Master Clock that generates the rising edge of NRD, whatever the pro-
grammed waveform of NCS may be.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 21-10. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

oo 1
I
|
A[25:2] '
I

NBSO,NBST,
NBS2,NBS3,
A0, A1

[
Tt

I
I
I
I
NRD :
I
I
NCS : N\

D[31:0]

Data Sampling

21.8.22 Read is Controlled by NCS (READ_MODE = 0)
Figure 21-11 shows the typical read cycle of an LCD module. The read data is valid tpscc after
the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data must be
sampled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is controlled
by NCS): the SMC internally samples the data on the rising edge of Master Clock that generates
the rising edge of NCS, whatever the programmed waveform of NRD may be.

Figure 21-11. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS

i T
|
|
|

NBSO,NBST, }<
NBS2,NBS3,

|

:

|

A[25:2] >{I |
|

: !
|

|

|

|

|

|
|
|
I
|
|
|
I
A0, A1 | :
| |
| T
NRD ! '\ ! |
| ' ' l l
| | |
t | + +
NCS ! i :\ '/\ | |
| | | | | |
| ! | tPAcc\) 4 | |
D[31:0] ; ; ; T L
.
| | |
1 ' 1 | !

Data Sampling

A ||'|E|%D 205

6249D-ATARM-20-Dec-07

ATMEL

21.8.3 Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 21-12. The write cycle
starts with the address setting on the memory address bus.

21.8.3.1 NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge;
2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge;
3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.
The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWRO to NWRS3.

21.8.3.2 NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read opera-
tions, but are separately defined:

1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.

2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;

3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.

Figure 21-12. Write Cycle

oo T
|
|
|

NBSO, NBST, ><
NBS2, NBS3,

|
|
|
A0, A1 |
|

|
|
|
I
NWE |
|
|
|

N\

0 i A |y N NN NS NN N —

|
I
|
_SE NWE_PULSE | NWE_HOLD
T
! | : .
NCS_WR_SETUP NCS_WR_PULSE | NCS_WR_ 10LD
——. < T > >,
| NWE CYCLE ' |

200 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.8.3.3 Write Cycle

The write_cycle time is defined as the total duration of the write cycle, that is, from the time
where address is set on the address bus to the point where address may change. The total write
cycle time is equal to:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD
= NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

All NWE and NCS (write) timings are defined separately for each chip select as an integer num-
ber of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

21.8.3.4 Null Delay Setup and Hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 21-13). How-
ever, for devices that perform write operations on the rising edge of NWE or NCS, such as
SRAM, either a setup or a hold must be programmed.

Figure 21-13. Null Setup and Hold Values of NCS and NWE in Write Cycle

NBSO,
NBS2,
A0, A1

NWR2, NWR3

21.8.3.5 Null Pulse

6249D-ATARM-20-Dec-07

|
|
|
|
NWRO,NWRT |\ .
I
|
|
|
|

oo [LT L LT L LT
|
|

|
Al25:2] }(:>< i)& | >C
% X X

NWE, !

|
| |
D[31:0] — ! X
‘<, !

NWE_PULSE NWE_PULSE

NWE_PULSE

NCS_WR_PULSE

NCS_WR_PULSE

NWE_CYCLE NWE_CYCLE NWE_CYCLE

|
|
|
I
| NCS_WR_PULSE
|
|
|
I
|
1

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.

A ||'|E|,® 207

ATMEL

21.8.4 Write Mode
The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indi-
cates which signal controls the write operation.

21.8.4.1 Write is Controlled by NWE (WRITE_MODE = 1):
Figure 21-14 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is
put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are
turned out after the NWE_SETUP time, and until the end of the write cycle, regardless of the
programmed waveform on NCS.

Figure 21-14. WRITE_MODE = 1. The write operation is controlled by NWE

MCK ! |
I
I

A[25:2] X
|
|
|
NBSO, NBS1, 3(
NBS2, NBS3,

N\

A0, A1 :
|
NWE, : | |
NWRO, NWR1, | | |
NWR2, NWR3 | | |
| | |
| X
! 1\ | |
NCS | | ; ; :
| ! | | |
D[31:0] ! - - { ~ . -

21.84.2 Write is Controlled by NCS (WRITE_MODE = 0)
Figure 21-15 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is
put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are
turned out after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of
the programmed waveform on NWE.

200 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 21-15. WRITE_MODE = 0. The write operation is controlled by NCS

vox | L1 | [I
I
I
I
|
I

A[25:2]

NBSO, NBS1,

NBS2, NBS3,)4

A0, A1 '
NWE, '

NWRO0, NWR1, | \
|

NWR2, NWR3

NCS

/

D[31:0] —_— ' —

21.8.5 Coding Timing Parameters
All timing parameters are defined for one chip select and are grouped together in one
SMC_REGISTER according to their type.

The SMC_SETUP register groups the definition of all setup parameters:
* nrd_setup, ncs_rd_setup, nwe_setup, ncs_wr_setup

The SMC_PULSE register groups the definition of all pulse parameters:
* NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE
The SMC_CYCLE register groups the definition of all cycle parameters:
* NRD_CYCLE, NWE_CYCLE

Table 21-4 shows how the timing parameters are coded and their permitted range.

Table 21-4. Coding and Range of Timing Parameters

Permitted Range
Coded Value Number of Bits Effective Value Coded Value Effective Value
setup [5:0] 6 128 x setup[5] + setup[4:0] 0<<3 128 < < 128+31
pulse [6:0] 7 256 x pulse[6] + pulse[5:0] 0<<63 256 < < 256+63
256 < < 256+127
cycle [8:0] 9 256 x cycle[8:7] + cycle[6:0] 0<<127 512 <<512+127
768 << 768+127

A ||'|E|%D 209

6249D-ATARM-20-Dec-07

ATMEL

21.8.6 Reset Values of Timing Parameters
Table 21-5 gives the default value of timing parameters at reset.

Table 21-5. Reset Values of Timing Parameters

Register Reset Value

SMC_SETUP 0x01010101 All setup timings are set to 1

SMC_PULSE 0x01010101 All pulse timings are set to 1

SMC_CYCLE 0x00030003 'Fl;?oiir::(cj)::?](\)/\I/(;itsygieration last 3 Master Clock cycles and
WRITE_MODE 1 Write is controlled with NWE

READ_MODE 1 Read is controlled with NRD

21.8.7 Usage Restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpre-
dictable behavior of the SMC.

For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to pro-
gram non-null values so as to cover possible skews between address, NCS and NRD signals.

For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE =
1 only. See “Early Read Wait State” on page 211.

For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD sig-
nals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.

21.9 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.

21.9.1 Chip Select Wait States

The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.

During chip select wait state, all control lines are turned inactive: NBSO to NBS3, NWRO to
NWR3, NCSJ[0..7], NRD lines are all set to 1.

Figure 21-16 illustrates a chip select wait state between access on Chip Select 0 and Chip
Select 2.

210 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 21-16. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2

o [|
’ X X N
X X

NBSO, NBS1,
NBS2, NBS3,
AOQ,A1 |

NRD !

~ ! ! !

NWE

NCSO0

NRD_CYCLE

D[31:0] 4< >

NCS2

N

| _ NWE _CYCLE
|

‘ C —
, .

|

P

Read to Writg Chip Select
Wait State | Wait State

|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|

21.9.2 Early Read Wait State
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is
valid:

¢ if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 21-17).

* in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS
signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure
21-18). The write operation must end with a NCS rising edge. Without an Early Read Wait
State, the write operation could not complete properly.

* in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD =
0), the feedback of the write control signal is used to control address, data, chip select and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 21-19.

A ||'|E|,® 211

6249D-ATARM-20-Dec-07

ATMEL

Figure 21-17. Early Read Wait State: Write with No Hold Followed by Read with No Setup

1
wok | L1 | I L[1 L
1 : 1 ! I 1
1 | 1 1 I 1
! | : : :
|
A[25:2] D{ : :>< X : :>
1 | 1 ! | 1
1 | 1 : I 1
NBSO, NBS1, J 1 T T T
NBS2, NBS3, \ | :><).’< f : >
A0, A1 1 | 1 ! I 1
1 | 1 ! | 1
1 . Y !
NWE | | I i |
1 | ! I
1 | : : :
1 I
NRD 1 1 I;T.. | 1
1 : l 1 ! 1
1 no hold ! ' \ !
1
1 1 1 no setup 1
! 1
1 1
1 1 ! 1
1 1 ! 1
1 1 ! 1
e 2l e >!
: write cycle : Early Read read cycle :
' I wait state' !

Figure 21-18. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup

1
MCK | | | | | | | | '
1 : 1 ! I 1
1 | 1 ! I 1
1 | 1 : I 1
T T T
AR52] X ! 54):(| 3
[} I 1 1
1 : 1 ! I 1
S0, NBST ' ' : ' '
NBSO, s | T T T
NBS2, NBS3, ! :><).’(! Q
A0,A1 . : i i | .
1 | 1 ! I 1
T 1 : !
NCS 1 I ! !
1 | | 1
1 | 1 | 1
1 ; 1 |
NRD 1 o 1 4 1
1 ' 1 ! | 1
: no hold : . no setup :
! 1
: 1 ! 1
1 1 ! 1
1 1 ! 1
> Pl b >
! : ! ' read cycle !
1 write cycle 1 Early Read Y)

" (WRITE_MODE = 0) ' wait state ' (READ_MODE = 0 or READ_MODE = 1)

22 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 21-19. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with One Set-up Cycle

MCK

Ty

NBSO, NBST,
NBS2, NBS3,
A0, A1 :

internal write controlling signal

|

I

|

A[25:2] >{I :
)
I

|

]

|

|

]

|

|

external write controlling signal

| |
| |
| |
(NWE) l | i I
1 | | |
1 | I | |
! nohold | || read setup'= 1 |
NRD ! ! I — !
1 U |
| | . V4
1 I |
1

CEEEE CEEy

I

I

}

1
> "
: d cycle
write cycle ! Early Read rea
(WRlTE MODE = 1) I wait state ! (READ_MODE =0or READ_MqDE = 1)

»
P

3
/

-——m----

21.9.3 Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.

21.9.3.1 User Procedure
To insert a Reload Configuration Wait State, the SMC detects a write access to any
SMC_MODE register of the user interface. If the user only modifies timing registers
(SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the user interface, he must validate
the modification by writing the SMC_MODE, even if no change was made on the mode
parameters.

21.9.3.2 Slow Clock Mode Transition
A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see “Slow Clock Mode” on page 225).

A ||'|E|,® 213

6249D-ATARM-20-Dec-07

ATMEL

21.94 Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 21-16 on page 211.

214 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.10 Data Float Wait States

21.10.1 READ_MODE

6249D-ATARM-20-Dec-07

Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:

* before starting a read access to a different external memory

* before starting a write access to the same device or to a different external one.
The Data Float Output Time (tpg) for each external memory device is programmed in the
TDF_CYCLES field of the SMC_MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long tye will not slow down the execution of a program from internal
memory.

The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the SMC_MODE register for the corresponding chip select.

Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turn-
ing off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 21-20 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 21-21 shows the read oper-
ation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.

A ||'|E|,® 215

2)

I ()

AIMEL

Figure 21-20. TDF Period in NRD Controlled Read Access (TDF
MCK

::-::- B

-1 R ¥
Illnrlk-lllllll — ok~ "A -0 7T I
I
o 3
Q ©
& — &
< X
3]
° 3
IIIIIIIIIIIII O |— — _—— - =&
O ™
Il 1]
c c
8| o — 5| S
= ® F| ®
= — g 5
IIIIIIIIIIIIIIIIIIIIIIIIIIII \ A m (sp] - —— -4 -—--Y a
o I o
o o
©
8 | o
°
3 ks
o o
= =]
c c
8 3
[m)] n
[is o
P4 P4

|
X
=X

) o ! 5 X ¥ Zg Q9 8 e
S 0 0 T Q = o 5 00 T Q 2
Q [lajyin} =z z 2} = al m o z z ™
< z=z @ < zz a

oo I ool

n v DN <

omo i)

z2z< z2z<

Figure 21-21. TDF Period in NCS Controlled Read Operation (TDF

6249D-ATARM-20-Dec-07

Inlhelg'a |

AT91SAM9263 Prel

216

e A T91SAM9263 Preliminary

21.10.2 TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the
SMC takes advantage of the setup period of the next access to optimize the number of wait
states cycle to insert.

Figure 21-22 shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:

NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).

Figure 21-22. TDF Optimization: No TDF Wait States Inserted if the TDF Period is Over When the Next Access Begins

=S I I

NWE

NCSO0

(@]
[

TDF_CYCLES £ 6

~ : : : . ; >
Dat0) K YINDID IV NI VI < —
. . ' . . 1 | 1 1 |
read access on NCSO (NRD controlled) Read to Write write access on NCS0 (NWE controlled)
Wait State

21.10.3 TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that
the data float period is ended when the second access begins. If the hold period of the read1
controlling signal overlaps the data float period, no additional tdf wait states will be inserted.

Figure 21-23, Figure 21-24 and Figure 21-25 illustrate the cases:
¢ read access followed by a read access on another chip select,
* read access followed by a write access on another chip select,

¢ read access followed by a write access on the same chip select,
with no TDF optimization.

A ||'|E|,® 217

6249D-ATARM-20-Dec-07

ATMEL

Figure 21-23. TDF Optimization Disabled (TDF Mode = 0). TDF Wait States Between 2 Read Accesses on Different Chip

Selects
oo [LT LT LTl L rererert
| | I : E l l I I l I
| | | 1 | | | | | |
Azs2 : : ™ : : : : X
T T T T T
NBSO0, NBS1, i E | : i : | | : i :
NBS2, NBS3 | | .>< }< ! ! ! ! i |><
A0, A1 : : | ; 1 | | 1 1 1 1
read1 controlling signal ' ! : : I I I I I I ;
(LN N : 1 o
e e
d2 lling signal ; L . . ; .
read2 contro mg(?\ll%ng) ! i‘t ! TIE)F?CYCLES:G N i i‘;
| 1 X
DEIOL T DI IIIIIIIIIIIIIIIIIINININY : ~_
1 1 I 1 1
: : i 5 TDF WAIT STATES : :
e N B ple 1
read1 cycle : : read 2 cycle
TDF_CYCLES =6 ! TDF_MODE =0

) . (optimization disabled)
Chip Select Wait State

Figure 21-24. TDF Mode = 0: TDF Wait States Between a Read and a Write Access on Different Chip Selects

oo | L L LI LML L e reroert

1 | | | I 1 | 1 | | 1

1 | | 1 | 1 | 1 | | 1

1 I | 1 | 1 | 1 | | 1

Al25:2] N : ! X X i | | X

| | | | ! | | i | | i

1 | | 1 | 1 | 1 | | 1

NBSO, NBS1, 1 t + + L : . + -
NBS2, NBS3, __ X ! ! X X : : : X

A0, A1 1 | | 1 I 1 | 1 l | 1

i X 1 1 | 1 [1 | 1 | | 1

read1 controlling signal | : : 1 I 1 I L I

| I I 1 I I 1

(NRD) ' AN Aead1 hold = 1 | I | write2 setup = 1 I]

1 | 1 | | 1

e S R R R s G

write2 controlling signal : : T : t T T T T | 1

(NWE) : L TDR_CYCLES =4 ! _ : : N\ ! 1/

1 ;‘ : | i - 1 | | 1

1 | 1 : | 1 | | 1

1 | 1 1 1 | | 1

D[31:0] 1 \ I 4] 1
R) 353333 HII), . \ | —

1 1 1

: : | 1 1 1

1 1 | 1 | 1

I 1 | 1 1 1

- » : 1 >t =

read1 cycle ! | | 2 TDF WAIT STATE write2 cycle
TDF_CYCLES =4 > TDF_MODE =0
Read to Write Chip Select (optimization disabled)

Wait State ~ Wait State

218 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 21-25. TDF Mode = 0: TDF Wait States Between Read and Write Accesses on the Same Chip Select

NBSO, NBST1,
NBS2, NBS3,
A0, A1

I
read1 controlling signal :
(NRD) ! N\ / 1
! | read1 hold = 1
I

write2 controlling signal

SRR I e e O e s I e 0 o N
: . |
I ! |
! T
|

XX

X

1

DTN I N N I R -
| _

rite2 setup
-

|

(NWE)

oo >>>):>>>>}>>>>>i>>>>>§>>>>>)—*

21.11 External Wait

21.11.1 Restriction

6249D-ATARM-20-Dec-07

1
I
1
t
1
1

-z-1-

W
1
1
1
I
1
1
1
1
1

H

A
- V- - =

|
I
I
|
IA
[
I

i 4 TDF WAJT STATES |
: read1 cycle R ;::
TDF_CYCLES =5 ! .
Read to Write write2 cycle
Wait State TDF_MODE =0

(optimization disabled)

Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be
set to either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00”
(disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT
signal delays the read or write operation in regards to the read or write controlling signal,
depending on the read and write modes of the corresponding chip select.

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be
used in Page Mode (“Asynchronous Page Mode” on page 228), or in Slow Clock Mode
(“Slow Clock Mode” on page 225).

The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.

A ||'|E|,® 219

ATMEL

21.11.2 Frozen Mode
When the external device asserts the NWAIT signal (active low), and after internal synchroniza-
tion of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 21-
26. This mode must be selected when the external device uses the NWAIT signal to delay the
access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
21-27.

Figure 21-26. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

MCK

|
A[25:2] <

NBSO, NBST, <
NBS2, NBSS,
AO0,A1

4 3 2

NWE

\ 6 4 3 2

NCS

D[31:0]

—

AN

NWAIT

! | | |
! | | I
! | | I
! I I]
! I I I
| ! ! !
! | | |
! | | I
! | | |
T | [I
| | | |
T 1 1 T
! | | |
! | | I
! | | I
! | | I
| 1 1 I
! 1 1 I
| 1 | L
! | | I
| 1 1 I
! 1 1 |
] . . L
! 1 1 I
! 1 1 I
! 1 1 I
| T T T

1 1 |
! t t t
| 1 1 I
! 1 1 I
! 1 1 I

T 1 I
! 1 1 |
! 1 T T
! 1 1 I
: I I I

I I I
| ’ : 1

internally synchronized
NWAIT signal

| |
| |
| |
l L
| |
| |
| |
| |
| |
| |
| |
| |
\ FROZEN STATE
| |
1 I 1 I
| |
| |
1 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| T
| |
I |
| |
| |
| |
| |
| |

Write cycle

|
|
!
!
|
!
|
|
|
!
!
!
|
|
|
1
!
!
!
|
|
|
1
!
!
!
|
|
|
1
r
!
|
!
|
|
!
!
!
|
!
|
|

-

EXNW_MODE = 10 (Frozen)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE =5
NCS_WR_PULSE =7

220 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

iminary

Figure 21-27. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

Eesssssssssssssssssssssseeeeeeeesss AT91SAM9263 Prel

221

AN AN\
---{---F-1----r----1----—-1f----"-"------ A
o o
[N o I~
o [s)
[B IR I DD PSR ERNDEDERERER. _ =
Q
- ~ S
=%
& o
[[[P SN U S U S E—— N
4 ow
E./ _Hm
2|« °J
= 0 ©
» I
NRNDRN DU RN NN N0 IR PN N A [0} Wy
i - (o
N Q| Q0o
o o 2=
m Y 0 5| =A
T Z<
[} > w
\\1\1\\\\\\\\5ﬂ \\\\\\\\\\\\\\\\ | W
{IL
a Te]
o) o
< -
NN v
= e 1) o [T
[aV) - M = ©
5 (X)) (6] i c
& oo P z g S
< zZz z i
o =
DN < <
nmg =
ZZ< =4

internally synchronized

Assertion is ignored

3

6

5, NCS_RD_HOLD

2, NRD_HOLD

NCS_RD_PULSE

NRD_PULSE

L ______________(G]

AIMEL

6249D-ATARM-20-Dec-07

ATMEL

21.11.3 Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In
the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 21-28 and Figure 21-29. After
deassertion, the access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Fig-
ure 21-29.

Figure 21-28. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

internally synchronized

222

MCK !

-

|
|
azs:2] K

|
1
|]
| l
NBSO0, NBS1, t . T t
NBS2, NBS3, :(I ! ! ! ! ! | | ! >
A0,A1 | I I I I I I L : |
| I | | | | | Wait STATE \ |
| ! | | | 1 | 1
1 | | | 1 1 | | | 1
| | 4 | 3 | 2 | 1 | 0 | 0 0 | \ 1
|4‘\ | | 1 1 1 | T +
I
NWE | | | | | | | v |
| I I | | | | |
5 ! 4 3 ! 2 ! 1 ! 1 1 0 |
|

NCS i\ °

D[31:0]

NWAIT

NWAIT signal

Write cycle

EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE =5
NCS_WR_PULSE =7

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

iminary

= 11)

EXNW_MODE

223

|
|
|
f
|
|
|
'
|
!
|

'Wait STATE

Read cycle

Eesssssssssssssssssssssseeeeeeeesss AT91SAM9263 Prel

Figure 21-29. NWAIT Assertion in Read Access: Ready Mode (

Assertion is ignored

)

NCS_controlled

7

= 11(Ready mode)
0(
7

NCS_RD_PULSE

READ_MODE

NRD_PULSE

EXNW_MODE

L ______________(G]

AIMEL

MCK !_|
;<
<

NBSO0, NBS1,
NBS2, NBS3,
AO,A1
NWAIT
NWAIT signal

internally synchronized

Assertion is ignored

6249D-ATARM-20-Dec-07

ATMEL

21.11.4 NWAIT Latency and Read/write Timings
There may be a latency between the assertion of the read/write controlling signal and the asser-
tion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Fig-
ure 21-30.

When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:

minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 21-30. NWAIT Latency

MCK | 1 | | [| | ! |
| ! | | | 1 | | !]
| T T T T T T |

Al25:2] :< ! I I | ! ! : ! :>
T T T T T T
| | I I | | | : ! :
| : I I | | | | I |
| t+ + t
NBSO, NBST, : | | | | | ' | '
NBS2, NBS3, < : ' ; ; ; ! ; :>
AO,A1 | : : : WAIT STATE | !
| | I I < T o I
R R, am—
NRD 3 | i i - I
A | minimal piise length | - !
: | | |
. | .
NWAIT : | /
| |
|

»)
>

intenally synchronized
NWAIT signal

2 cycle resynchronizatibn

N

|

|

|

|

|

|

| Read cycle
| |
|

|

|

I

|

|

A

EXNW_MODE < 10 or 11
READ_MODE =1 (NRD_coptrolled)
I I I
NRD_PULSE =5 :

————_—_ v b - - — - — —

A

I
|
I
I
I
|
I
|
I
I
I
I
|
|

NW'AIT latency
T
I
|
I
I
I
I
I
|
|
|
|
|

224 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.12 Slow Clock Mode

The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because MCK has
been turned to a very slow clock rate (typically 32kHz clock rate). In this mode, the user-pro-
grammed waveforms are ignored and the slow clock mode waveforms are applied. This mode is
provided so as to avoid reprogramming the User Interface with appropriate waveforms at very
slow clock rate. When activated, the slow mode is active on all chip selects.

21.121

Slow Clock Mode Waveforms

Figure 21-31 illustrates the read and write operations in slow clock mode. They are valid on all
chip selects. Table 21-6 indicates the value of read and write parameters in slow clock mode.

Figure 21-31. Read/write Cycles in Slow Clock Mode

o 1
|
|

A[25:2]

NBSO, NBST,
NBS2, NBS3,
AO,A1

6249D-ATARM-20-Dec-07

NWE_CYCLE =3

MCK !

NBSO, NBS1,
NBS2, NBS3,

AO,A1 !

NRD_CYCLE =2 ,

SLOW CLOCK MODE WRITE ' SLOW CLOCK MODE READ
Table 21-6. Read and Write Timing Parameters in Slow Clock Mode
Read Parameters Duration (cycles) Write Parameters Duration (cycles)
NRD_SETUP 1 NWE_SETUP 1
NRD_PULSE 1 NWE_PULSE 1

NCS_RD_SETUP

NCS_WR_SETUP

NCS_RD_PULSE

NCS_WR_PULSE

NRD_CYCLE

0
2
2

NWE_CYCLE

W | W | o

ATMEL

225

ATMEL

21.12.2 Switching from (to) Slow Clock Mode to (from) Normal Mode
When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters.See Figure 21-32 on
page 226. The external device may not be fast enough to support such timings.

Figure 21-33 illustrates the recommended procedure to properly switch from one mode to the
other.

Figure 21-32. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Slow Clock Mode |
internal signal from PMC

e | L[L1 L Uy yyyUyUyL
|
|

e
o

Lt

! .
A[25:2] Ik | I o
| ! | | I
NBSO, NBS1, 1 t 1 T T T T T T
NBS2, NBS3, -x ! i ! DC{X L N I
I 1 I I I I I
A0,A1 : ! : : o : [T T
NWE | L \ I ——{
N i | |\ o |’ [B
_E—'_I,/ ! |\—/ 1 : | | | 1 |
1 : | : | [T o o [
| | [R (I e T T A
1 01 1 a1 1,1 p) 3 b
e e e > < NPLILI e 121 g b !
| | 1 I | 1 1 | | | | | | 1
. ! : 1 .)))))) 1
NCS 1 . [1
1 1
1\ ! oo\ y
! ! v '
NWE_CYCLE =3 1 : : NWE_CYCLE =7
- plst > - >
1
SLOW CLOCK MODE WRITE SLOW CLOCK MODE V\}RITE NORMAL MODE WRITE
1
b
! 1
[
This write cycle finishes with the slow clock mode set Slow clock mode transition is detected:
of parameters after the clock rate transition Reload Configuration Wait State

226 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 21-33. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode

Slow Clock Mode
internal signal from PMC |

MCK

A[25:2]

|
|
-
NBSO, NBS1, jx

NBS2, NBS3,

AO,A1
NWE \ /

| 1

NCS 1\ ! [I
1 : + :/

IDLE STATE NORMAL MODE WRITE 1

»

<
<

Reload Configuration
Wait State

A ||'|E|,® 227

6249D-ATARM-20-Dec-07

ATMEL

21.13 Asynchronous Page Mode

The SMC supports asynchronous burst reads in page mode, providing that the page mode is
enabled in the SMC_MODE register (PMEN field). The page size must be configured in the
SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 21-7.

With page mode memory devices, the first access to one page (t,,) takes longer than the subse-
quent accesses to the page (t,,) as shown in Figure 21-34. When in page mode, the SMC
enables the user to define different read timings for the first access within one page, and next
accesses within the page.

Table 21-7. Page Address and Data Address within a Page

Page Size Page Address(Data Address in the Page®
4 bytes A[25:2] A[1:0]
8 bytes A[25:3] A[2:0]
16 bytes A[25:4] A[3:0]
32 bytes A[25:5] A[4:0]

Notes: 1. A denotes the address bus of the memory device.
2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.

21.13.1 Protocol and Timings in Page Mode
Figure 21-34 shows the NRD and NCS timings in page mode access.

Figure 21-34. Page Mode Read Protocol (Address MSB and LSB are defined in Table 21-7)

w1 L L1 L L L L |

A[MSB]

|
D X
s X X X X
N
A

NRD

NCS tpa

D[31:0]

LKL 2 XX 2) XXKS

NCS_RD_PULSE NRD_PULSE

|l pla »
>

NRD_PULSE

- »
>

The NRD and NCS signals are held low during all read transfers, whatever the programmed val-
ues of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS

228 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

timings are identical. The pulse length of the first access to the page is defined with the
NCS_RD_PULSE field of the SMC_PULSE register. The pulse length of subsequent accesses
within the page are defined using the NRD_PULSE parameter.

In page mode, the programming of the read timings is described in Table 21-8:

Table 21-8. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE X’ No impact

NCS_RD_SETUP X’ No impact

NCS_RD_PULSE toa Access time of first access to the page
NRD_SETUP X No impact

NRD_PULSE tsa Access time of subsequent accesses in the page
NRD_CYCLE X No impact

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE
timings as page access timing (t,,) and the NRD_PULSE for accesses to the page (1), even if
the programmed value for t,, is shorter than the programmed value for tg,.

21.13.2 Byte Access Type in Page Mode
The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page
mode devices that require byte selection signals, configure the BAT field of the
SMC_REGISTER to 0 (byte select access type).

21.13.3 Page Mode Restriction
The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.

21.13.4 Sequential and Non-sequential Accesses
If the chip select and the MSB of addresses as defined in Table 21-7 are identical, then the cur-
rent access lies in the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (t,,). Figure 21-35 illustrates access to an 8-bit memory device in
page mode, with 8-byte pages. Access to D1 causes a page access with a long access time
(toa)- Accesses to D3 and D7, though they are not sequential accesses, only require a short
access time (tg,).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequen-
tial accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.

A ||'|E|,® 229

6249D-ATARM-20-Dec-07

ATMEL

Figure 21-35. Access to Non-sequential Data within the Same Page

wx | L L1 L1 | [I
I
I
I
I
I

|
|
|
A[25:3] >< Pz%ge address |
! |
|
Al2], A1, A 3(At P3¢ A3 4 A7 i >C
|
I
|
|
|
|
|
|
|
|
|

S & Y YXXL o7

|
|
NRD_PULSE | NRD_PULSE
> <
|

LKL D1

|

|

|

|

|

| NCS_RD_PULSE
.‘

—

230 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.14 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 21-9. For each chip select, a set of 4 registers is used to pro-
gram the parameters of the external device connected on it. In Table 21-9, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the SMC_MODE registers.

Table 21-9. SMC Register Mapping

Offset Register Name Access Reset State
0x10 x CS_number + 0x00 SMC Setup Register SMC_SETUP Read/Write 0x01010101
0x10 x CS_number + 0x04 SMC Pulse Register SMC_PULSE Read/Write 0x01010101
0x10 x CS_number + 0x08 SMC Cycle Register SMC_CYCLE Read/Write 0x00030003
0x10 x CS_number + 0x0C SMC Mode Register SMC_MODE Read/Write 0x10001000

A ||'|E|,® 231

6249D-ATARM-20-Dec-07

21.14.1 SMC Setup Register

Register Name: SMC_SETUP[0 ..7]

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - [- [NCS_RD_SETUP
23 22 21 20 19 18 17 16

| - [- [NRD_SETUP |
15 14 13 12 11 10 9 8

| - [- | NCS_WR_SETUP |
7 6 5 4 3 2 1 0

| - | - | NWE_SETUP

e NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:

NWE setup length = (128" NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles

e NCS_WR_SETUP: NCS Setup Length in WRITE Access

In write access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles
e NRD_SETUP: NRD Setup Length

The NRD signal setup length is defined in clock cycles as:

NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

e NCS_RD_SETUP: NCS Setup Length in READ Access

In read access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

222 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.14.2 SMC Pulse Register

Register Name: SMC_PULSE[0..7]

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | NCS_RD_PULSE |
23 22 21 20 19 18 17 16

| - | NRD_PULSE |
15 14 13 12 11 10 9 8

| - | NCS_WR_PULSE |
7 6 5 4 3 2 1 0

| - | NWE_PULSE |

e NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles

The NWE pulse length must be at least 1 clock cycle.

* NCS_WR_PULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

e NRD_PULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:
NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.
e NCS_RD_PULSE: NCS Puilse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.

In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

A ||'|E|%D 233

6249D-ATARM-20-Dec-07

21.14.3 SMC Cycle Register
Register Name: SMC_CYCLE[0..7]

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - [- [- _ - - - NRD_CYCLE |
23 22 21 20 19 18 17 16

| NRD_CYCLE |
15 14 13 12 11 10 9 8

| - - - _ - - - NWE_CYCLE |
7 6 5 4 3 2 1 0

| NWE_CYCLE |

e NWE_CYCLE: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

e NRD_CYCLE: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

232 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

21.14.4 SMC MODE Register
Register Name:

SMC_MODEJ0..7]

—

: The read operation is controlled by the NRD signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.

o

: The read operation is controlled by the NCS signal.

— If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
— If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

—

WRITE_MODE
: The write operation is controlled by the NWE signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.

o

: The write operation is controlled by the NCS signal.

— If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

e EXNW_MODE: NWAIT Mode

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - [- [PS [- - - PMEN |
23 22 21 20 19 18 17 16

[- [- [- TDF_MODE | TDF_CYCLES |
15 14 13 12 11 10 9 8

I - I - I DBW I - - I - [BAT |
7 6 5 4 3 2 1 0

| - [- [EXNW_MODE [- - | WRITE_MODE | READ_MODE |

e READ_MODE:

The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-
grammed for the read and write controlling signal.

EXNW_MODE NWAIT Mode
0 0 Disabled
0 1 Reserved
1 0 Frozen Mode

1

1

Ready Mode

* Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.

* Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.

* Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.

6249D-ATARM-20-Dec-07

ATMEL

235

ATMEL

e BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.
* 1: Byte write access type:
— Write operation is controlled using NCS, NWRO, NWR1, NWR2, NWR3.
— Read operation is controlled using NCS and NRD.
* 0: Byte select access type:
— Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2 and NBS3
— Read operation is controlled using NCS, NRD, NBSO, NBS1, NBS2 and NBS3

 DBW: Data Bus Width

DBW Data Bus Width
0 0 8-bit bus
0 1 16-bit bus
1 0 32-bit bus
1 1 Reserved

e TDF_CYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.

* TDF_MODE: TDF Optimization
1: TDF optimization is enabled.

— The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.

— The number of TDF wait states is inserted before the next access begins.
¢ PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.
0: Standard read is applied.

¢ PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.

PS Page Size
0 0 4-byte page
0 1 8-byte page
1 0 16-byte page
1 1 32-byte page

236 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22. SDRAM Controller (SDRAMC)

22.1

22.2

Description

The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from
2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), half-word
(16-bit) and word (32-bit) accesses.

The SDRAM Controller supports a read or write burst length of one location. It keeps track of the
active row in each bank, thus maximizing SDRAM performance, e.g., the application may be
placed in one bank and data in the other banks. So as to optimize performance, it is advisable to
avoid accessing different rows in the same bank.

The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access
depending on the frequency.

The different modes available - self-refresh, power-down and deep power-down modes - mini-
mize power consumption on the SDRAM device.

I/O Lines Description

6249D-ATARM-20-Dec-07

Table 22-1. 1/O Line Description

Name Description Type Active Level
SDCK SDRAM Clock Output

SDCKE SDRAM Clock Enable Output High
SDCS SDRAM Controller Chip Select Output Low
BA[1:0] Bank Select Signals Output

RAS Row Signal Output Low
CAS Column Signal Output Low
SDWE SDRAM Write Enable Output Low
NBS[3:0] Data Mask Enable Signals Output Low
SDRAMC_A[12:0] Address Bus Output

D[31:0] Data Bus I/O

237

ATMEL

ATMEL

22.3 Application Example

22.3.1 Software Interface
The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller
allows mapping different memory types according to the values set in the SDRAMC configura-
tion register.

The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 22-2 to Table 22-7 illustrate the SDRAM device memory mapping seen by the
user in correlation with the device structure. Various configurations are illustrated.

22.3.2 32-bit Memory Data Bus Width

Table 22-2. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 | 26 | 25 | 24 | 23 22‘21 20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10 9‘8‘7‘6‘5‘4‘3‘2 1‘0
Bk[1:0] Row[10:0] Column[7:0] M[1:0]

Bk[1:0] ‘ Row[10:0] ‘ Column([8:0] M[1:0]

BK[1:0] ‘ Row[10:0] ‘ Column[9:0] M[1:0]

Bk[1:0] ‘ Row[10:0] ‘ Column[10:0] M[1:0]

Table 22-3. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 | 26 | 25 | 24 | 23 ‘ 22 | 21 ‘ 20 ‘ 19 ‘ 18 ‘ 17 ‘ 16 ‘ 15 ‘ 14 ‘ 13 ‘ 12 ‘ 11 ‘ 10 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 1 ‘ 0
Bk[1:0] Row[11:0] Column[7:0] M[1:0]

Bk[1:0] ‘ Row[11:0] ‘ Column([8:0] M[1:0]

Bk[1:0] ‘ Row[11:0] ‘ Column([9:0] M[1:0]

Bk[1:0] ‘ Row[11:0] ‘ Column[10:0] M[1:0]

Table 22-4. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns

CPU Address Line

27 | 26 | 25 24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10 9‘8‘7‘6‘5‘4‘3‘2 1‘0
Bk[1:0] Row[12:0] Column(7:0] M[1:0]

BKk[1:0] ‘ Row[12:0] ‘ Column[8:0] M[1:0]

Bk[1:0] ‘ Row[12:0] ‘ Column([9:0] M[1:0]
BK[1:0] ‘ Row[12:0] ‘ Column([10:0] M[1:0]

Notes: 1. M[1:0] is the byte address inside a 32-bit word.
2. Bk[1] = BA1, Bk[0] = BAO.

238 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.3.3 16-bit Memory Data Bus Width
Table 22-5. SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line
27 | 26 | 25 | 24 | 23 | 22 21‘20 19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7‘6‘5‘4‘3‘2‘1 0
BK[1:0] Row[10:0] Column[7:0] MO
BK[1:0] ‘ Row[10:0] ‘ Column([8:0] MO
Bk[1:0] ‘ Row([10:0] ‘ Column[9:0] MO
BK[1:0] ‘ Row[10:0] ‘ Column[10:0] MO
Table 22-6. SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
27 | 26 | 25 | 24 | 23 22‘21 20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7‘6‘5‘4‘3‘2‘1 0
Bk[1:0] Row[11:0] Column([7:0] MO
BK[1:0] ‘ Row[11:0] ‘ Column[8:0] MO
BK[1:0] ‘ Row[11:0] ‘ Column[9:0] MO
BK[1:0] ‘ Row[11:0] Column[10:0] MO
Table 22-7. SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
27 | 26 | 25 | 24 23‘22 21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 8‘7‘6‘5‘4‘3‘2‘1 0
BK[1:0] Row[12:0] Column[7:0] MO
BK[1:0] ‘ Row[12:0] Column([8:0] MO
BK[1:0] ‘ Row[12:0] ‘ Column[9:0] MO
BK[1:0] ‘ Row[12:0] ‘ Column[10:0] MO
Notes: 1. MO is the byte address inside a 16-bit half-word.
2. Bk{1] = BA1, Bk[0] = BAO.
239

6249D-ATARM-20-Dec-07

ATMEL

ATMEL

22.4 Product Dependencies

2241 SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:

1. SDRAM features must be set in the configuration register: asynchronous timings (TRC,
TRAS, etc.), number of columns, rows, CAS latency, and the data bus width.

2. For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength
(DS) and partial array self refresh (PASR) must be set in the Low Power Register.

3. The SDRAM memory type must be set in the Memory Device Register.
4. A minimum pause of 200 ps is provided to precede any signal toggle.

5. (WA NOP command is issued to the SDRAM devices. The application must set Mode to
1 in the Mode Register and perform a write access to any SDRAM address.

6. An All Banks Precharge command is issued to the SDRAM devices. The application
must set Mode to 2 in the Mode Register and perform a write access to any SDRAM
address.

7. Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in
the Mode Register and perform a write access to any SDRAM location eight times.

8. A Mode Register set (MRS) cycle is issued to program the parameters of the SDRAM
devices, in particular CAS latency and burst length. The application must set Mode to 3
in the Mode Register and perform a write access to the SDRAM. The write address
must be chosen so that BA[1:0] are set to 0. For example, with a 16-bit 128 MB SDRAM
(12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should be done
at the address 0x20000000.

9. For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle is
issued to program the SDRAM parameters (TCSR, PASR, DS). The application must
set Mode to 5 in the Mode Register and perform a write access to the SDRAM. The
write address must be chosen so that BA[1] or BA[0] are set to 1. For example, with a
16-bit 128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write
access should be done at the address 0x20800000 or 0x20400000.

10. The application must go into Normal Mode, setting Mode to 0 in the Mode Register and
performing a write access at any location in the SDRAM.

11. Write the refresh rate into the count field in the SDRAMC Refresh Timer register.
(Refresh rate = delay between refresh cycles). The SDRAM device requires a refresh
every 15.625 ps or 7.81 ps. With a 100 MHz frequency, the Refresh Timer Counter
Register must be set with the value 1562(15.652 ps x 100 MHz) or 781(7.81 ps x 100
MHz).

After initialization, the SDRAM devices are fully functional.

Note: 1. ltis strongly recommended to respect the instructions stated in Step 5 of the initialization pro-
cess in order to be certain that the subsequent commands issued by the SDRAMC will be
taken into account.

240 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

Figure 22-1.

SDCKE

SDCK

|

|

| |

SDRAM Device Initialization Sequence

AT91SAM9263 Preliminary

\ | top
\ \

SDRAMC_A[9:0]

A10

£

i

)

SDRAMC_A[12:11]

'
T

L ! AN

|

VARS

SDCS

T

W

RAS

|

CAS

SDWE

NBS

I
|
|
I
t
}
I
\
I
|
I
\
|
I
\
t
Il
\
[
t
[
I

I
|
|
I
t
}
I
\
I
|
I
\
|
I
\
t
Il
\
[
t
[
I

I
|
|
I
T
}
I
\
I
|
I
\
|
I
\
T
Il
\
[
T
[
I

.
t
!
I
f

[[
T T

/
4

T
I
[
I
|
|
\
|
/ I\
\
t
Il
\
I
I
[
T

f
I
I
I

Inputs Stable for
200 psec

22.4.2

2243

I/0 Lines

Interrupt

Precharge All Banks

1st Auto-refresh

8th Auto-refresh

MRS Command

T

Valid Command

The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they

can be used for other purposes by the PIO Controller.

The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Control-
ler. This interrupt may be ORed with other System Peripheral interrupt lines and is finally
provided as the System Interrupt Source (Source 1) to the AIC (Advanced Interrupt Controller).

Using the SDRAM Controller interrupt requires the AIC to be programmed first.

6249D-ATARM-20-Dec-07

ATMEL

241

ATMEL

22.5 Functional Description

2251 SDRAM Controller Write Cycle

The SDRAM Controller allows burst access or single access. In both cases, the SDRAM control-
ler keeps track of the active row in each bank, thus maximizing performance. To initiate a burst
access, the SDRAM Controller uses the transfer type signal provided by the master requesting
the access. If the next access is a sequential write access, writing to the SDRAM device is car-
ried out. If the next access is a write-sequential access, but the current access is to a boundary
page, or if the next access is in another row, then the SDRAM Controller generates a precharge
command, activates the new row and initiates a write command. To comply with SDRAM timing
parameters, additional clock cycles are inserted between precharge/active (tgp) commands and
active/write (tgcp) commands. For definition of these timing parameters, refer to the “SDRAMC
Configuration Register” on page 253. This is described in Figure 22-2 below.

Figure 22-2. Write Burst, 32-bit SDRAM Access

trep =3

-

SDCS —l i i |_

|

SDRAMC_A[12:0] X E Row n X col g Xcol choI cXcoI choI eX col choI choI hX col choI choI kX col IX:
I

RAS | E I

CcAS E | [
SDWE E | |_
D[31:0] E { bina X Dnb X Dnc X Dnd X Dne X Dnf X Dng X Dnh X Dni X Dnj X Dnk X Dnl }—

22 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.5.2 SDRAM Controller Read Cycle

The SDRAM Controller allows burst access, incremental burst of unspecified length or single
access. In all cases, the SDRAM Controller keeps track of the active row in each bank, thus
maximizing performance of the SDRAM. If row and bank addresses do not match the previous
row/bank address, then the SDRAM controller automatically generates a precharge command,
activates the new row and starts the read command. To comply with the SDRAM timing param-
eters, additional clock cycles on SDCK are inserted between precharge and active commands
(tgp) and between active and read command (tgcp). These two parameters are set in the config-
uration register of the SDRAM Controller. After a read command, additional wait states are
generated to comply with the CAS latency (1, 2 or 3 clock delays specified in the configuration
register).

For a single access or an incremented burst of unspecified length, the SDRAM Controller antici-
pates the next access. While the last value of the column is returned by the SDRAM Controller
on the bus, the SDRAM Controller anticipates the read to the next column and thus anticipates
the CAS latency. This reduces the effect of the CAS latency on the internal bus.

For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is han-
dled as an incrementing burst of unspecified length.

Figure 22-3. Read Burst, 32-bit SDRAM Access

SDRAMC_

6249D-ATARM-20-Dec-07

SDCS

A[12:0]

RAS

CAS

SDWE

D[31:0]
(Input)

trRep =3 CAS =2

Xcol bX céol cX col choI eX col fX

« Dna);X Dnb»(Dnc»(Dnd»(Dne»(an>7

A ||'|E|,® 243

ATMEL

22.5.3 Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and ini-
tiates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tgp) command and the active/read (tgcp) com-
mand. This is described in Figure 22-4 below.

Figure 22-4. Read Burst with Boundary Row Access

Trp =3

SDCS

|
SDCK

Row n
Xcol chbI cXcoI choI eX
|

|
L
|
|
1
T
1
|

SDRAMC_A[12:0] Xcol aXcoI bX col cXcoI dX
|
RAS |
L] L |

CAS | X

SDWE

pito) X XXDnaXXDnb X Dnc)YDnd))

B

«D m ax(D m b)XD m cX(D m d)XD m e)—

244 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

2254 SDRAM Controller Refresh Cycles
An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are gener-
ated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. An internal timer is
loaded with the value in the register SDRAMC_TR that indicates the number of clock cycles
between refresh cycles.

A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It is acknowledged by reading the Interrupt Status Register (SDRAMC_ISR).

When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the
device is busy and the master is held by a wait signal. See Figure 22-5.

Figure 22-5. Refresh Cycle Followed by a Read Access

trp =3 tRc=8

|

:

1
SDCS

T

1

1

SDCK

I
I
Row n !
I

SDRAMC_A[12:0] XCOI CXCOl dX x . ><
RAS

I

I

I

I

!

I

I

I

I

I

I

I

I

I

I

I

I

|

I

I

|

I

D[31:0] ~ W N\ !
input) Mo DneX(nd ‘
I
|

A ||'|E|,® 245

6249D-ATARM-20-Dec-07

ATMEL

22.5.5 Power Management
Three low-power modes are available:

* Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the
SDRAM Controller. Current drained by the SDRAM is very low.

* Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between
auto-refresh cycles, the SDRAM is in power-down. Current drained in Power-down mode is
higher than in Self-refresh Mode.

¢ Deep Power-down Mode: (Only available with Mobile SDRAM) The SDRAM contents are
lost, but the SDRAM does not drain any current.

The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not
selected. It is possible to delay the entry in self-refresh and power-down mode after the last
access by programming a timeout value in the Low Power Register.

26 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.5.6 Self-refresh Mode

This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register.
In self-refresh mode, the SDRAM device retains data without external clocking and provides its
own internal clocking, thus performing its own auto-refresh cycles. All the inputs to the SDRAM
device become “don’t care” except SDCKE, which remains low. As soon as the SDRAM device
is selected, the SDRAM Controller provides a sequence of commands and exits self-refresh
mode.

Some low-power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self-refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)
and Drive Strength (DS) parameters must be set in the Low Power Register and transmitted to
the low-power SDRAM during initialization.

After initialization, as soon as PASR/DS/TCSR fields are modified and self-refresh mode is acti-
vated, the Extended Mode Register is accessed automatically and PASR/DS/TCSR bits are
updated before entry into self-refresh mode.

The SDRAM device must remain in self-refresh mode for a minimum period of tgag and may
remain in self-refresh mode for an indefinite period. This is described in Figure 22-6.

Figure 22-6. Self-refresh Mode Behavior

Write

SRCB =1

Self Refresh Mode

SDRAMC_SRR

SDRAMC_A[12:0]

SDCK

5

SDCKE

SDCS

RAS

L L

CAS

L L L

SDWE

6249D-ATARM-20-Dec-07

Access Request
to the SDRAM Controller

A ||'|E|,® 247

ATMEL

2257 Low-power Mode

This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register.
Power consumption is greater than in self-refresh mode. All the input and output buffers of the
SDRAM device are deactivated except SDCKE, which remains low. In contrast to self-refresh
mode, the SDRAM device cannot remain in low-power mode longer than the refresh period (64
ms for a whole device refresh operation). As no auto-refresh operations are performed by the
SDRAM itself, the SDRAM Controller carries out the refresh operation. The exit procedure is
faster than in self-refresh mode.

This is described in Figure 22-7.

Figure 22-7. Low-power Mode Behavior

1

1

i

SDCS | |
| |
1 1
SDCK |_||_"_,|_I\—,‘—,‘—,|—I|—,

1 1

1 1

1 1
SDRAMC_A[12:0] X 'Rown X colal Xecol bXcol cXcol dXcol eX col X

| |

1 1

1
RA
s L :
1
1
1
1
1
1
1
1
1
1
1
1
1

\Low Power Mode
—
Il

Thop =3 CAS =2

CAS

I

D[31:0]
(input)

«Dnai XDnb XX Dnc XX Dnd XX DneXX Dnf)
1

28 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.5.8 Deep Power-down Mode
This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register.
When this mode is activated, all internal voltage generators inside the SDRAM are stopped and
all data is lost.

When this mode is enabled, the application must not access to the SDRAM until a new initializa-
tion sequence is done (See “SDRAM Device Initialization” on page 240).

This is described in Figure 22-8.

Figure 22-8. Deep Power-down Mode Behavior

trp =3

\/

SDCS

SDCK I | I | I | I | I | I | I |

1
Row n :

SDRAMC_A[12:0] XCOl CXCO| dX X : X
|

RAS | ! |

1

1

CAS | I

|

1

SDWE | | |

CKE

D(I[g;u(t’})§(Dnb)§(Dnc)§(Dndi)

A ||'|E|,® 249

6249D-ATARM-20-Dec-07

22.6 SDRAM Controller User Interface

ATMEL

Table 22-8. SDRAM Controller Memory Map
Offset Register Name Access Reset State
0x00 SDRAMC Mode Register SDRAMC_MR Read/Write 0x00000000
0x04 SDRAMC Refresh Timer Register SDRAMC_TR Read/Write 0x00000000
0x08 SDRAMC Configuration Register SDRAMC_CR Read/Write 0x852372C0
0x10 SDRAMC Low Power Register SDRAMC_LPR Read/Write 0x0
0x14 SDRAMC Interrupt Enable Register SDRAMC_IER Write-only -
0x18 SDRAMC Interrupt Disable Register SDRAMC_IDR Write-only -
0x1C SDRAMC Interrupt Mask Register SDRAMC_IMR Read-only 0x0
0x20 SDRAMC Interrupt Status Register SDRAMC_ISR Read-only 0x0
0x24 SDRAMC Memory Device Register SDRAMC_MDR Read 0x0
0x28 - OXFC | Reserved - - -

250 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.6.1 SDRAMC Mode Register

Register Name: SDRAMC_MR

Access Type: Read/Write

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

r - r - 1 - 1 - [= /] MODE |

e MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.

MODE Description
0 0 0 Normal mode. Any access to the SDRAM is decoded normally.
0 0 1 The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the
cycle.
0 1 0 The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed

regardless of the cycle.

The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. The address offset with respect to the SDRAM device base address is used to

0 1 1 program the Mode Register. For instance, when this mode is activated, an access to the “SDRAM_Base +
offset” address generates a “Load Mode Register” command with the value “offset” written to the SDRAM
device Mode Register.

The SDRAM Controller issues an “Auto-Refresh” Command when the SDRAM device is accessed
regardless of the cycle. Previously, an “All Banks Precharge” command must be issued.

The SDRAM Controller issues an extended load mode register command when the SDRAM device is
accessed regardless of the cycle. The address offset with respect to the SDRAM device base address is
1 0 1 used to program the Mode Register. For instance, when this mode is activated, an access to the
“SDRAM_Base + offset” address generates an “Extended Load Mode Register” command with the value
“offset” written to the SDRAM device Mode Register.

1 1 0 Deep power-down mode. Enters deep power-down mode.

A ||'|E|,® 251

6249D-ATARM-20-Dec-07

ATMEL

22.6.2 SDRAMC Refresh Timer Register
Register Name: SDRAMC_TR
Access Type: Read/Write
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | - - - | COUNT
7 6 5 4 3 2 1 0
| COUNT

e COUNT: SDRAMC Refresh Timer Count

This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 ps per row is a typical value for a burst of length one.

To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is
issued and no refresh of the SDRAM device is carried out.

252

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.6.3 SDRAMC Configuration Register
Register Name: SDRAMC_CR

Access Type: Read/Write

Reset Value: 0x852372C0
31 30 29 28 27 26 25 24

| TXSR | TRAS |
23 22 21 20 19 18 17 16

| TRCD | TRP |
15 14 13 12 11 10 9 8

| TRC | TWR |
7 6 5 4 3 2 1 0

| DBW | CAS NB | NR NC |

¢ NC: Number of Column Bits
Reset value is 8 column bits.

NC Column Bits
0 0 8
0 1 9
1 0 10
1 1 11

¢ NR: Number of Row Bits
Reset value is 11 row bits.

NR Row Bits
0 0 11
0 1 12
1 0 13
1 1 Reserved

e NB: Number of Banks
Reset value is two banks.

NB Number of Banks
0 2
1 4

A ||'|E|,® 253

6249D-ATARM-20-Dec-07

ATMEL

e CAS: CAS Latency
Reset value is two cycles.

In the SDRAMC, only a CAS latency of one, two and three cycles are managed. In any case, another value must be
programmed.

CAS CAS Latency (Cycles)
0 0 Reserved
0 1 1
1 0 2
1 1 3

« DBW: Data Bus Width
Reset value is 16 bits

0: Data bus width is 32 bits.

1: Data bus width is 16 bits.

e TWR: Write Recovery Delay

Reset value is two cycles.

This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.

e TRC: Row Cycle Delay

Reset value is seven cycles.

This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

¢ TRP: Row Precharge Delay

Reset value is three cycles.

This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 0 and 15.

e TRCD: Row to Column Delay

Reset value is two cycles.

This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 0 and 15.

* TRAS: Active to Precharge Delay

Reset value is five cycles.

This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 0 and 15.

* TXSR: Exit Self Refresh to Active Delay

Reset value is eight cycles.

This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.

254 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.6.4 SDRAMC Low Power Register

Register Name: SDRAMC_LPR

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | TIMEOUT | DS | TCSR |
7 6 5 4 3 2 1 0

| - | PASR | - - | LPCB |

e LPCB: Low-power Configuration Bits

Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued to the
SDRAM device.

The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is deactivated
01 and the SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when accessed and enters
it after the access.

00

The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the SDCKE

10 signal is set to low. The SDRAM device leaves the Power-down Mode when accessed and enters it after the
access.
11 The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is unique to

low-power SDRAM.

e PASR: Partial Array Self-refresh (only for low-power SDRAM)

PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks
of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set
according to the SDRAM device specification.

After initialization, as soon as PASR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and PASR bits are updated before entry in self-refresh mode.

¢ TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM)

TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode
depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device
specification.

After initialization, as soon as TCSR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and TCSR bits are updated before entry in self-refresh mode.

¢ DS: Drive Strength (only for low-power SDRAM)
DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parame-
ter must be set according to the SDRAM device specification.

A ||'|E|,® 255

6249D-ATARM-20-Dec-07

ATMEL

After initialization, as soon as DS field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and DS bits are updated before entry in self-refresh mode.

e TIMEOUT: Time to define when low-power mode is enabled

00 The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.

01 The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last transfer.

10 The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last
transfer.

11 Reserved.

256 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.6.5 SDRAMC Interrupt Enable Register

Register Name: SDRAMC_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | RES |

e RES: Refresh Error Status
0: No effect.

1: Enables the refresh error interrupt.

22.6.6 SDRAMC Interrupt Disable Register

Register Name: SDRAMC_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I = I - I = I - I = I - I = I - |
23 22 21 20 19 18 17 16

. - - ¢ - - [- [- /| S
15 14 13 12 11 10

. - - ¢ - - [- [- /| S
7 4 2 1 0

[- | - | - | - | - | - | - | RES |

¢ RES: Refresh Error Status
0: No effect.

1: Disables the refresh error interrupt.

A mEIZ@ 257

6249D-ATARM-20-Dec-07

22.6.7 SDRAMC Interrupt Mask Register

Register Name: SDRAMC_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |

6 5 4 3 0

[- | - | - | - | - | - | - | RES |

¢ RES: Refresh Error Status
0: The refresh error interrupt is disabled.

1: The refresh error interrupt is enabled.

258 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

22.6.8 SDRAMC Interrupt Status Register

Register Name: SDRAMC_ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10

I - I - I - I - I - I - I - - |

6 5 4 3 0

[- | - | - | - | - | - | - | RES |

* RES: Refresh Error Status
0: No refresh error has been detected since the register was last read.

1: A refresh error has been detected since the register was last read.

A ||'|E|,® 259

6249D-ATARM-20-Dec-07

22.6.9 SDRAMC Memory Device Register

Register Name: SDRAMC_MDR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I MD |

e MD: Memory Device Type

00 SDRAM

01 Low-power SDRAM
10 Reserved

11 Reserved.

260 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

23. Error Corrected Code (ECC) Controller

23.1 Description
NAND Flash/SmartMedia devices contain by default invalid blocks which have one or more
invalid bits. Over the NAND Flash/SmartMedia lifetime, additional invalid blocks may occur
which can be detected/corrected by ECC code.

The ECC Controller is a mechanism that encodes data in a manner that makes possible the
identification and correction of certain errors in data. The ECC controller is capable of single bit
error correction and 2-bit random detection. When NAND Flash/SmartMedia have more than 2
bits of errors, the data cannot be corrected.

The ECC user interface is compliant with the ARM Advanced Peripheral Bus (APB rev2).

23.2 Block Diagram

Figure 23-1. Block Diagram

Static NAND Flash
—p .
Memory SmartMedia
Controller .
Logic
ECC
Controller
\ 4 \ 4
Ctrl/ECC Algorithm
User Interface
APB « ¢ >

23.3 Functional Description
A page in NAND Flash and SmartMedia memories contains an area for main data and an addi-
tional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page
size corresponds to the number of words in the main area plus the number of words in the extra
area used for redundancy.

A ||'|E|,® 261

6249D-ATARM-20-Dec-07

23.3.1

23.3.2

262

Write Access

Read Access

ATMEL

The only configuration required for ECC is the NAND Flash or the SmartMedia page size
(528/1056/2112/4224). Page size is configured setting the PAGESIZE field in the ECC Mode
Register (ECC_MR).

ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND
Flash or the SmartMedia is detected. Read and write access must start at a page boundary.

ECC results are available as soon as the counter reaches the end of the main area. Values in
the ECC Parity Register (ECC_PR) and ECC NParity Register (ECC_NPR) are then valid and
locked until a new start condition occurs (read/write command followed by address cycles).

Once the flash memory page is written, the computed ECC code is available in the ECC Parity
Error (ECC_PR) and ECC_NParity Error (ECC_NPR) registers. The ECC code value must be
written by the software application in the extra area used for redundancy.

After reading the whole data in the main area, the application must perform read accesses to the
extra area where ECC code has been previously stored. Error detection is automatically per-
formed by the ECC controller. Please note that it is mandatory to read consecutively the entire
main area and the locations where Parity and NParity values have been previously stored to let
the ECC controller perform error detection.

The application can check the ECC Status Register (ECC_SR) for any detected errors.

It is up to the application to correct any detected error. ECC computation can detect four differ-
ent circumstances:

¢ No error: XOR between the ECC computation and the ECC code stored at the end of the
NAND Flash or SmartMedia page is equal to 0. No error flags in the ECC Status Register
(ECC_SR).

* Recoverable error: Only the RECERR flag in the ECC Status register (ECC_SR) is set. The
corrupted word offset in the read page is defined by the WORDADDR field in the ECC Parity
Register (ECC_PR). The corrupted bit position in the concerned word is defined in the
BITADDR field in the ECC Parity Register (ECC_PR).

* ECC error: The ECCERR flag in the ECC Status Register is set. An error has been detected
in the ECC code stored in the Flash memory. The position of the corrupted bit can be found
by the application performing an XOR between the Parity and the NParity contained in the
ECC code stored in the flash memory.

* Non correctable error: The MULERR flag in the ECC Status Register is set. Several
unrecoverable errors have been detected in the flash memory page.

ECC Status Register, ECC Parity Register and ECC NParity Register are cleared when a
read/write command is detected or a software reset is performed.

For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) hsiao code is used.
32-bit ECC is generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16-
bit words. Of the 32 ECC bits, 26 bits are for line parity and 6 bits are for column parity. They are
generated according to the schemes shown in Figure 23-2 and Figure 23-3.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 23-2. Parity Generation for 512/1024/2048/4096 8-bit Words1

Istbyte | Bit7] Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | [P8 | |, o

2nd byte | Bit7| Bit6 | Bit5 [Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | P8' P32 | — oy
3rdbyte | Bit7| Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | [P8 | [,

4thbyte | Bit7| Bité | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | [P8

(page size-3)th byte| Bit7| Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | [P8 ||
(page size -2)th byte(Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | | P8' P32 | — | Px
(pagessize -1)thbyte [Bit7| Bit6 | Bit5 | Bita | Bit3 | Bit2 [Bit1 | Bito | [P8

P16’
Page size th byte | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 P8’

[p1] [Pr]{pP1]| [P|] P1] |P1][P1] [P1]

[P2 [l P2 [[P2 [[P2 |

| P4 [| P4’ |
Page size =1024 Px= 4096 P2=bit7(+)bit6(+)bit3(+)bit2(+)P2
Page size = 2048 Px = 8192 P4=Dbit7(+)bit6(+)bit5(+)bit4(+)P4
Page size = 4096 Px= 16384 P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'

((
P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2'
P4'=bit7(+)bit6(+)bit5(+)bit4(+)P4'

To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page_size byte)
begin
if (3011 ==1)
P[21*3]=bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[21*3]
else
P[2*3] '=bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[21*3]"
end

end

A ||'|E|%D 263

6249D-ATARM-20-Dec-07

AIMEL

I ()

Parity Generation for 512/1024/2048/4096 16-bit Words

Figure 23-3.

Gd+ 8uq(+)eua(+)oLug(+
(H)ZLNG(H)E LU (+H)P LHG(+
Fd(+)pNq(+)SUG(+)Nq(+) 211q
(+)T1Ng(+)€ L1g(+)r L1g(+)S LIg=td
Td(H)nq(H)eNq(+)ouq(+)21q
(H)OLNg(+) L LU ()P LHg(+)SLN9=1d
Ld(+) LUg(+)ENq(+)Sa(+) /g

(H)6HA(+) LLUG(+H)ELUI(+)SLHG=1d

LLYg
SLH9=4d

¥8£91=Xd 960t = ZIs abed
7618 =Xd 80T = 8215 abeq
9601 = Xd ¥¢0 L= 8215 abeq
8v07=xd 71§ =9zIs abed

rd | vd

d

Lz []

Lid] [td][ta] [rd [] [td|frd] [od |

Lid] [ta]furd] [rd Jford] [ra|ad] [1d |

Xd

Xd

8d | |ovg | 1ug | cug [€ng | vug | sug | ong | 1ug 81g e_m:ovz_m Lig [zivg [e1ng [pLug |siug
94| [oa] [ova | g | cug [evg | vig | sug | oug |oug | | 848 [evg [ouug [rive [ciud [eing [vivg [sing
Ced Teq| [ova | g [cug | eng | w48 | sug | ong | o gug | 6ug [0l |LLi8 | <8 |cLig [vivg |siug
o) Faq| [ove [1ua | cug | €ua | w18 | sua | ovg |zug | | 98 | ova [ova [Lig |cid e |viwa st
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
| | | | | [| | | | | | 1 |
| | | | | [| | | | | | 1 |
8d| [ova [tug [ong [eug [vya[sug | oug |sng | [oua [oug Jorna [rivg Jeiug [erng [vivg [sing
94| [aa] [ova [g | cug [eva | vig | sug | oug | g | | 848 | eua Jouug [1ve [zivg [eg [vivg [soig
ted (e | [ova | 1ig | cug | ena | w48 | sua | ovg |cug | |8V8 |eua [olvs |Liig |cia e |viwa st
°4d| Faq] [ova [18 | cua | e | vua | sug | oug |oug | [s¥a | eua [ouug [ine |cund et [vivg |sig

piom y} 8zis abed

plom yy(|- azis abeq)
piom yy(g- 8z1s abey)
piom yy(g- 8z1s abey)

piom yiy
piom pIg
piom pug
pIOM IS |

Inigcl'a |

AT91SAM9263 Prel

264

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.

Page size = 2"

for i =0 to n
begin
for (j = 0 to page_size_word)
begin
if (3 [1] ==1)
P[2'*3]= bitl15(+)bitl4 (+)bitl13 (+)bitl2(+)
bitll (+)bitl0(+)bit9 (+)bit8 (+)
bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[27"]
else
P[21*3]/=bit15 (+)bit14 (+)bitl13 (+)bitl12 (+)
bitll (+)bitl0(+)bit9 (+)bit8 (+)
bit7 (+)bit6 (+)bit5 (+)bit4 (+)bit3 (+)
bit2 (+)bitl (+)bit0 (+)P[2**3]"
end

end

A ||'|E|,® 265

6249D-ATARM-20-Dec-07

ATMEL

23.4 Error Corrected Code (ECC) Controller User Interface

Table 23-1. ECC Register Mapping

Offset Register Register Name Access Reset
0x00 ECC Control Register ECC_CR Write-only 0x0
0x04 ECC Mode Register ECC_MR Read/Write 0x0
0x08 ECC Status Register ECC_SR Read-only 0x0
0x0C ECC Parity Register ECC_PR Read-only 0x0
0x10 ECC NParity Register ECC_NPR Read-only 0x0

266 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

23.41 ECC Control Register

Name: ECC_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I . I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | RST |

¢ RST: RESET Parity

Provides reset to current ECC by software.

1 = Resets ECC Parity and ECC NParity register.

0 = No effect.

23.4.2 ECC Mode Register

Register Name: ECC_MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I . I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | PAGESIZE |

* PAGESIZE: Page Size
This field defines the page size of the NAND Flash device.

Page Size | Description
00 528 words

01 1056 words
10 2112 words
11 4224 words

A word has a value of 8 bits or 16 bits, depending on the NAND Flash or SmartMedia memory organization.

A ||'|E|,® 267

6249D-ATARM-20-Dec-07

23.4.3 ECC Status Register

Register Name: ECC_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I . I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| _ | — | - | - | - | MULERR | ECCERR | RECERR |

e RECERR: Recoverable Error
0 = No Errors Detected.

1 = Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors
were detected.

e ECCERR: ECC Error
0 = No Errors Detected.
1 = A single bit error occurred in the ECC bytes.

Read both ECC Parity and ECC NParity register, the error occurred at the location which contains a 1 in the least signifi-
cant 16 bits.

e MULERR: Multiple Error
0 = No Multiple Errors Detected.

1 = Multiple Errors Detected.

28 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

23.4.4 ECC Parity Register

Register Name: ECC_PR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| WORDADDR |
7 6 5 4 3 2 1 0

| WORDADDR | BITADDR |

Once the entire main area of a page is written with data, the register content must be stored at any free location of the
spare area.

e BITADDR
During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If
multiple errors were detected, this value is meaningless.

e WORDADDR
During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organiza-
tion) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless.

A ||'|E|%D 269

6249D-ATARM-20-Dec-07

23.45 ECC NParity Register

ATMEL

Register Name: ECC_NPR
Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
| NPARITY
7 6 5 4 3 2 1 0
| NPARITY
¢ NPARITY:

Once the entire main area of a page is written with data, the register content must be stored at any free location of the

Spare area.

270 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24. DMA Controller (DMAC)

24.1 Description

The DMA Controller (DMAC) is an AHB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more AMBA buses. One channel is
required for each source/destination pair. In the most basic configuration, the DMAC has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two AMBA transfers are required for each DMA data transfer. This is also
known as a dual-access transfer.

The DMAC is programmed via the AHB slave interface.

24.2 Block Diagram

Figure 24-1. DMA Controller (DMAC) Block Diagram

DMA Controller

AHB Slave AHB Slave CFG Interrupt irq_dma

< > Interface < > Generator —

[Channel1 |

Channel 0
P AHB Master| | AHBMaster |. - FIFO
N ” Interface ”

SRC | DST [

FSM | FSM

DMARQO..

Hardware
3 D Handshaking
Interface

24.3 Functional Description

24.3.1 Basic Definitions

6249D-ATARM-20-Dec-07

Source peripheral: Device on an AMBA layer from where the DMAC reads data, which is then
stored in the channel FIFO. The source peripheral teams up with a destination peripheral to form
a channel.

Destination peripheral: Device to which the DMAC writes the stored data from the FIFO (previ-
ously read from the source peripheral).

Memory: Source or destination that is always “ready” for a DMA transfer and does not require a
handshaking interface to interact with the DMAC. A peripheral should be assigned as memory

A ||'|E|,® 271

272

ATMEL

only if it does not insert more than 16 wait states. If more than 16 wait states are required, then
the peripheral should use a handshaking interface (the default if the peripheral is not pro-
grammed to be memory) in order to signal when it is ready to accept or supply data.

Channel: Read/write datapath between a source peripheral on one configured AMBA layer and
a destination peripheral on the same or different AMBA layer that occurs through the channel
FIFO. If the source peripheral is not memory, then a source handshaking interface is assigned to
the channel. If the destination peripheral is not memory, then a destination handshaking inter-
face is assigned to the channel. Source and destination handshaking interfaces can be assigned
dynamically by programming the channel registers.

Master interface: DMAC is a master on the AHB bus reading data from the source and writing it
to the destination over the AHB bus.

Slave interface: The AHB interface over which the DMAC is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake
between the DMAC and source or destination peripheral to control the transfer of a single or
burst transaction between them. This interface is used to request, acknowledge, and control a
DMAC transaction. A channel can receive a request through one of three types of handshaking
interface: hardware, software, or peripheral interrupt.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or
burst transaction between the DMAC and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or
burst transaction between the DMAC and the source or destination peripheral. No special DMAC
handshaking signals are needed on the I/O of the peripheral. This mode is useful for interfacing
an existing peripheral to the DMAC without modifying it.

Peripheral interrupt handshaking interface: A simple use of the hardware handshaking inter-
face. In this mode, the interrupt line from the peripheral is tied to the dma_req input of the
hardware handshaking interface. Other interface signals are ignored.

Flow controller: The device (either the DMAC or source/destination peripheral) that determines
the length of and terminates a DMA block transfer. If the length of a block is known before
enabling the channel, then the DMAC should be programmed as the flow controller. If the length
of a block is not known prior to enabling the channel, the source or destination peripheral needs
to terminate a block transfer. In this mode, the peripheral is the flow controller.

Flow control mode (DMAC_CFGx.FCMODE): Special mode that only applies when the desti-
nation peripheral is the flow controller. It controls the pre-fetching of data from the source
peripheral.

Transfer hierarchy: Figure 24-2 on page 273 illustrates the hierarchy between DMAC transfers,
block transfers, transactions (single or burst), and AMBA transfers (single or burst) for non-mem-
ory peripherals. Figure 24-3 on page 273 shows the transfer hierarchy for memory.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 24-2. DMAC Transfer Hierarchy for Non-Memory Peripheral

DMAC Transfer

v

v

Block -——— Block

v

Block
\ v
Burst Burst

Transaction Transaction

Transaction

Burst

4

v v

AMBA AMBA AMBA AMBA
Burst Burst -—— Burst Single
Transfer Transfer Transfer Transfer

Figure 24-3. DMAC Transfer Hierarchy for Memory

DMAC Transfer

v

v

v

DMA Transfer
Level

Block Transfer

Level

Single DMA Transaction
Transaction Level

AMBA

Single AMBA Transfer

Transfer Level

DMA Transfer
Level

Block Block Block Block Transfer
o o o° Level
|
AMBA AMBA AMBA AMBA
Burst Burst |---. Burst Single AMBA Transfer
Transfer Transfer Transfer Transfer Level

Block: A block of DMAC data. The amount of data (block length) is determined by the flow con-
troller. For transfers between the DMAC and memory, a block is broken directly into a sequence
of AMBA bursts and AMBA single transfers. For transfers between the DMAC and a non-mem-
ory peripheral, a block is broken into a sequence of DMAC transactions (single and bursts).

These are in turn broken into a sequence of AMBA transfers.

Transaction: A basic unit of a DMAC transfer as determined by either the hardware or software
handshaking interface. A transaction is only relevant for transfers between the DMAC and a
source or destination peripheral if the source or destination peripheral is a non-memory device.
There are two types of transactions: single and burst.

— Single transaction: The length of a single transaction is always 1 and is converted
to a single AMBA transfer.
— Burst transaction: The length of a burst transaction is programmed into the DMAC.
The burst transaction is converted into a sequence of AMBA bursts and AMBA
single transfers. DMAC executes each AMBA burst transfer by performing
incremental bursts that are no longer than the maximum AMBA burst size set. The
burst transaction length is under program control and normally bears some

6249D-ATARM-20-Dec-07

ATMEL

273

e A T91SAM9263 Preliminary

relationship to the FIFO sizes in the DMAC and in the source and destination
peripherals.

DMA transfer: Software controls the number of blocks in a DMAC transfer. Once the DMA
transfer has completed, then hardware within the DMAC disables the channel and can generate
an interrupt to signal the completion of the DMA transfer. You can then re-program the channel
for a new DMA transfer.

Single-block DMA transfer: Consists of a single block.

Multi-block DMA transfer: A DMA transfer may consist of multiple DMAC blocks. Multi-block
DMA transfers are supported through block chaining (linked list pointers), auto-reloading of
channel registers, and contiguous blocks. The source and destination can independently select
which method to use.

— Linked lists (block chaining) — A linked list pointer (LLP) points to the location in
system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describe the next block (block descriptor) and an LLP register. The
DMAC fetches the LLI at the beginning of every block when block chaining is
enabled.

— Auto-reloading — The DMAC automatically reloads the channel registers at the end
of each block to the value when the channel was first enabled.

— Contiguous blocks — Where the address between successive blocks is selected to
be a continuation from the end of the previous block.

Scatter: Relevant to destination transfers within a block. The destination AMBA address is
incremented/decremented by a programmed amount when a scatter boundary is reached. The
number of AMBA transfers between successive scatter boundaries is under software control.

Gather: Relevant to source transfers within a block. The source AMBA address is incre-
mented/decremented by a programmed amount when a gather boundary is reached. The
number of AMBA transfers between successive gather boundaries is under software control.

Channel locking: Software can program a channel to keep the AHB master interface by locking
the arbitration for the master bus interface for the duration of a DMA transfer, block, or transac-
tion (single or burst).

Bus locking: Software can program a channel to maintain control of the AMBA bus by asserting
hlock for the duration of a DMA transfer, block, or transaction (single or burst). Channel locking
is asserted for the duration of bus locking at a minimum.

FIFO mode: Special mode to improve bandwidth. When enabled, the channel waits until the
FIFO is less than half full to fetch the data from the source peripheral and waits until the FIFO is
greater than or equal to half full to send data to the destination peripheral. Thus, the channel can
transfer the data using AMBA bursts, eliminating the need to arbitrate for the AHB master inter-
face for each single AMBA transfer. When this mode is not enabled, the channel only waits until
the FIFO can transmit/accept a single AMBA transfer before requesting the master bus
interface.

Pseudo fly-by operation: Typically, it takes two AMBA bus cycles to complete a transfer, one
for reading the source and one for writing to the destination. However, when the source and des-
tination peripherals of a DMA transfer are on different AMBA layers, it is possible for the DMAC
to fetch data from the source and store it in the channel FIFO at the same time as the DMAC
extracts data from the channel FIFO and writes it to the destination peripheral. This activity is
known as pseudo fly-by operation. For this to occur, the master interface for both source and

A ||'|E|,® 274

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

destination layers must win arbitration of their AHB layer. Similarly, the source and destination
peripherals must win ownership of their respective master interfaces.

24.3.2 Memory Peripherals

Figure 24-3 on page 273 shows the DMA transfer hierarchy of the DMAC for a memory periph-
eral. There is no handshaking interface with the DMAC, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
shaking interface is to allow the DMAC to attempt AMBA transfers to the peripheral once the
channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait
states onto the bus until it is ready; it is not recommended that more than 16 wait states be
inserted onto the bus. By using the handshaking interface, the peripheral can signal to the
DMAC that it is ready to transmit/receive data, and then the DMAC can access the peripheral
without the peripheral inserting wait states onto the bus.

24.3.3 Handshaking Interface
Handshaking interfaces are used at the transaction level to control the flow of single or burst
transactions. The operation of the handshaking interface is different and depends on whether
the peripheral or the DMAC is the flow controller.

The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to trans-
fer/accept data over the AMBA bus. A non-memory peripheral can request a DMA transfer
through the DMAC using one of two handshaking interfaces:

¢ Hardware handshaking
» Software handshaking
Software selects between the hardware or software handshaking interface on a per-channel

basis. Software handshaking is accomplished through memory-mapped registers, while hard-
ware handshaking is accomplished using a dedicated handshaking interface.

24.3.3.1 Software Handshaking
When the slave peripheral requires the DMAC to perform a DMA transaction, it communicates
this request by sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMA trans-
action. These software registers are used to implement the software handshaking interface.

The HS_SEL_SRC/HS_SEL_DST bit in the DMAC_CFGx channel configuration register must
be set to enable software handshaking.

When the peripheral is not the flow controller, then the last transaction registers
DMAC_LstSrcReg and DMAC_LstDstReg are not used, and the values in these registers are
ignored.

24.3.3.2 Burst Transactions
Writing a 1 to the DMAC_ReqSrcReg[x]/DMAC_ReqDstReg[x] register is always interpreted as
a burst transaction request, where x is the channel number. However, in order for a burst trans-
action request to start, software must write a 1 to the
DMAC_SgIReqSrcReg[x]/DMAC_SglReqDstReg[x] register.

You can write a 1 to the DMAC_SglReqSrcReg[x]/DMAC_SglRegDstReg[x] and
DMAC_ReqSrcReg[x]/DMAC_ReqDstReg[x] registers in any order, but both registers must be

A ||'|E|,® 275

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

asserted in order to initiate a burst transaction. Upon completion of the burst transaction, the
hardware clears the DMAC_SglReqSrcReg[x]/DMAC_SglRegDstReg[x] and
DMAC_ReqSrcReg[x]/DMAC_ReqgDstReg[x] registers.

24.3.3.3 Single Transactions
Writing a 1 to the DMAC_SgIReqSrcReg/DMAC_SgIReqDstReg initiates a single transaction.
Upon completion of the single transaction, both the
DMAC_SgIReqSrcReg/DMAC_SgIRegDstReg and DMAC_ReqSrcReg/DMAC_ReqgDstReg bits
are cleared by hardware. Therefore, writing a 1 to the DMAC_ReqSrcReg/DMAC_ReqDstReg is
ignored while a single transaction has been initiated, and the requested burst transaction is not
serviced.

Again, writing a 1 to the DMAC_ReqSrcReg/DMAC_ReqDstReg register is always a burst trans-
action request. However, in order for a burst transaction request to start, the corresponding
channel bit in the DMAC_SglReqSrcReg/DMAC_SglReqDstReg must be asserted. Therefore, to
ensure that a burst transaction is serviced, you must write a 1 to the
DMAC_ReqSrcReg/DMAC_RegDstReg before writing a 1 to the
DMAC_SgIReqSrcReg/DMAC_SglReqDstReg register.

Software can poll the relevant channel bit in the DMAC_SgIReqSrcReg/ DMAC_SgIRegDstReg
and DMAC_ReqSrcReg/DMAC_ReqgDstReg registers. When both are 0, then either the
requested burst or single transaction has completed. Alternatively, the IntSrcTran or IntDstTran
interrupts can be enabled and unmasked in order to generate an interrupt when the requested
source or destination transaction has completed.

Note: The transaction-complete interrupts are triggered when both single and burst transactions are
complete. The same transaction-complete interrupt is used for both single and burst transactions.

24.3.3.4 Hardware Handshaking
There are 5 hardware handshaking interfaces connected to four external DMA requests (see
Table 24-1 on page 276).

Table 24-1. Hardware Handshaking Connection

Hardware Handshaking
Request Definition Interface
DMAREQO External DMA Request 0 1
DMAREQ1 External DMA Request 1 2
DMAREQ2 External DMA Request 2 3
DMAREQS3 External DMA Request 3 4

24.3.3.5 External DMA Request Definition
When an external slave peripheral requires the DMAC to perform DMA transactions, it communi-
cates its request by asserting the external nDMAREQXx signal. This signal is resynchronized to
ensure a proper functionality (see Figure 24-4 on page 277).

The external NDMAREQX is asserted when the source threshold level is reached. After resyn-
chronization, the rising edge of dma_req starts the transfer. dma_req is de-asserted when
dma_ack is asserted.

The external nDMAREQXx signal must be de-asserted after the last transfer and re-asserted
again before a new transaction starts.

AIMEL 276

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

For a source FIFO, an active edge is triggered on nDMAREQx when the source FIFO exceeds a
watermark level. For a destination FIFO, an active edge is triggered on nDMAREQx when the
destination FIFO drops below the watermark level.

The source transaction length, CTLx.SRC_MSIZE, and destination transaction length,
CTLx.DEST_MSIZE, must be set according to watermark levels on the source/destination
peripherals.

Figure 24-4. External DMA Request Timing

o JULUUUUUUUUUUUUUUUL Uiyl

DMA Transaction

nDMAREQx _I

dma_req _|

dma_ack

—

(
-

DMA Transfers

-

2434 DMAC Transfer Types

A DMA transfer may consist of single or multi-block transfers. On successive blocks of a multi-
block transfer, the DMAC_SARx/DMAC_DARX register in the DMAC is reprogrammed using
either of the following methods:

* Block chaining using linked lists

¢ Auto-reloading

¢ Contiguous address between blocks
On successive blocks of a multi-block transfer, the DMAC_CTLx register in the DMAC is re-pro-
grammed using either of the following methods:

* Block chaining using linked lists

¢ Auto-reloading
When block chaining, using linked lists is the multi-block method of choice, and on successive
blocks, the DMAC_LLPx register in the DMAC is re-programmed using the following method:

* Block chaining using linked lists

A block descriptor (LLI) consists of following registers, DMAC_SARx, DMAC_DARX,
DMAC_LLPx, DMAC_CTLx. These registers, along with the DMAC_CFGx register, are used by
the DMAC to set up and describe the block transfer.

24.3.4.1 Muilti-block Transfers

24.34.2 Block Chaining Using Linked Lists

6249D-ATARM-20-Dec-07

In this case, the DMAC re-programs the channel registers prior to the start of each block by
fetching the block descriptor for that block from system memory. This is known as an LLI update.

A mEIZ@ 277

e A T91SAM9263 Preliminary

DMAC block chaining is supported by using a Linked List Pointer register (DMAC_LLPx) that
stores the address in memory of the next linked list item. Each LLI (block descriptor) contains
the corresponding block descriptor (DMAC_SARx, DMAC_DARx, DMAC_LLPx, DMAC_CTLXx).

To set up block chaining, a sequence of linked lists must be programmed in memory.

The DMAC_SARx, DMAC_DARx, DMAC_LLPx and DMAC_CTLXx registers are fetched from
system memory on an LLI update. Figure 24-8 on page 286 shows how to use chained linked
lists in memory to define multi-block transfers using block chaining.

The Linked List multi-block transfers is initiated by programming DMAC_LLPx with LLPx(0)
(LLI(O) base address) and DMAC_CTLx with DMAC_CTLx.LLP_S_EN and
DMAC_CTLx.LLP_D_EN.

Figure 24-5. Multi-block Transfer Using Linked Lists

System Memory

LLI(0) LLI(1)
CTLX[63..32] CTLX[63..32]
CTLX(31..0] CTLX[31..0]
LLPx(1) - LLPx(2)
DARXx DARX
LLPJ’ SARX LLPx(17 SARX LLPx(2)

Table 24-2. Programming of Transfer Types and Channel Register Update Method (DMAC State Machine Table)
RELOAD RELOAD_ | DMAC_CTLx, DMAC_
LLP. LLP_S EN | _SR LLP_D_EN | DS DMAC_LLPx DMAC_SARx | DARx
Transfer Type LocC (DMAC_ (DMAC_ | (DMAC_ (DMAC_ Update Update Update
=0 CTLx) CFGXx) CTLx) CFGx) Method Method Method | —
1) Single Block or None. user None
last transfer of Yes 0 0 0 0 re ro’ rams None (single) (single)
multi-Block prog 9
2) AutoReload DMAC_CTLx,D
multi-block transfer MAC_LLPx are . Auto-
with contiguous Yes 0 0 0 ! reloaded from Contiguous Reload
SAR initial values.
3) AutoReload DMAC_CTLx,D
m.ultl-bloc.:k transfer Yes 0 1 0 0 MAC_LLPx are Auto-Reload (?on-
with contiguous reloaded from tiguous
DAR initial values.
DMAC_CTLx,D
4) AutoReload MAC_LLPx are Auto-
multi-block transfer Yes 0 ! 0 ! reloaded from Auto-Reload Reload
initial values.

6249D-ATARM-20-Dec-07

ATMEL

278

e A T91SAM9263 Preliminary

Table 24-2. Programming of Transfer Types and Channel Register Update Method (DMAC State Machine Table)
RELOAD RELOAD_ | DMAC_CTLx, DMAC_
LLP. LLP.S EN | _SR LLP_D EN | DS DMAC_LLPx DMAC_SARx | DARx
Transfer Type LocC (DMAC_ (DMAC_ | (DMAC_ (DMAC_ Update Update Update
=0 CTLx) CFGx) CTLx) CFGx) Method Method Method
6) Linked List DMAC_CTLx,D
. MAC_LLPx)
multi-block transfer . Linked
. - No 0 0 1 0 loaded from Contiguous .
with contiguous . . List
next Linked List
SAR .
item
7) Linked List DMAC_CTLx,D
multi-block transfer MAC_LLPx Linked
. No 0 1 1 0 loaded from Auto-Reload .
with auto-reload . . List
next Linked List
SAR .
item
8) Linked List DMAC_CTLx,D
multi-block transfer MAC_LLPX Con-
. . No 1 0 0 0 loaded from Linked List .
with contiguous . . tiguous
next Linked List
DAR .
item
9) Linked List DMAC_CTLx,D
) MAC_LLPx
multi-block transfer .) Auto-
. No 1 0 0 1 loaded from Linked List
with auto-reload .) Reload
next Linked List
DAR .
item
DMAC_CTLx,D
. . MAC_LLPx .
10) Linked List No 1 0 1 0 loaded from Linked List Linked
multi-block transfer .) List
next Linked List
item

6249D-ATARM-20-Dec-07

ATMEL

279

e A T91SAM9263 Preliminary

24.3.4.3 Auto-reloading of Channel Registers
During auto-reloading, the channel registers are reloaded with their initial values at the comple-
tion of each block and the new values used for the new block. Depending on the row number in
Table 24-2 on page 278, some or all of the DMAC_SARx, DMAC_DARx and DMAC_CTLx
channel registers are reloaded from their initial value at the start of a block transfer.

24.3.4.4 Contiguous Address Between Blocks
In this case, the address between successive blocks is selected to be a continuation from the
end of the previous block. Enabling the source or destination address to be contiguous between
blocks is a function of DMAC_CTLx.LLP_S_EN, DMAC_CFGx.RELOAD_SR,
DMAC_CTLx.LLP_D_EN, and DMAC_CFGx.RELOAD_DS registers (see Figure 24-2 on page
278).

Note: Both DMAC_SARx and DMAC_DARX updates cannot be selected to be contiguous. If this func-
tionality is required, the size of the Block Transfer (DMAC_CTLx.BLOCK_TS) must be increased.
If this is at the maximum value, use Row 10 of Table 24-2 on page 278 and setup the
LLI.DMAC_SARXx address of the block descriptor to be equal to the end DMAC_SARXx address of
the previous block. Similarly, setup the LLI.DMAC_DARXx address of the block descriptor to be
equal to the end DMAC_DARX address of the previous block.

24.3.4.5 Suspension of Transfers Between Blocks
At the end of every block transfer, an end of block interrupt is asserted if:

¢ interrupts are enabled, DMAC_CTLx.INT_EN =1

¢ the channel block interrupt is unmasked, DMAC_MaskBlock[n] = 0, where n is the channel
number.
Note: The block complete interrupt is generated at the completion of the block transfer to the destination.

For rows 6, 8, and 10 of Table 24-2 on page 278, the DMA transfer does not stall between block
transfers. For example, at the end of block N, the DMAC automatically proceeds to block N + 1.

For rows 2, 3, 4, 7, and 9 of Table 24-2 on page 278 (DMAC_SARx and/or DMAC_DARXx auto-
reloaded between block transfers), the DMA transfer automatically stalls after the end of block.
Interrupt is asserted if the end of block interrupt is enabled and unmasked.

The DMAC does not proceed to the next block transfer until a write to the block interrupt clear
register, DMAC_ClearBlock[n], is performed by software. This clears the channel block complete
interrupt.

For rows 2, 3, 4, 7, and 9 of Table 24-2 on page 278 (DMAC_SARx and/or DMAC_DARXx auto-
reloaded between block transfers), the DMA transfer does not stall if either:

* interrupts are disabled, DMAC_CTLx.INT_EN = 0, or

¢ the channel block interrupt is masked, DMAC_MaskBlock[n] = 1, where n is the channel
number.

Channel suspension between blocks is used to ensure that the end of block ISR (interrupt ser-
vice routine) of the next-to-last block is serviced before the start of the final block commences.
This ensures that the ISR has cleared the DMAC_CFGx.RELOAD_SR and/or
DMAC_CFGx.RELOAD_DS bits before completion of the final block. The reload bits
DMAC_CFGx.RELOAD_SR and/or DMAC_CFGx.RELOAD_DS should be cleared in the ‘end of
block ISR’ for the next-to-last block transfer.

A ||'|E|%D 280

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.3.4.6 Ending Multi-block Transfers
All multi-block transfers must end as shown in Row 1 of Table 24-2 on page 278. At the end of
every block transfer, the DMAC samples the row number, and if the DMAC is in Row 1 state,
then the previous block transferred was the last block and the DMA transfer is terminated.

For rows 2,3 and 4 of Table 24-2 on page 278, (DMAC_LLPx = 0 and
DMAC_CFGx.RELOAD_SR and/or DMAC_CFGx.RELOAD_DS is set), multi-block DMA trans-
fers continue until both the DMAC_CFGx.RELOAD_SR and DMAC_CFGx.RELOAD_DS
registers are cleared by software. They should be programmed to zero in the end of block inter-
rupt service routine that services the next-to-last block transfer. This puts the DMAC into Row 1
state.

Note: For rows 6, 8, and 10 (both DMAC_CFGx.RELOAD_SR and DMAC_CFGx.RELOAD_DS cleared)
the user must setup the last block descriptor in memory such that both
LLI.DMAC_CTLx.LLP_S_EN and LLI.DMAC_CTLx.LLP_D_EN are zero.For rows 7 and 9, the
end-of-block interrupt service routine that services the next-to-last block transfer should clear the
DMAC_CFGx.RELOAD_SR and DMAC_CFGx.RELOAD_DS reload bits. The last block descriptor
in memory should be set up so that both the LLL.LDMAC_CTLx.LLP_S_EN and
LLI.DMAC_CTLx.LLP_D_EN are zero.

2435 Programming a Channel
Three registers, the DMAC_LLPx, the DMAC_CTLx and DMAC_CFGx, need to be programmed
to set up whether single or multi-block transfers take place, and which type of multi-block trans-
fer is used. The different transfer types are shown in Table 24-2 on page 278.

The “Update Method” column indicates where the values of DMAC_SARx, DMAC_DARX,
DMAC_CTLx, and DMAC_LLPx are obtained for the next block transfer when multi-block DMAC
transfers are enabled.

Note: In Table 24-2 on page 278, all other combinations of DMAC_LLPx.LOC = 0,
DMAC_CTLx.LLP_S_EN, DMAC_CFGx.RELOAD_SR, DMAC_CTLx.LLP_D_EN, and
DMAC_CFGx.RELOAD_DS are illegal, and causes indeterminate or erroneous behavior.

24.3.5.1 Programming Examples

24.3.5.2 Single-block Transfer (Row 1)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: DMAC_ClearTfr, DMAC_ClearBlock,
DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr. Reading the Interrupt
Raw Status and Interrupt Status registers confirms that all interrupts have been
cleared.

3. Program the following channel registers:
a. Write the starting source address in the DMAC_SARX register for channel x.
b. Write the starting destination address in the DMAC_DARX register for channel x.

c. Program DMAC_CTLx and DMAC_CFGx according to Row 1 as shown in Table
24-2 on page 278. Program the DMAC_LLPx register with ‘0’.
d. Write the control information for the DMA transfer in the DMAC_CTLx register for
channel x. For example, in the register, you can program the following:
— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the DMAC_CTLx
register.

A ||'|E|,® 281

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

— ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. Write the channel configuration information into the DMAC_CFGx register for chan-
nel x.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests.
Writing a ‘1’ activates the software handshaking interface to handle
source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign a handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

f. If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the
DMAC_SGRXx register for channel x.

g. If scatter is enabled (DMAC_CTLx.D_SCAT_EN, program the DMAC_DSRXx regis-
ter for channel x.

After the DMAC selected channel has been programmed, enable the channel by writing
a ‘1’ to the DMAC_ChEnReg.CH_EN bit. Make sure that bit O of the
DMAC_DmaCfgReg register is enabled.

Source and destination request single and burst DMA transactions to transfer the block
of data (assuming non-memory peripherals). The DMAC acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the Block Complete or Transfer Complete interrupts,
or poll for the Channel Enable (DMAC_ChEnReg.CH_EN) bit until it is cleared by hard-
ware, to detect when the transfer is complete.

24.3.5.3 Multi-block Transfer with Linked List for Source and Linked List for Destination (Row 10)

1.
2.

6249D-ATARM-20-Dec-07

Read the Channel Enable register to choose a free (disabled) channel.

Set up the chain of Linked List Items (otherwise known as block descriptors) in memory.
Write the control information in the LLI.DMAC_CTLx register location of the block
descriptor for each LLI in memory (see Figure 24-8 on page 286) for channel x. For
example, in the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control device by programming the TT_FC of the DMAC_CTLx
register.

b. Set up the transfer characteristics, such as:

— i. Transfer width for the source in the SRC_TR_WIDTH field.

— ii. Transfer width for the destination in the DST_TR_WIDTH field.

— iii. Source master layer in the SMS field where source resides.

— iv. Destination master layer in the DMS field where destination resides.

A ||'|E|,® 282

e A T91SAM9263 Preliminary

— v. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.

3. Write the channel configuration information into the DMAC_CFGx register for channel
X.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign the handshaking interface to the source and destination periph-
eral. This requires programming the SRC_PER and DEST_PER bits, respectively.

4. Make sure that the LLI.DMAC_CTLx register locations of all LLI entries in memory

(except the last) are set as shown in Row 10 of Table 24-2 on page 278. The

LLI.DMAC_CTLx register of the last Linked List ltem must be set as described in Row 1

of Table 24-2. Figure 24-7 on page 285 shows a Linked List example with two list items.

5. Make sure that the LLI.DMAC_LLPx register locations of all LLI entries in memory

(except the last) are non-zero and point to the base address of the next Linked List

Item.

6. Make sure that the LLI.DMAC_SARXx/LLI.DMAC_DARX register locations of all LLI

entries in memory point to the start source/destination block address preceding that LLI

fetch.

7. Make sure that the LLI.DMAC_CTLx.DONE field of the LLI.DMAC_CTLXx register loca-
tions of all LLI entries in memory are cleared.

8. If gatheris enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx
register for channel x.

9. If scatteris enabled (DMAC_CTLx.D_SCAT_EN is enabled), program the DMAC_DSRXx
register for channel x.

10. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: DMAC_ClearTfr, DMAC_ClearBlock,
DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr. Reading the Interrupt
Raw Status and Interrupt Status registers confirms that all interrupts have been
cleared.

11. Program the DMAC_CTLx, DMAC_CFGx registers according to Row 10 as shown in
Table 24-2 on page 278.

12. Program the DMAC_LLPx register with DMAC_LLPx(0), the pointer to the first Linked
List item.

13. Finally, enable the channel by writing a ‘1’ to the DMAC_ChEnReg.CH_EN bit. The
transfer is performed.

14. The DMAC fetches the first LLI from the location pointed to by DMAC_LLPx(0).

Note: The LLI.DMAC_SARX, LLI. DMAC_DARYX, LLI.DMAC_LLPx and LLI.DMAC_CTLx registers are
fetched. The DMAC automatically reprograms the DMAC_SARx, DMAC_DARx, DMAC_LLPx and
DMAC_CTLx channel registers from the DMAC_LLPx(0).

15. Source and destination request single and burst DMA transactions to transfer the block
of data (assuming non-memory peripheral). The DMAC acknowledges at the comple-
tion of every transaction (burst and single) in the block and carry out the block transfer.

16. The DMAC does not wait for the block interrupt to be cleared, but continues fetching the
next LLI from the memory location pointed to by current DMAC_LLPx register and auto-

A ||'|E|%D 283

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

matically reprograms the DMAC_SARx, DMAC_DARx, DMAC_LLPx and DMAC_CTLx
channel registers. The DMA transfer continues until the DMAC determines that the
DMAC_CTLx and DMAC_LLPx registers at the end of a block transfer match that
described in Row 1 of Table 24-2 on page 278. The DMAC then knows that the previ-
ous block transferred was the last block in the DMA transfer. The DMA transfer might
look like that shown in Figure 24-6 on page 284.

Figure 24-6. Multi-Block with Linked List Address for Source and Destination

Address of

Address of .
Destination Layer

Source Layer

Block 2 Block 2
SAR(2) — DAR(2) —>
Block 1 Block 1
SAR(1) — DAR(1) —>
Block O Block O
SAR(0) —» DAR(0) —
Source Blocks Destination Blocks

If the user needs to execute a DMA transfer where the source and destination address are con-
tiguous but the amount of data to be transferred is greater than the maximum block size
DMAC_CTLx.BLOCK_TS, then this can be achieved using the type of multi-block transfer as
shown in Figure 24-7 on page 285.

A ||'|E|,® 284

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 24-7. Multi-Block with Linked Address for Source and Destination Blocks are Contiguous

Address of Address of
Source Layer Destination Layer

Block 2
/ < DAR(3)
Block 2 Block 2
SAR@3) —> / < DAR(?)
Block 2 Block 1
SAR(2) —— / <« DAR(1)
Block 1 Block 0
SAR(1) —> / <« DAR(0)
Block 0
SAR(0) —»
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 24-8 on page 286.

A ||'|E|'® 285

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 24-8. DMA Transfer Flow for Source and Destination Linked List Address

Channel enabled by
software

A 4

LLI Fetch]

v

Hardware reprograms
SARx, DARXx, CTLXx, LLPx

DMAC block transfer

!

Source/destination
status fetch

Block Complete interrupt _______ l
generated here

Is DMAC in
Row1 of
MAC State Machine Table?

no

DMAC transfer Complete
interrupt generated here

, | ves

Channel Disabled by
hardware

24.3.5.4 Multi-block Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 4)
1. Read the Channel Enable register to choose an available (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: DMAC_ClearTfr, DMAC_ClearBlock,
DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr. Reading the Interrupt
Raw Status and Interrupt Status registers confirms that all interrupts have been
cleared.

3. Program the following channel registers:

A ||'|E|%D 286

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

a. Write the starting source address in the DMAC_SARX register for channel x.
Write the starting destination address in the DMAC_DARX register for channel x.

Program DMAC_CTLx and DMAC_CFGx according to Row 4 as shown in Table
24-2 on page 278. Program the DMAC_LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the DMAC_CTLXx register for
channel x. For example, in the register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the DMAC_CTLx
register.

— ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the
DMAC_SGRXx register for channel x.

f. If scatter is enabled (DMAC_CTLx.D_SCAT_EN), program the DMAC_DSRXx regis-
ter for channel x.

g. Write the channel configuration information into the DMAC_CFGx register for chan-
nel x. Ensure that the reload bits, DMAC_CFGx. RELOAD_SR and
DMAC_CFGx.RELOAD_DS are enabled.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a ‘1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMAC selected channel has been programmed, enable the channel by writing
a ‘1’ to the DMAC_ChEnReg.CH_EN bit. Make sure that bit 0 of the
DMAC_DmaCfgReg register is enabled.

5. Source and destination request single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). The DMAC acknowledges on com-
pletion of each burst/single transaction and carry out the block transfer.

6. When the block transfer has completed, the DMAC reloads the DMAC_SARX,
DMAC_DARx and DMAC_CTLx registers. Hardware sets the Block Complete interrupt.
The DMAC then samples the row number as shown in Table 24-2 on page 278. If the
DMAC is in Row 1, then the DMA transfer has completed. Hardware sets the transfer
complete interrupt and disables the channel. So you can either respond to the Block
Complete or Transfer Complete interrupts, or poll for the Channel Enable
(DMAC_ChEnReg.CH_EN) bit until it is disabled, to detect when the transfer is com-
plete. If the DMAC is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

A ||'|E|,® 287

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

a. If interrupts are enabled (DMAC_CTLx.INT_EN = 1) and the block complete inter-
rupt is un-masked (DMAC_MaskBlock[x] = 1’b1, where x is the channel number)
hardware sets the block complete interrupt when the block transfer has completed.
It then stalls until the block complete interrupt is cleared by software. If the next
block is to be the last block in the DMA transfer, then the block complete ISR (inter-
rupt service routine) should clear the reload bits in the DMAC_CFGx.RELOAD_SR
and DMAC_CFGx.RELOAD_DS registers. This put the DMAC into Row 1 as
shown in Table 24-2 on page 278. If the next block is not the last block in the DMA
transfer, then the reload bits should remain enabled to keep the DMAC in Row 4.

b. Ifinterrupts are disabled (DMAC_CTLX.INT_EN = 0) or the block complete interrupt
is masked (DMAC_MaskBlock[x] = 1’b0, where x is the channel number), then
hardware does not stall until it detects a write to the block complete interrupt clear
register but starts the next block transfer immediately. In this case software must
clear the reload bits in the DMAC_CFGx.RELOAD_SR and
DMAC_CFGx.RELOAD_DS registers to put the DMAC into ROW 1 of Table 24-2
on page 278 before the last block of the DMA transfer has completed. The transfer
is similar to that shown in Figure 24-9 on page 288. The DMA transfer flow is shown
in Figure 24-10 on page 289.

Figure 24-9. Multi-Block DMA Transfer with Source and Destination Address Auto-reloaded

Address of Address of
Source Layer Destination Layer

BlockO

Block1
BIock2

SAR —»

<+— DAR

BIockN

Source Blocks Destination Blocks

AIMEL 288

6249D-ATARM-20-Dec-07 ®

e A T91SAM9263 Preliminary

Figure 24-10. DMA Transfer Flow for Source and Destination Address Auto-reloaded

24.3.5.5

DMAC transfer Complete
interrupt generated here yes Is DMAC in Row1 of

Channel Enabled by
software

'

Block Transfer —

!

Reload SARx, DARx, CTLx

Block Complete interrupt i
generated here

DMAC State Machine Table?

Channel Disabled by
hardware

CTLx.INT_EN=1
8&
MASKBLOCK[x]=1?

Stall until block complete
interrupt cleared by software

Muilti-block Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row?7)

1.
2.

6249D-ATARM-20-Dec-07

Read the Channel Enable register to choose a free (disabled) channel.

Set up the chain of linked list items (otherwise known as block descriptors) in memory.

Write the control information in the LLI.DMAC_CTLXx register location of the block

descriptor for each LLI in memory for channel x. For example, in the register you can

program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control peripheral by programming the TT_FC of the DMAC_CTLx

register.
b. Set up the transfer characteristics, such as:
— i. Transfer width for the source in the SRC_TR_WIDTH field.
— ii. Transfer width for the destination in the DST_TR_WIDTH field.
— iii. Source master layer in the SMS field where source resides.
— iv. Destination master layer in the DMS field where destination resides.
— v. Incrementing/decrementing or fixed address for source in SINC field.

ATMEL

289

e A T91SAM9263 Preliminary

— vi. Incrementing/decrementing or fixed address for destination DINC field.

3. Write the starting source address in the DMAC_SARX register for channel x.
Note: The values in the LLI.DMAC_SARX register locations of each of the Linked List ltems (LLIs) setup
up in memory, although fetched during a LLI fetch, are not used.
4. Write the channel configuration information into the DMAC_CFGx register for channel
X.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

5. Make sure that the LLI.DMAC_CTLXx register locations of all LLIs in memory (except the
last) are set as shown in Row 7 of Table 24-2 on page 278 while the LLI.DMAC_CTLx
register of the last Linked List item must be set as described in Row 1 of Table 24-2.
Figure 24-8 on page 286 shows a Linked List example with two list items.

6. Make sure that the LLI.DMAC_LLPx register locations of all LLIs in memory (except the
last) are non-zero and point to the next Linked List Item.

7. Make sure that the LLI.DMAC_DARX register location of all LLIs in memory point to the
start destination block address proceeding that LLI fetch.

8. Make sure that the LLI.DMAC_CTLx.DONE field of the LLI.DMAC_CTLXx register loca-
tions of all LLIs in memory is cleared.

9. If gatheris enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx
register for channel x.

10. If scatter is enabled (DMAC_CTLx.D_SCAT_EN is enabled), program the DMAC_DSRx
register for channel x.

11. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: DMAC_ClearTfr, DMAC_ClearBlock,
DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr. Reading the Interrupt
Raw Status and Interrupt Status registers confirms that all interrupts have been
cleared.

12. Program the DMAC_CTLx, DMAC_CFGx registers according to Row 7 as shown in
Table 24-2 on page 278.

13. Program the DMAC_LLPx register with DMAC_LLPx(0), the pointer to the first Linked
List item.

14. Finally, enable the channel by writing a ‘1’ to the DMAC_ChEnReg.CH_EN bit. The
transfer is performed. Make sure that bit 0 of the DMAC_DmaCfgReg register is
enabled.

15. The DMAC fetches the first LLI from the location pointed to by DMAC_LLPx(0).

Note: The LLI.DMAC_SARYX, LLI.DMAC_DARYX, LLI. DMAC_LLPx and LLI.DMAC_CTLx registers are
fetched. The LLI.DMAC_SARX register although fetched is not used.

16. Source and destination request single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). DMAC acknowledges at the com-
pletion of every transaction (burst and single) in the block and carry out the block
transfer.

A ||'|E|%D 290

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

17. The DMAC reloads the DMAC_SARX register from the initial value. Hardware sets the
block complete interrupt. The DMAC samples the row number as shown in Table 24-2
on page 278. If the DMAC is in Row 1 or 5, then the DMA transfer has completed. Hard-
ware sets the transfer complete interrupt and disables the channel. You can either
respond to the Block Complete or Transfer Complete interrupts, or poll for the Channel
Enable (DMAC_ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when
the transfer is complete. If the DMAC is not in Row 1 or 5 as shown in Table 24-2 on
page 278 the following steps are performed.

18. The DMA transfer proceeds as follows:

a. If interrupts are enabled (DMAC_CTLx.INT_EN = 1) and the block complete inter-
rupt is un-masked (DMAC_MaskBlock[x] = 1’b1, where x is the channel number)
hardware sets the block complete interrupt when the block transfer has completed.
It then stalls until the block complete interrupt is cleared by software. If the next
block is to be the last block in the DMA transfer, then the block complete ISR (inter-
rupt service routine) should clear the DMAC_CFGx.RELOAD_SR source reload
bit. This puts the DMAC into Row1 as shown in Table 24-2 on page 278. If the next
block is not the last block in the DMA transfer, then the source reload bit should
remain enabled to keep the DMAC in Row 7 as shown in Table 24-2 on page 278.

b. Ifinterrupts are disabled (DMAC_CTLX.INT_EN = 0) or the block complete interrupt
is masked (DMAC_MaskBlock[x] = 1’b0, where x is the channel number) then hard-
ware does not stall until it detects a write to the block complete interrupt clear
register but starts the next block transfer immediately. In this case, software must
clear the source reload bit, DMAC_CFGx.RELOAD_SR, to put the device into Row
1 of Table 24-2 on page 278 before the last block of the DMA transfer has
completed.

19. The DMAC fetches the next LLI from memory location pointed to by the current
DMAC_LLPx register, and automatically reprograms the DMAC_DARx, DMAC_CTLx
and DMAC_LLPx channel registers. Note that the DMAC_SARX is not re-programmed
as the reloaded value is used for the next DMA block transfer. If the next block is the last
block of the DMA transfer then the DMAC_CTLx and DMAC_LLPx registers just fetched
from the LLI should match Row 1 of Table 24-2 on page 278. The DMA transfer might
look like that shown in Figure 24-11 on page 292.

A ||'|E|,® 291

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 24-11. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List Destination Address

Address of A.ddrgss of
Source Layer Destination Layer

BlockQ

DAR(0)_,

Block1

DAR(1)_,

Block2

SAR—»

BlockN
DAR(N)_’

Source Blocks Destination Blocks

The DMA Transfer flow is shown in Figure 24-12 on page 293.

AIMEL 292
6249D-ATARM—20-Dec-07 I ©

e A T91SAM9263 Preliminary

Figure 24-12. DMA Transfer Flow for Source Address Auto-reloaded and Linked List Destination Address

Channel Enabled by
software

|

LLI Fetch

!

Hardware reprograms
DARXx, CTLx, LLPx

|

DMAC block transfer

|

Source/destination status fetch

|

Reload SARx

Block Complete interrupt _ l
generated here

Is DMAC in
Row1 or Row5 of
DMAC State Machine Table?

DMAC Transfer Complete yes

interrupt generated here

Channel Disabled by
hardware

CTLx.INT_EN=1
&&
MASKBLOCK[X]=1 ?

Stall until block interrupt
Cleared by hardware

24.3.5.6 Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 3)
1. Read the Channel Enable register to choose a free (disabled) channel.

2. Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: DMAC_ClearTfr, DMAC_ClearBlock,
DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr. Reading the Interrupt
Raw Status and Interrupt Status registers confirms that all interrupts have been
cleared.

3. Program the following channel registers:

A ||'|E|%D 293

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

a. Write the starting source address in the DMAC_SARX register for channel x.
Write the starting destination address in the DMAC_DARX register for channel x.

Program DMAC_CTLx and DMAC_CFGx according to Row 3 as shown in Table
24-2 on page 278. Program the DMAC_LLPx register with ‘0’.

d. Write the control information for the DMA transfer in the DMAC_CTLXx register for
channel x. For example, in this register, you can program the following:

— i. Set up the transfer type (memory or non-memory peripheral for source and
destination) and flow control device by programming the TT_FC of the DMAC_CTLx
register.

— ii. Set up the transfer characteristics, such as:

Transfer width for the source in the SRC_TR_WIDTH field.
Transfer width for the destination in the DST_TR_WIDTH field.
Source master layer in the SMS field where source resides.

Destination master layer in the DMS field where destination resides.

Incrementing/decrementing or fixed address for source in SINC field.

Incrementing/decrementing or fixed address for destination in DINC field.

e. If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the
DMAC_SGRXx register for channel x.

f. If scatter is enabled (DMAC_CTLx.D_SCAT_EN), program the DMAC_DSRXx regis-
ter for channel x.

g. Write the channel configuration information into the DMAC_CFGx register for chan-
nel x.

— i. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires
programming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination requests
for the specific channel. Writing a 1’ activates the software handshaking interface to
handle source/destination requests.

— ii. If the hardware handshaking interface is activated for the source or destination
peripheral, assign handshaking interface to the source and destination peripheral.
This requires programming the SRC_PER and DEST_PER bits, respectively.

4. After the DMAC channel has been programmed, enable the channel by writing a ‘1’ to
the DMAC_ChEnReg.CH_EN bit. Make sure that bit 0 of the DMAC_DmaCfgReg regis-
ter is enabled.

5. Source and destination request single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). The DMAC acknowledges at the
completion of every transaction (burst and single) in the block and carries out the block
transfer.

6. When the block transfer has completed, the DMAC reloads the DMAC_SARX register.
The DMAC_DARX register remains unchanged. Hardware sets the block complete
interrupt. The DMAC then samples the row number as shown in Table 24-2 on page
278. If the DMAC is in Row 1, then the DMA transfer has completed. Hardware sets the
transfer complete interrupt and disables the channel. So you can either respond to the
Block Complete or Transfer Complete interrupts, or poll for the Channel Enable
(DMAC_ChEnReg.CH_EN) bit until it is cleared by hardware, to detect when the trans-
fer is complete. If the DMAC is not in Row 1, the next step is performed.

7. The DMA transfer proceeds as follows:

A ||'|E|,® 294

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

If interrupts are enabled (DMAC_CTLx.INT_EN = 1) and the block complete inter-
rupt is un-masked (DMAC_MaskBlock[x] = 1’b1, where x is the channel number)
hardware sets the block complete interrupt when the block transfer has completed.
It then stalls until the block complete interrupt is cleared by software. If the next
block is to be the last block in the DMA transfer, then the block complete ISR (inter-
rupt service routine) should clear the source reload bit,
DMAC_CFGx.RELOAD_SR. This puts the DMAC into Row1 as shown in Table 24-
2 on page 278. If the next block is not the last block in the DMA transfer then the
source reload bit should remain enabled to keep the DMAC in Row3 as shown in
Table 24-2 on page 278.

If interrupts are disabled (DMAC_CTLXx.INT_EN = 0) or the block complete interrupt
is masked (DMAC_MaskBlock[x] = 1’b0, where x is the channel number) then hard-
ware does not stall until it detects a write to the block complete interrupt clear
register but starts the next block transfer immediately. In this case software must
clear the source reload bit, DMAC_CFGx.RELOAD_SR, to put the device into
ROW 1 of Table 24-2 on page 278 before the last block of the DMA transfer has
completed.

The transfer is similar to that shown in Figure 24-13 on page 295.

The DMA Transfer flow is shown in Figure 24-14 on page 296.

Figure 24-13. Multi-block Transfer with Source Address Auto-reloaded and Contiguous Destination Address

6249D-ATARM-20-Dec-07

Source Layer

Address of
Destination Layer

«— DAR(2)

«— DAR(1)

- DAR(0)
Source Blocks Destination Blocks

ATMEL

295

e A T91SAM9263 Preliminary

Figure 24-14. DMA Transfer for Source Address Auto-reloaded and Contiguous Destination Address

Block Complete interrupt
generated here

DMAC Transfer Complete
interrupt generated here

Channel Enabled by
software

Block Transfer

Reload SARx, CTLx

—

yes Is DMAC in Row1 of

DMAC State Machine Table?

N

Channel Disabled by
hardware

CTLX.INT_EN=1
&&
MASKBLOCK][x]=1?

l yes

Stall until Block Complete
interrupt cleared by software

24.3.5.7 Multi-block DMA Transfer with Linked List for Source and Contiguous Destination Address (Row 8)

1.
2.

6249D-ATARM-20-Dec-07

Read the Channel Enable register to choose a free (disabled) channel.

Set up the linked list in memory. Write the control information in the LLI. DMAC_CTLx
register location of the block descriptor for each LLI in memory for channel x. For exam-
ple, in the register, you can program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and desti-
nation) and flow control device by programming the TT_FC of the DMAC_CTLx

register.
b. Set up the transfer characteristics, such as:
. Transfer width for the source in the SRC_TR_WIDTH field.
— ii. Transfer width for the destination in the DST_TR_WIDTH field.
— iii. Source master layer in the SMS field where source resides.
— iv. Destination master layer in the DMS field where destination resides.

A ||'|E|%D 296

e A T91SAM9263 Preliminary

Note:

10.

11.

12.

13.

14.

15.
Note:

16.

6249D-ATARM-20-Dec-07

— v. Incrementing/decrementing or fixed address for source in SINC field.
— vi. Incrementing/decrementing or fixed address for destination DINC field.

Write the starting destination address in the DMAC_DARX register for channel x.

The values in the LL.DMAC_DARX register location of each Linked List Item (LLI) in memory,
although fetched during an LLI fetch, are not used.
Write the channel configuration information into the DMAC_CFGx register for channel
X.

a. Designate the handshaking interface type (hardware or software) for the source
and destination peripherals. This is not required for memory. This step requires pro-
gramming the HS_SEL_SRC/HS_SEL_DST bits, respectively. Writing a ‘0’
activates the hardware handshaking interface to handle source/destination
requests for the specific channel. Writing a ‘1’ activates the software handshaking
interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination

peripheral, assign handshaking interface to the source and destination peripherals.
This requires programming the SRC_PER and DEST_PER bits, respectively.

Make sure that all LLI.DMAC_CTLx register locations of the LLI (except the last) are set
as shown in Row 8 of Table 24-2 on page 278, while the LLI.DMAC_CTLx register of
the last Linked List item must be set as described in Row 1 of Table 24-2. Figure 24-8
on page 286 shows a Linked List example with two list items.

Make sure that the LLI.DMAC_LLPx register locations of all LLIs in memory (except the
last) are non-zero and point to the next Linked List Item.

Make sure that the LLI.DMAC_SARKX register location of all LLIs in memory point to the
start source block address proceeding that LLI fetch.

Make sure that the LL.DMAC_CTLx.DONE field of the LLI.DMAC_CTLXx register loca-
tions of all LLIs in memory is cleared.

If gather is enabled (DMAC_CTLx.S_GATH_EN is enabled), program the DMAC_SGRx
register for channel x.

If scatter is enabled (DMAC_CTLx.D_SCAT_EN is enabled), program the DMAC_DSRx
register for channel x.

Clear any pending interrupts on the channel from the previous DMA transfer by writing
to the Interrupt Clear registers: DMAC_ClearTfr, DMAC_ClearBlock,
DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearErr. Reading the Interrupt
Raw Status and Interrupt Status registers confirms that all interrupts have been
cleared.

Program the DMAC_CTLx, DMAC_CFGx registers according to Row 8 as shown in
Table 24-2 on page 278

Program the DMAC_LLPx register with DMAC_LLPx(0), the pointer to the first Linked
List item.

Finally, enable the channel by writing a ‘1’ to the DMAC_ChEnReg.CH_EN bit. The
transfer is performed. Make sure that bit 0 of the DMAC_DmaCfgReg register is
enabled.

The DMAC fetches the first LLI from the location pointed to by DMAC_LLPx(0).

The LL.DMAC_SARXx, LLI.DMAC_DARX, LLI.DMAC_LLPx and LL.DMAC_CTLx registers are
fetched. The LLI.DMAC_DARX register location of the LLI although fetched is not used. The
DMAC_DARX register in the DMAC remains unchanged.

Source and destination requests single and burst DMAC transactions to transfer the
block of data (assuming non-memory peripherals). The DMAC acknowledges at the

A ||'|E|,® 297

e A T91SAM9263 Preliminary

completion of every transaction (burst and single) in the block and carry out the block
transfer.

17. The DMAC does not wait for the block interrupt to be cleared, but continues and fetches
the next LLI from the memory location pointed to by current DMAC_LLPx register and
automatically reprograms the DMAC_SARx, DMAC_CTLx and DMAC_LLPx channel
registers. The DMAC_DARX register is left unchanged. The DMA transfer continues
until the DMAC samples the DMAC_CTLx and DMAC_LLPx registers at the end of a
block transfer match that described in Row 1 of Table 24-2 on page 278. The DMAC
then knows that the previous block transferred was the last block in the DMA transfer.

The DMAC transfer might look like that shown in Figure 24-15 on page 298 Note that the desti-
nation address is decrementing.

Figure 24-15. DMA Transfer with Linked List Source Address and Contiguous Destination Address

Address of Address of
Source Layer Destination Layer
Block 2
SAR(2) —> \ Block 2
< DAR(2)
Block 1 > | Block 1
SAR(1) —» <— DAR(1)
/ Block 0
Block 0 < DAR(0)
SAR(0) —
Source Blocks Destination Blocks

The DMA transfer flow is shown in Figure 24-16 on page 299.

A ||'|E|%D 298

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 24-16. DMA Transfer Flow for Source Address Auto-reloaded and Contiguous Destination Address

Channel Enabled by
software

LLI Fetch

A

Hardware reprograms
SARXx, CTLx, LLPx

DMAC block transfer

Source/destination
status fetch

Block Complete interrupt —— l
generated here

Is DMAC in
Row 1 of Table 4 ?

no

DMAC Transfer Complete
interrupt generated here

Channel Disabled by
hardware

24.3.6 Disabling a Channel Prior to Transfer Completion

Under normal operation, software enables a channel by writing a ‘1’ to the Channel Enable Reg-
ister, DMAC_ChEnReg.CH_EN, and hardware disables a channel on transfer completion by

clearing the DMAC_ChEnReg.CH_EN register bit.

The recommended way for software to disable a channel without losing data is to use the
CH_SUSP bit in conjunction with the FIFO_EMPTY bit in the Channel Configuration Register

(DMAC_CFGx) register.

1. If software wishes to disable a channel prior to the DMA transfer completion, then it can
set the DMAC_CFGx.CH_SUSP bit to tell the DMAC to halt all transfers from the
source peripheral. Therefore, the channel FIFO receives no new data.

2. Software can now poll the DMAC_CFGx.FIFO_EMPTY bit until it indicates that the

channel FIFO is empty.

ATMEL

6249D-ATARM-20-Dec-07

299

e A T91SAM9263 Preliminary

3. The DMAC_ChEnReg.CH_EN bit can then be cleared by software once the channel
FIFO is empty.

When DMAC_CTLx.SRC_TR_WIDTH is less than DMAC_CTLx.DST_TR_WIDTH and the
DMAC_CFGx.CH_SUSP bit is high, the DMAC_CFGx.FIFO_EMPTY is asserted once the con-
tents of the FIFO do not permit a single word of DMAC_CTLx.DST_TR_WIDTH to be formed.
However, there may still be data in the channel FIFO but not enough to form a single transfer of
DMAC_CTLx.DST_TR_WIDTH width. In this configuration, once the channel is disabled, the
remaining data in the channel FIFO are not transferred to the destination peripheral. It is permit-
ted to remove the channel from the suspension state by writing a ‘0’ to the
DMAC_CFGx.CH_SUSP register. The DMA transfer completes in the normal manner.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

24.3.6.1 Abnormal Transfer Termination

6249D-ATARM-20-Dec-07

A DMAC DMA transfer may be terminated abruptly by software by clearing the channel enable
bit, DMAC_ChEnReg.CH_EN. This does not mean that the channel is disabled immediately
after the DMAC_ChEnReg.CH_EN bit is cleared over the AHB slave interface. Consider this as
a request to disable the channel. The DMAC_ChEnReg.CH_EN must be polled and then it must
be confirmed that the channel is disabled by reading back 0. A case where the channel is not be
disabled after a channel disable request is where either the source or destination has received a
split or retry response. The DMAC must keep re-attempting the transfer to the system HADDR
that originally received the split or retry response until an OKAY response is returned. To do oth-
erwise is an AMBA protocol violation.

Software may terminate all channels abruptly by clearing the global enable bit in the DMAC Con-
figuration Register (DMAC_DmaCfgReg[0]). Again, this does not mean that all channels are
disabled immediately after the DMAC_DmaCfgReg[0] is cleared over the AHB slave interface.
Consider this as a request to disable all channels. The DMAC_ChEnReg must be polled and
then it must be confirmed that all channels are disabled by reading back ‘0’.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals such as a source FIFO this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.

Note: If a channel is disabled by software, an active single or burst transaction is not guaranteed to
receive an acknowledgement.

A ||'|E|%D 300

e A T91SAM9263 Preliminary

24.4 DMA Controller (DMAC) User Interface

Table 24-3. DMA Controller (DMAC) User Interface
Offset Register Register Name Access Reset Value
0x0 Channel 0 Source Address Register DMAC_SARO Read/Write 0x0
0x4 Reserved -
0x8 Channel 0 Destination Address Register DMAC_DARO Read/Write 0x0
0xC Reserved -
0x10 Channel 0 Linked List Pointer Register DMAC_LLPO Read/Write 0x0
0x14 Reserved -
0x18 Channel 0 Control Register Low DMAC_CTLOL Read/Write
0x1C Channel 0 Control Register High DMAC_CTLOH Read/Write
0x20 - Ox3C | Reserved
0x40 Channel 0 Configuration Register low DMAC_CFGOL Read/Write 0x00000c00
0x44 Channel 0 Configuration Register High DMAC_CFGOH Read/Write 0x00000004
0x48 Channel 0 Source Gather Register DMAC_SGRO0 Read/Write 0x0
0x4C Reserved
0x50 Channel 0 Destination Scatter Register DMAC_DSRO Read/Write 0x0
0x54 Reserved
0x58 Channel 1 Source Address Register DMAC_SAR1 Read/Write 0x0
0x5C Reserved
0x60 Channel 1 Destination Address Register DMAC_DAR1 Read/Write 0x0
0x64 Reserved
0x68 Channel 1 Linked List Pointer Register DMAC_LLP1 Read/Write 0x0
0x7C Reserved
0x70 Channel 1 Control Register Low DMAC_CTL1L Read/Write
0x74 Channel 1 Control Register High DMAC_CTL1H Read/Write
0x78 - 0x94 | Reserved
0x98 Channel 1 Configuration Register Low DMAC_CFG1L Read/Write 0x00000c20
0x9C Channel 1 Configuration Register High DMAC_CFG1H Read/Write 0x00000004
0xa0 Channel 1 Source Gather Register DMAC_SGR1 Read/Write 0x0
Oxa4 Reserved
0xa8 Channel 1 Destination Scatter Register DMAC_DSR1 Read/Write 0x0
Oxac..0x2bc | Reserved
0x2c0 Raw Status for IntTfr Interrupt DMAC_RawTfr Read 0x0
0x2c4 Reserved
0x2c8 Raw Status for IntBlock Interrupt DMAC_RawBlock Read 0x0
Ox2cc Reserved
0x2d0 Raw Status for IntSrcTran Interrupt DMAC_RawSrcTran Read 0x0

A ||'|E|%D 301

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 24-3. DMA Controller (DMAC) User Interface

Offset Register Register Name Access Reset Value
0x2d4 Reserved

0x2d8 Raw Status for IntDstTran Interrupt DMAC_RawDstTran Read 0x0
0x2dc Reserved

0x2e0 Raw Status for IntErr Interrupt DMAC_RawErr Read 0x0
0x2e4 Reserved

0x2e8 Status for IntTfr Interrupt DMAC_StatusTfr Read 0x0
Ox2ec Reserved

0x2f0 Status for IntBlock Interrupt DMAC_StatusBlock Read 0x0
0x2f4 Reserved

0x2f8 Status for IntSrcTran Interrupt DMAC_StatusSrcTran Read 0x0
0x2fc Reserved

0x300 Status for IntDstTran Interrupt DMAC_StatusDstTran Read 0x0
0x304 Reserved

0x308 Status for IntErr Interrupt DMAC_StatusErr Read 0x0
0x30c Reserved

0x310 Mask for IntTfr Interrupt DMAC_MaskTfr Read/Write 0x0
0x314 Reserved

0x318 Mask for IntBlock Interrupt DMAC_MaskBlock Read/Write 0x0
0x31c Reserved

0x320 Mask for IntSrcTran Interrupt DMAC_MaskSrcTran Read/Write 0x0
0x324 Reserved

0x328 Mask for IntDstTran Interrupt DMAC_MaskDstTran Read/Write 0x0
0x32c Reserved

0x330 Mask for IntErr Interrupt DMAC_MaskErr Read/Write 0x0
0x334 Reserved

0x338 Clear for IntTfr Interrupt DMAC_ClearTir Write 0x0
0x33c Reserved

0x340 Clear for IntBlock Interrupt DMAC_ClearBlock Write 0x0
0x344 Reserved

0x348 Clear for IntSrcTran Interrupt DMAC_ClearSrcTran Write 0x0
0x34c Reserved

0x350 Clear for IntDstTran Interrupt DMAC_ClearDstTran Write 0x0
0x354 Reserved

0x358 Clear for IntErr Interrupt DMAC_ClearErr Write 0x0
0x35¢ Reserved

0x360 Status for each interrupt type DMAC_Statusint Read 0x0

302

6249D-ATARM-20-Dec-07

ATMEL

e A T91SAM9263 Preliminary

Table 24-3. DMA Controller (DMAC) User Interface

Offset Register Register Name Access Reset Value
0x364 Reserved

0x368 Source Software Transaction Request Register DMAC_ReqSrcReg Read/Write 0x0
0x36¢ Reserved

0x370 Destination Software Transaction Request Register | DMAC_ReqgDstReg Read/Write 0x0
0x374 Reserved

0x378 Single Source Transaction Request Register DMAC_SgIReqSrcReg Read/Write 0x0
0x37¢ Reserved

0x380 Single Destination Transaction Request Register DMAC_SglReqgDstReg Read/Write 0x0
0x384 Reserved

0x388 Last Source Transaction Request Register DMAC_LstSrcReg Read/Write 0x0
0x38c Reserved

0x390 Last Destination Transaction Request Register DMAC_LstDstReg Read/Write 0x0
0x394 Reserved

0x398 DMA Configuration Register DMAC_DmaCfgReg Read/Write 0x0
0x39¢c Reserved

0x3a0 Channel Enable Register DMAC_ChEnReg Read/Write 0x0
0x3a4 Reserved

0x3a8 DMA ID Register DMAC_IdReg Read 0x203a125a
0x3ac Reserved

0x3b0 DMA Test Register DMAC_DmaTestReg Read/Write

0x3b4 Reserved

0x3b8 DMA Version ID Register Read

0x3b8 Reserved

A ||'|E|%D 303

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.41 Channel x Source Address Register
Name: DMAC_SARXx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| SADD |
23 22 21 20 19 18 17 16

| SADD |
15 14 13 12 11 10 9 8

| SADD |
7 6 5 4 3 2 1 0

| SADD |

The address offset for each channel is: [x *0x58]

For example, SARO: 0x000, SAR1: 0x058, etc.

e SADD: Source Address of DMA transfer

The starting AMBA source address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the source
address of the current AMBA transfer.

Updated after each source AMBA transfer. The SINC field in the DMAC_CTLx register determines whether the address
increments, decrements, or is left unchanged on every source AMBA transfer throughout the block transfer.

A ||'|E|%D 304

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.2 Channel x Destination Address Register
Name: DMAC_DARXx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| DADD |
23 22 21 20 19 18 17 16

| DADD |
15 14 13 12 11 10 9 8

| DADD |
7 6 5 4 3 2 1 0

| DADD |

The address offset for each channel is: 0x08+[x * 0x58]

For example, DARO: 0x008, DAR1: 0x060, etc.

e DADD: Destination Address of DMA transfer

The starting AMBA destination address is programmed by software before the DMA channel is enabled or by a LLI update
before the start of the DMA transfer. As the DMA transfer is in progress, this register is updated to reflect the destination
address of the current AMBA transfer.

Updated after each destination AMBA transfer. The DINC field in the DMAC_CTLx register determines whether the
address increments, decrements or is left unchanged on every destination AMBA transfer throughout the block transfer.

A ||'|E|%D 305

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

2443 Linked List Pointer Register for Channel x
Name: DMAC_LLPx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| LOC |
23 22 21 20 19 18 17 16

| LOC |
15 14 13 12 11 10 9 8

| LOC |
7 6 5 4 3 2 1 0

| LOC 0 0 |

The address offset for each channel is: 0x10+[x * 0x58]

For example, LLPO: 0x010, LLP1: 0x068, etc.

e LOC: Address of the next LLI
Starting address in memory of next LLI if block chaining is enabled. Note that the two LSBs of the starting address are not
stored because the address is assumed to be aligned to a 32-bit boundary.

The user need to program this register to point to the first Linked List Item (LLI) in memory prior to enabling the channel if
block chaining is enabled.

The LLP register has two functions:

1. The logical result of the equation LLP.LOC != 0 is used to set up the type of DMA trans-
fer (single or multi-block).
If LLP.LOC is set to 0x0, then transfers using linked lists are NOT enabled. This register must be programmed prior to
enabling the channel in order to set up the transfer type.
It (LLP.LOC != 0) contains the pointer to the next Linked Listed Item for block chaining using linked lists.

2. The DMAC_LLPx register is also used to point to the address where write back of the
control and source/destination status information occurs after block completion.

A ||'|E|%D 306

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

2444 Control Register for Channel x Low
Name: DMAC_CTLxL

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| - | - - LLP_S_EN | LLP_D_EN | SMS | DMS |
23 22 21 20 19 18 17 16

| DMS | TT_FC | - | D_SCAT_EN | S_GATH_EN | SRC_MSIZE |
15 14 13 12 11 10 9 8

| SRC_MSIZE | DEST_MSIZE | SINC | DINC |
7 6 5 4 3 2 1 0

| DINC | SRC_TR_WIDTH | DST_TR_WIDTH | INT_EN |

The address offset for each channel is: 0x18+[x * 0x58]
For example, CTLO: 0x018, CTL1: 0x070, etc.

This register contains fields that control the DMA transfer. The DMAC_CTLXL register is part of the block descriptor (linked
list item) when block chaining is enabled. It can be varied on a block-by-block basis within a DMA transfer when block
chaining is enabled.

¢ INT_EN: Interrupt Enable Bit
If set, then all five interrupt generating sources are enabled.

e DST_TR_WIDTH: Destination Transfer Width

e SRC_TR_WIDTH: Source Transfer Width

SRC_TR_WIDTH/DST_TR_WIDTH Size (bits)
000 8

001 16

010 32

Other Reserved

* DINC: Destination Address Increment
Indicates whether to increment or decrement the destination address on every destination AMBA transfer. If your device is
writing data to a destination peripheral FIFO with a fixed address, then set this field to “No change”.

00 = Increment

01 = Decrement

1x = No change

¢ SINC: Source Address Increment

Indicates whether to increment or decrement the source address on every source AMBA transfer. If your device is fetching
data from a source peripheral FIFO with a fixed address, then set this field to “No change”.

00 = Increment

01 = Decrement

A ||'|E|%D 307

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

1x = No change

e DEST_MSIZE: Destination Burst Transaction Length
Number of data items, each of width DMAC_CTLx.DST_TR_WIDTH, to be written to the destination every time a destina-
tion burst transaction request is made from either the corresponding hardware or software handshaking interface.

e SRC_MSIZE: Source Burst Transaction Length
Number of data items, each of width DMAC_CTLx.SRC_TR_WIDTH, to be read from the source every time a source burst
transaction request is made from either the corresponding hardware or software handshaking interface.

e S_GATH_EN: Source Gather Enable Bit

0 = Gather is disabled.

1 = Gather is enabled.

Gather on the source side is only applicable when the DMAC_CTLx.SINC bit indicates an incrementing or decrementing
address control.

e D_SCAT_EN: Destination Scatter Enable Bit

0 = Scatter is disabled.

1 = Scatter is enabled.

Scatter on the destination side is only applicable when the DMAC_CTLXx.DINC bit indicates an incrementing or decrement-
ing address control.

e TT_FC: Transfer Type and Flow Control

The following transfer types are supported.

* Memory to Memory

* Memory to Peripheral

* Peripheral to Memory

Flow Control can be assigned to the DMAC, the source peripheral, or the destination peripheral.

TT_FC Transfer Type Flow Controller

000 Memory to Memory DMAC

001 Memory to Peripheral DMAC

010 Peripheral to Memory DMAC

011 Peripheral to Peripheral DMAC

100 Peripheral to Memory Peripheral

101 Peripheral to Peripheral Source Peripheral
110 Memory to Peripheral Peripheral

111 Peripheral to Peripheral Destination Peripheral

¢ DMS: Destination Master Select
Identifies the Master Interface layer where the destination device (peripheral or memory) resides.

00 = AHB master 1

A ||'|E|%D 308

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

01 = Reserved

10 = Reserved

11 = Reserved

* SMS: Source Master Select

Identifies the Master Interface layer where the source device (peripheral or memory) is accessed from.
00 = AHB master 1

01 = Reserved

10 = Reserved

11 = Reserved

e LLP_D_EN
Block chaining is only enabled on the destination side if the LLP_D_EN field is high and DMAC_LLPx.LOC is non-zero.

e LLP_S_EN
Block chaining is only enabled on the source side if the LLP_S_EN field is high and DMAC_LLPx.LOC is non-zero.

A ||'|E|%D 309

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

2445 Control Register for Channel x High
Name: DMAC_CTLxH

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - : - - - — |
23 22 21 20 19 18 17 16
I |
15 14 13 12 11 10 9 8
I - I - I - | DONE - I - I - - |
7 6 5 4 3 2 1 0

= T - T -] BLOCK_TS |

e BLOCK_TS: Block Transfer Size
When the DMAC is flow controller, this field is written by the user before the channel is enabled to indicate the block size.

The number programmed into BLOCK_TS indicates the total number of single transactions to perform for every block
transfer. The width of the single transaction is determined by DMAC_CTLx.SRC_TR_WIDTH.

e DONE: Done Bit

Software can poll the LLI DMAC_CTLx.DONE bit to see when a block transfer is complete. The LLI DMAC_CTLx.DONE bit
should be cleared when the linked lists are setup in memory prior to enabling the channel.

A ||'|E|%D 310

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.6 Configuration Register for Channel x Low
Name: DMAC_CFGxL

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

| RELOAD_DS | RELOAD_SR | MAX_ABRST |
23 22 21 20 19 18 17 16

| MAX_ABRST | SR_HS_POL | DS_HS_POL | LOCK_B | LOCK_CH |
15 14 13 12 11 10 9 8

| LOCK_B_L | LOCK_CH_L | HS_SEL_SR | HS_SEL_DS | FIFO_EMPT | CH_SUSP |
7 6 5 4 3 2 1 0

| CH_PRIOR [- [- 1 - 1T -1

The address offset for each channel is: 0x40+[x * 0x58]

For example, CFGO: 0x040, CFG1: 0x098, etc.

¢ CH_PRIOR: Channel priority

A priority of 7 is the highest priority, and 0 is the lowest. This field must be programmed within the following range [0, x — 1]
A programmed value outside this range causes erroneous behavior.

e CH_SUSP: Channel Suspend

Suspends all DMA data transfers from the source until this bit is cleared. There is no guarantee that the current transaction

will complete. Can also be used in conjunction with DMAC_CFGx.FIFO_EMPTY to cleanly disable a channel without losing
any data.

0 = Not Suspended.
1 = Suspend. Suspend DMA transfer from the source.
¢ FIFO_EMPTY

Indicates if there is data left in the channel's FIFO. Can be used in conjunction with DMAC_CFGx.CH_SUSP to cleanly dis-
able a channel.

1 = Channel's FIFO empty
0 = Channel's FIFO not empty
e HS_SEL_DST: Destination Software or Hardware Handshaking Select

This register selects which of the handshaking interfaces, hardware or software, is active for destination requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.
1 = Software handshaking interface. Hardware Initiated transaction requests are ignored.
If the destination peripheral is memory, then this bit is ignored.

e HS_SEL_SRC: Source Software or Hardware Handshaking Select

This register selects which of the handshaking interfaces, hardware or software, is active for source requests on this
channel.

0 = Hardware handshaking interface. Software-initiated transaction requests are ignored.

A ||'|E|,® 311

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

1 = Software handshaking interface. Hardware-initiated transaction requests are ignored.

If the source peripheral is memory, then this bit is ignored.

e LOCK_CH_L: Channel Lock Level

Indicates the duration over which DMAC_CFGx.LOCK_CH bit applies.

00 = Over complete DMA transfer

01 = Over complete DMA block transfer

1x = Over complete DMA transaction

e LOCK_B_L: Bus Lock Level

Indicates the duration over which DMAC_CFGx.LOCK_B bit applies.

00 = Over complete DMA transfer

01 = Over complete DMA block transfer

1x = Over complete DMA transaction

¢ LOCK_CH: Channel Lock Bit

When the channel is granted control of the master bus interface and if the DMAC_CFGx.LOCK_CH bit is asserted, then no
other channels are granted control of the master bus interface for the duration specified in DMAC_CFGx.LOCK_CH_L.

Indicates to the master bus interface arbiter that this channel wants exclusive access to the master bus interface for the
duration specified in DMAC_CFGx.LOCK_CH_L.

e LOCK_B: Bus Lock Bit
When active, the AMBA bus master signal hlock is asserted for the duration specified in DMAC_CFGx.LOCK_B_L.

e DS_HS_POL: Destination Handshaking Interface Polarity
0 = Active high

1 = Active low

e SR_HS_POL: Source Handshaking Interface Polarity
0 = Active high

1 = Active low

e MAX_ABRST: Maximum AMBA Burst Length
Maximum AMBA burst length that is used for DMA transfers on this channel. A value of ‘0’ indicates that software is not lim-
iting the maximum AMBA burst length for DMA transfers on this channel.

* RELOAD_SR: Automatic Source Reload
The DMAC_SARX register can be automatically reloaded from its initial value at the end of every block for multi-block trans-
fers. A new block transfer is then initiated.

e RELOAD_DS: Automatic Destination Reload
The DMAC_DARKX register can be automatically reloaded from its initial value at the end of every block for multi-block
transfers. A new block transfer is then initiated.

A ||'|E|,® 312

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.7 Configuration Register for Channel x High
Name: DMAC_CFGxH

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | DEST_PER | SRC_PER |
7 6 5 4 3 2 1 0

| SRC_PER | — | - | PROTCTL |FIFO_MODE| FCMODE |

¢ FCMODE: Flow Control Mode
Determines when source transaction requests are serviced when the Destination Peripheral is the flow controller.

0 = Source transaction requests are serviced when they occur. Data pre-fetching is enabled.

1 = Source transaction requests are not serviced until a destination transaction request occurs. In this mode the amount of
data transferred from the source is limited such that it is guaranteed to be transferred to the destination prior to block termi-
nation by the destination. Data pre-fetching is disabled.

¢ FIFO_MODE: R/W 0x0 FIFO Mode Select
Determines how much space or data needs to be available in the FIFO before a burst transaction request is serviced.

0 = Space/data available for single AMBA transfer of the specified transfer width.

1 = Space/data available is greater than or equal to half the FIFO depth for destination transfers and less than half the FIFO
depth for source transfers. The exceptions are at the end of a burst transaction request or at the end of a block transfer.

e PROTCTL: Protection Control
bits used to drive the AMBA HPROT[3:1] bus. The AMBA Specification recommends that the default value of HPROT indi-
cates a non-cached, nonbuffered, privileged data access. The reset value is used to indicate such an access.

e HPROTIO0] is tied high as all transfers are data accesses as there are no opcode fetches. There is a one-to-one mapping
of these register bits to the HPROT[3:1] master interface signals. SRC_PER: Source Hardware Handshaking
Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the source of channel x if the

DMAC_CFGx.HS_SEL_SRC field is 0. Otherwise, this field is ignored. The channel can then communicate with the source

peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMAC operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

e DEST_PER: Destination Hardware Handshaking Interface

Assigns a hardware handshaking interface (0 - DMAH_NUM_HS_INT-1) to the destination of channel x if the
DMAC_CFGx.HS_SEL_DST field is 0. Otherwise, this field is ignored. The channel can then communicate with the desti-
nation peripheral connected to that interface via the assigned hardware handshaking interface.

For correct DMA operation, only one peripheral (source or destination) should be assigned to the same handshaking
interface.

A ||'|E|%D 313

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.8 Source Gather Register for Channel x
Name: DMAC_SGRx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

- T - - S - -]
23 22 21 20 19 18 17 16

| SGC | SGl |
15 14 13 12 11 10 9 8

| SGl |
7 6 5 4 3 2 1 0

| SGl |

The address offset for each channel is: 0x48+[x * 0x58]
For example, SGRO: 0x048, SGR1: 0x0a0, etc.

The DMAC_CTLXx.SINC field controls whether the address increments or decrements. When the DMAC_CTLx.SINC field
indicates a fixed-address control, then the address remains constant throughout the transfer and the DMAC_SGRXx register
is ignored.

¢ SGI: Source Gather Interval

Source gather count field specifies the number of contiguous source transfers of DMAC_CTLx.SRC_TR_WIDTH between
successive gather intervals. This is defined as a gather boundary.

e SGC: Source gather count
Source gather interval field (DMAC_SGRx.SGI) — specifies the source address increment/decrement in multiples of
DMAC_CTLx.SRC_TR_WIDTH on a gather boundary when gather mode is enabled for the source transfer.

A ||'|E|,® 314

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.9 Destination Scatter Register for Channel x
Name: DMAC_DSRXx

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

- T - - S - -]
23 22 21 20 19 18 17 16

| DSC [DS |
15 14 13 12 11 10 9 8

| DSI |
7 6 5 4 3 2 1 0

| DSI |

The address offset for each channel is: 0x50+[x * 0x58]
For example, DSRO0: 0x050, DSR1: 0x0a8, etc.

The DMAC_CTLXx.DINC field controls whether the address increments or decrements. When the DMAC_CTLx.DINC field
indicates a fixed address control then the address remains constant throughout the transfer and the DMAC_DSRXx register
is ignored.

¢ DSI: Destination Scatter Interval
Destination scatter interval field (DMAC_DSRx.DSI) — specifies the destination address increment/decrement in multiples
of DMAC_CTLx.DST_TR_WIDTH on a scatter boundary when scatter mode is enabled for the destination transfer.

e DSC: Destination Scatter count
Destination scatter count field (DMAC_DSRx.DSC) — specifies the number of contiguous destination transfers of
DMAC_CTLx.DST_TR_WIDTH between successive scatter boundaries.

A ||'|E|%D 315

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.410 Interrupt Registers
The following sections describe the registers pertaining to interrupts, their status, and how to clear them. For each channel,
there are five types of interrupt sources:
e IntTfr: DMA Transfer Complete Interrupt
This interrupt is generated on DMA transfer completion to the destination peripheral.

¢ IntBlock: Block Transfer Complete Interrupt
This interrupt is generated on DMA block transfer completion to the destination peripheral.

¢ IntSrcTran: Source Transaction Complete Interrupt
This interrupt is generated after completion of the last AMBA transfer of the requested single/burst transaction from the
handshaking interface on the source side.

If the source for a channel is memory, then that channel never generates a IntSrcTran interrupt and hence the correspond-
ing bit in this field is not set.

¢ IntDstTran: Destination Transaction Complete Interrupt
This interrupt is generated after completion of the last AMBA transfer of the requested single/burst transaction from the
handshaking interface on the destination side.

If the destination for a channel is memory, then that channel never generates the IntDstTran interrupt and hence the corre-
sponding bit in this field is not set.
e IntErr: Error Interrupt

This interrupt is generated when an ERROR response is received from an AHB slave on the HRESP bus during a DMA
transfer. In addition, the DMA transfer is cancelled and the channel is disabled.

A ||'|E|%D 316

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.11 Interrupt Raw Status Registers
Name: DMAC_RawTfr, DMAC_RawBlock, DMAC_RawSrcTran, DMAC_RawDstTran, DMAC_RawErr

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I I - I - I I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RAwi [RAWO |

The address offset are
DMAC_RawTfr — 0x2c0
DMAC_RawBlock — 0x2c8
DMAC_RawSrcTran — 0x2d0
DMAC_RawDstTran — 0x2d8
DMAC_RawErr — 0x2e0

¢ RAWI[1:0]: Raw interrupt for each channel

Interrupt events are stored in these Raw Interrupt Status Registers before masking: DMAC_RawTfr, DMAC_RawBlock,
DMAC_RawSrcTran, DMAC_RawDstTran, DMAC_RawErr. Each Raw Interrupt Status register has a bit allocated per
channel, for example, DMAC_RawTfr[2] is Channel 2’s raw transfer complete interrupt. Each bit in these registers is

cleared by writing a 1 to the corresponding location in the DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran,
DMAC_ClearDstTran, DMAC_ClearErr registers.

AIMEL 317

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.412 Interrupt Status Registers
Name: DMAC_StatusTfr, DMAC_StatusBlock, DMAC_StatusSrcTran, DMAC_StatusDstTran, DMAC_StatusErr

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I I - I - |
15 14 13 12 11 10 9 8
I - I I - I - I I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | STATUSH | STATUSO |

The address offset are
DMAC_StatusTfr: 0x2e8
DMAC_StatusBlock: 0x2f0
DMAC_StatusSrcTran: 0x2f8
DMAC_StatusDstTran: 0x300
DMAC_StatusErr: 0x308

e STATUS[1:0]

All interrupt events from all channels are stored in these Interrupt Status Registers after masking: DMAC_StatusTfr,
DMAC_StatusBlock, DMAC_StatusSrcTran, DMAC_StatusDstTran, DMAC_StatusErr. Each Interrupt Status register has a
bit allocated per channel, for example, DMAC_StatusTfr[2] is Channel 2’s status transfer complete interrupt.The contents
of these registers are used to generate the interrupt signals leaving the DMAC.

A ||'|E|%D 318

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.413 Interrupt Status Registers
Name: DMAC_MaskTfr, DMAC_MaskBlock, DMAC_MaskSrcTran, DMAC_MaskDstTran, DMAC_MaskErr

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I I I - I - I - I - I - |
15 14 13 12 11 10 9 8
| _ | — | — | — | - | - | INT_M_WEA | INT_M_WEO |
7 6 5 4 3 2 1 0

| — | _ | — | - | - | - | INT_MASK1 | INT_MASKO |

The address offset are
DMAC_MaskTfr: 0x310
DMAC_MaskBlock: 0x318
DMAC_MaskSrcTran: 0x320
DMAC_MaskDstTran: 0x328
DMAC_MaskErr: 0x330

The contents of the Raw Status Registers are masked with the contents of the Mask Registers: DMAC_MaskTfr,
DMAC_MaskBlock, DMAC_MaskSrcTran, DMAC_MaskDstTran, DMAC_MaskErr. Each Interrupt Mask register has a bit
allocated per channel, for example, DMAC_MaskTfr[2] is the mask bit for Channel 2’s transfer complete interrupt.

A channel’s INT_MASK bit is only written if the corresponding mask write enable bit in the INT_MASK_WE field is asserted
on the same AMBA write transfer. This allows software to set a mask bit without performing a read-modified write
operation.

For example, writing hex 01x1 to the DMAC_MaskTfr register writes a 1 into DMAC_MaskTfr[0], while DMAC_MaskTfr{7:1]
remains unchanged. Writing hex 00xx leaves DMAC_MaskTfr{7:0] unchanged.

Writing a 1 to any bit in these registers unmasks the corresponding interrupt, thus allowing the DMAC to set the appropriate
bit in the Status Registers.

e INT_MASK]|1:0]: Interrupt Mask

0 = Masked

1 = Unmasked

e INT_M_WEJ9:8]: Interrupt Mask Write Enable

0 = Write disabled

1 = Write enabled

A ||'|E|%D 319

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.14 Interrupt Clear Registers
Name: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran,DMAC_ClearErr

Access: Write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I I - I - I I - I - I - |
7 6 5 4 3 2 1 0

| _ | — | — | - | - | - | CLEART1 | CLEARO |

The address offset are
DMAC_ClearTfr: 0x338
DMAC_ClearBlock: 0x340
DMAC_ClearSrcTran: 0x348
DMAC_ClearDstTran: 0x350
DMAC_ClearErr: 0x358

e CLEAR([1:0]: Interrupt Clear
0 = No effect

1 = Clear interrupt

Each bit in the Raw Status and Status registers is cleared on the same cycle by writing a 1 to the corresponding location in
the Clear registers: DMAC_ClearTfr, DMAC_ClearBlock, DMAC_ClearSrcTran, DMAC_ClearDstTran, DMAC_ClearkErr.
Each Interrupt Clear register has a bit allocated per channel, for example, DMAC_ClearTfr[2] is the clear bit for Channel 2’s
transfer complete interrupt. Writing a 0 has no effect. These registers are not readable.

A ||'|E|%D 320

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.415 Combined Interrupt Status Registers
Name: DMAC_Statusint

Access: Read

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | ERR | DSTT | SRCT | BLOCK | TFR |

The contents of each of the five Status Registers (DMAC_StatusTfr, DMAC_StatusBlock, DMAC_StatusSrcTran,
DMAC_StatusDstTran, DMAC_StatusErr) is OR’d to produce a single bit per interrupt type in the Combined Status Regis-
ter (DMAC_Statusint).

e TFR
OR of the contents of DMAC_StatusTfr Register.

e BLOCK
OR of the contents of DMAC_StatusBlock Register.

e SRCT
OR of the contents of DMAC_StatusSrcTran Register.

e DSTT
OR of the contents of DMAC_StatusDstTran Register.

¢ ERR
OR of the contents of DMAC_StatusErr Register.

A ||'|E|,® 321

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24416 Source Software Transaction Request Register
Name: DMAC_ReqSrcReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| _ | — | — | — | - | — | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| _ | — | - | - | - | - | SRC_REQ1 | SRC_REQO |

A bit is assigned for each channel in this register. DMAC_ReqSrcReg[n] is ignored when software handshaking is not
enabled for the source of channel n.

A channel SRC_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.

For example, writing 0x101 writes a 1 into DMAC_ReqSrcReg[0], while DMAC_ReqSrcReg[2:1] remains unchanged. Writ-
ing hex OxOyy leaves DMAC_ReqSrcReg[2:0] unchanged. This allows software to set a bit in the DMAC_ReqSrcReg
register without performing a read-modified write

e SRC_REQ[1:0]: Source request

e REQ_WE[9:8]: Request write enable
0 = Write disabled

1 = Write enabled

A ||'|E|,® 322

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.417 Destination Software Transaction Request Register
Name: DMAC_ReqgDstReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| _ | — | — | — | - | — | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| _ | — | - | - | - | - | DST_REQ1 | DST_REQO |

A bit is assigned for each channel in this register. DMAC_ReqDstReg[n] is ignored when software handshaking is not
enabled for the source of channel n.

A channel DST_REAQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on the
same AMBA write transfer.

e DST_REQ[1:0]: Destination request

e REQ_WE[9:8]: Request write enable

0 = Write disabled

1 = Write enabled

A ||'|E|%D 323

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.418 Single Source Transaction Request Register
Name: DMAC_SgIReqSrcReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I I - I - I - I - I - |
15 14 13 12 11 10 9 8
| _ | — | — | — | - | — | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| — | — | — | - | - | - | S_SG_REQ1 | S_SG_REQO |

A bit is assigned for each channel in this register. DMAC_SglReqSrcReg[n] is ignored when software handshaking is not
enabled for the source of channel n.

A channel S_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.

e S_SG_REQ[1:0]: Source single request

e REQ_WE[9:8]: Request write enable
0 = Write disabled

1 = Write enabled

A ||'|E|,® 324

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.419 Single Destination Transaction Request Register
Name: DMAC_SgIRegDstReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I I - I - I - I - I - |
15 14 13 12 11 10 9 8
| _ | — | — | — | - | — | REQ_WE1 | REQ_WEO |
7 6 5 4 3 2 1 0

| _ | — | — | - | - | - | D_SG_REQ1 | D_SG_REQO |

A bit is assigned for each channel in this register. DMAC_SgIReqDstReg[n] is ignored when software handshaking is not
enabled for the source of channel n.

A channel D_SG_REQ bit is written only if the corresponding channel write enable bit in the REQ_WE field is asserted on
the same AMBA write transfer.

e D_SG_REQ[1:0]: Destination single request

e REQ_WE[9:8]: Request write enable
0 = Write disabled

1 = Write enabled

A ||'|E|%D 325

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.20 Last Source Transaction Request Register
Name: DMAC_LstSrcReqReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| _ | — | — | — | - | - | LSTSR_WE1 | LSTSR_WEO |
7 6 5 4 3 2 1 0

| — | — | — | _ | — | — | LSTSRC1 | LSTSRCO |

A bit is assigned for each channel in this register. LstSrcReqReg[n] is ignored when software handshaking is not enabled
for the source of channel n.

A channel LSTSRC bit is written only if the corresponding channel write enable bit in the LSTSR_WE field is asserted on
the same AMBA write transfer.

e LSTSRC[1:0]: Source Last Transaction request

e LSTSR_WE[9:8]: Source Last Transaction request write enable

0 = Write disabled

1 = Write enabled

A ||'|E|%D 326

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.21 Last Destination Transaction Request Register

Name: DMAC_LstDstReqReg

Access: Read/write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| _ | — | — | — | - | - | LSTDS_WE1 | LSTDS_WEO |
7 6 5 4 3 2 1 0

| _ | — | — | — | — | - | LSTDSTH1 | LSTDSTO |

A bit is assigned for each channel in this register. LstDstReqReg[n] is ignored when software handshaking is not enabled

for the source of channel n.

A channel LSTDST bit is written only if the corresponding channel write enable bit in the LSTDS_WE field is asserted on
the same AMBA write transfer.

e LSTDST[1:0]: Destination Last Transaction request

e LSTDS_WE[9:8]: Destination Last Transaction request write enable

0 = Write disabled
1 = Write enabled

6249D-ATARM-20-Dec-07

ATMEL

327

e A T91SAM9263 Preliminary

24.4.22 DMAC Configuration Register
Name: DMAC_DmaCfgReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I I - I - I I - I - |
15 14 13 12 11 10 9 8

I - I I - I - I I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | DMAEN |

e DMA_EN: DMA Controller Enable
0 = DMAC Disabled

1 = DMAC Enabled.
This register is used to enable the DMAC, which must be done before any channel activity can begin.

If the global channel enable bit is cleared while any channel is still active, then DMAC_DmaCfgReg.DMA_EN still returns
‘1’ to indicate that there are channels still active until hardware has terminated all activity on all channels, at which point the
DMAC_DmaCfgReg.DMA_EN bit returns ‘0’.

A ||'|E|%D 328

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.23 DMAC Channel Enable Register
Name: DMAC_ChEnReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I I I - I - I - I - I - |
15 14 13 12 11 10 9 8

| _ | _ | — | — | - | - | CH_EN_WEH1 | CH_EN_WEO |
7 6 5 4 3 2 1 0

| _ | — | — | — | — | - | CH_ENT1 | CH_ENO |

e CH_ENI[1:0]

0 = Disable the Channel
1 = Enable the Channel
Enables/Disables the channel. Setting this bit enables a channel, clearing this bit disables the channel.

The DMAC_ChEnReg.CH_EN bit is automatically cleared by hardware to disable the channel after the last AMBA transfer
of the DMA transfer to the destination has completed.Software can therefore poll this bit to determine when a DMA transfer
has completed.

e CH_EN_WEJ[9:8]
The channel enable bit, CH_EN, is only written if the corresponding channel write enable bit, CH_EN_WE, is asserted on
the same AMBA write transfer.

For example, writing 0x101 writes a 1 into DMAC_ChEnReg[0], while DMAC_ChEnReg[7:1] remains unchanged.

A ||'|E|%D 329

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

24.4.24 DMAC ID Register
Name: DMAC_IdReg

Access: Read/Write

Reset: 0x0
31 30 29 28 27 26 25 24

I ID |
23 22 21 20 19 18 17 16

I ID |
15 14 13 12 11 10 9 8

I ID |
7 6 5 4 3 2 1 0

I ID |

¢ ID : O0x203a125a

A ||'|E|%D 330

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25. Peripheral DMA Controller (PDC)

25.1 Description

6249D-ATARM-20-Dec-07

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the
on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by
the AHB to ABP bridge.

The PDC contains twenty channels. The full-duplex peripherals feature eighteen mono-direc-
tional channels used in pairs (transmit only or receive only). The half-duplex peripherals feature
two bi-directional channels.

The user interface of each PDC channel is integrated into the user interface of the peripheral it
serves. The user interface of mono directional channels (receive only or transmit only), contains
two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current trans-
fer and one set (pointer, counter) for next transfer. The bi-directional channel user interface
contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is
used by current transmit, next transmit, current receive and next receive.

Using the PDC removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which
improves microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and
receive signals. When the programmed data is transferred, an end of transfer interrupt is gener-
ated by the peripheral itself.

A ||'|E|%D 331

ATMEL

25.2 Block Diagram

Figure 25-1. Block Diagram

FULL DUPLEX PDC
PERIPHERAL
THR PDC Channel A
RHR PDC Channel B

Status & Control
Control <€ -

HALF DUPLEX

PERIPHERAL Control
THR
PDC Channel C
RHR
Status & Control
Control |- >

RECEIVE or TRANSMIT

PERIPHERAL
RHR or THR PDC Channel D
Status & Control
Control - >

322 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.3 Functional Description

25.3.1

25.3.2

25.3.3

Configuration

The PDC channel user interface enables the user to configure and control data transfers for
each channel. The user interface of each PDC channel is integrated into the associated periph-
eral user interface.

The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit
pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR,
TNCR). However, the transmit and receive parts of each type are programmed differently: the
transmit and receive parts of a full duplex peripheral can be programmed at the same time,
whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a
time.

32-bit pointers define the access location in memory for current and next transfer, whether it is
for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers.
It is possible, at any moment, to read the number of transfers left for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for
each channel. The status for each channel is located in the associated peripheral status register.
Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in
the peripheral’s Transfer Control Register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These
flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE).
Refer to Section 25.3.3 and to the associated peripheral user interface.

Memory Pointers

Each full duplex peripheral is connected to the PDC by a receive channel and a transmit chan-
nel. Both channels have 32-bit memory pointers that point respectively to a receive area and to
a transmit area in on- and/or off-chip memory.

Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel
has two 32-bit memory pointers, one for current transfer and the other for next transfer. These
pointers point to transmit or receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
respectively by 1, 2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues
operating using the new address.

Transfer Counters

6249D-ATARM-20-Dec-07

Each channel has two 16-bit counters, one for current transfer and the other one for next trans-
fer. These counters define the size of data to be transferred by the channel. The current transfer
counter is decremented first as the data addressed by current memory pointer starts to be trans-
ferred. When the current transfer counter reaches zero, the channel checks its next transfer
counter. If the value of next counter is zero, the channel stops transferring data and sets the
appropriate flag. But if the next counter value is greater then zero, the values of the next
pointer/next counter are copied into the current pointer/current counter and the channel resumes
the transfer whereas next pointer/next counter get zero/zero as values. At the end of this trans-
fer the PDC channel sets the appropriate flags in the Peripheral Status Register.

A ||'|E|%D 333

25.34

25.3.5

25.3.5.1

25352

25.3.5.3

334

ATMEL

The following list gives an overview of how status register flags behave depending on the
counters’ values:

* ENDRX flag is set when the PERIPH_RCR register reaches zero.

* RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.

* ENDTX flag is set when the PERIPH_TCR register reaches zero.

* TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
These status flags are described in the Peripheral Status Register.

Data Transfers
The serial peripheral triggers its associated PDC channels’ transfers using transmit enable
(TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the periph-
eral’s user interface.

When the peripheral receives an external data, it sends a Receive Ready signal to its PDC
receive channel which then requests access to the Matrix. When access is granted, the PDC
receive channel starts reading the peripheral Receive Holding Register (RHR). The read data
are stored in an internal buffer and then written to memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit chan-
nel which then requests access to the Matrix. When access is granted, the PDC transmit
channel reads data from memory and puts them to Transmit Holding Register (THR) of its asso-
ciated peripheral. The same peripheral sends data according to its mechanism.

PDC Flags and Peripheral Status Register
Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the
PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status
Register.

Depending on the type of peripheral, half or full duplex, the flags belong to either one single
channel or two different channels.

Receive Transfer End
This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred
to memory.

It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.

Transmit Transfer End
This flag is set when PERIPH_TCR register reaches zero and the last data has been written into
peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

Receive Buffer Full
This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero
and the last data has been transferred to memory.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.3.5.4 Transmit Buffer Empty
This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero
and the last data has been written into peripheral THR.

It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.

A ||'|E|%D 335

6249D-ATARM-20-Dec-07

ATMEL

25.4 Peripheral DMA Controller (PDC) User Interface

Table 25-1. Memory Map

Offset Register Name Access Reset State
0x100 Receive Pointer Register PERIPH"_RPR Read/Write 0
0x104 Receive Counter Register PERIPH_RCR Read/Write 0
0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0
0x10C Transmit Counter Register PERIPH_TCR Read/Write 0
0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0
0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0
0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0
0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0
0x120 Transfer Control Register PERIPH_PTCR Write 0
0x124 Transfer Status Register PERIPH_PTSR Read 0

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCl, etc.)

33 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.41 Receive Pointer Register

Register Name: PERIPH_RPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXPTR |
23 22 21 20 19 18 17 16

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 6 5 4 3 2 1 0

| RXPTR |

¢ RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

A ||'|E|%D 337

6249D-ATARM-20-Dec-07

25.4.2 Receive Counter Register

Register Name: PERIPH_RCR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| RXCTR |
7 6 5 4 3 2 1 0

| RXCTR |

* RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the receiver

1 - 65535 = Starts peripheral data transfer if corresponding channel is active

33 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.4.3 Transmit Pointer Register

Register Name: PERIPH_TPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 9 8

| TXPTR |
7 6 5 4 3 2 1 0

TXPTR |

e TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.

6249D-ATARM-20-Dec-07

ATMEL

339

25.4.4 Transmit Counter Register

Register Name: PERIPH_TCR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| TXCTR |
7 6 5 4 3 2 1 0

| TXCTR

e TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the transmitter

1- 65535 = Starts peripheral data transfer if corresponding channel is active

g0 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.45 Receive Next Pointer Register

Register Name: PERIPH_RNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| RXNPTR |
23 22 21 20 19 18 17 16

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 6 5 4 3 2 1 0

| RXNPTR |

¢ RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

A ||'|E|,® 341

6249D-ATARM-20-Dec-07

25.4.6 Receive Next Counter Register

Register Name: PERIPH_RNCR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| RXNCTR |
7 6 5 4 3 2 1 0

| RXNCTR |

¢ RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

32 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.4.7 Transmit Next Pointer Register

Register Name: PERIPH_TNPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 8

| TXNPTR |
7 6 5 4 3 2 1 0

TXNPTR |

e TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.

When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

6249D-ATARM-20-Dec-07

ATMEL

343

25.4.8 Transmit Next Counter Register

Register Name: PERIPH_TNCR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| TXNCTR |
7 6 5 4 3 2 1 0

| TXNCTR |

¢ TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

34 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

25.4.9 Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXTDIS | TXTEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXTDIS | RXTEN |

e RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables PDC receiver channel requests if RXTDIS is not set.

When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

¢ RXTDIS: Receiver Transfer Disable

0 = No effect.

1 = Disables the PDC receiver channel requests.

When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-
ter channel requests.

e TXTEN: Transmitter Transfer Enable

0 = No effect.

1 = Enables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.

e TXTDIS: Transmitter Transfer Disable

0 = No effect.

1 = Disables the PDC transmitter channel requests.

When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.

A ||'|E|%D 345

6249D-ATARM-20-Dec-07

25.4.10 Transfer Status Register

Register Name: PERIPH_PTSR

Access Type: Read
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - [TXTEN |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - [PRXTEN |

¢ RXTEN: Receiver Transfer Enable
0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.
e TXTEN: Transmitter Transfer Enable
0 = PDC Transmitter channel requests are disabled.

1 = PDC Transmitter channel requests are enabled.

s AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

26. Clock Generator

26.1 Description
The Clock Generator is made up of 2 PLLs, a Main Oscillator, and a 32,768 Hz low-power
Oscillator.

It provides the following clocks:

* SLCK, the Slow Clock, which is the only permanent clock within the system

* MAINCK is the output of the Main Oscillator
The Clock Generator User Interface is embedded within the Power Management Controller one
and is described in Section 27.9. However, the Clock Generator registers are named CKGR_.

¢ PLLACK is the output of the Divider and PLL A block

¢ PLLBCK is the output of the Divider and PLL B block

26.2 Slow Clock Crystal Oscillator
The Clock Generator integrates a 32,768 Hz low-power oscillator. The XIN32 and XOUT32 pins
must be connected to a 32,768 Hz crystal. Two external capacitors must be wired as shown in
Figure 26-1.

Figure 26-1. Typical Slow Clock Crystal Oscillator Connection

XIN32 XOUT32 GNDPLL
32,768 Hz
Crystal

|

L 1

26.3 Main Oscillator
Figure 26-2 shows the Main Oscillator block diagram.

AIMEL 347

6249D-ATARM-20-Dec-07

ATMEL

Figure 26-2. Main Oscillator Block Diagram
Di Main MAINCK
00— |

XIN

Oscillator ;
XOUT Main Clock

OSCOUNT

sLCK Main
Slow Clock serator
Counter
Main Clock
Frequency
Counter

26.3.1 Main Oscillator Connections
The Clock Generator integrates a Main Oscillator that is designed for a 3 to 20 MHz fundamental
crystal. The typical crystal connection is illustrated in Figure 26-3. For further details on the elec-
trical characteristics of the Main Oscillator, see the section “DC Characteristics” of the product
datasheet.

Figure 26-3. Typical Crystal Connection

AT91 Microcontroller
‘ XIN XOUuT GND

26.3.2 Main Oscillator Startup Time

The startup time of the Main Oscillator is given in the DC Characteristics section of the product
datasheet. The startup time depends on the crystal frequency and decreases when the fre-
quency rises.

26.3.3 Main Oscillator Control

To minimize the power required to start up the system, the main oscillator is disabled after reset
and slow clock is selected.

The software enables or disables the main oscillator so as to reduce power consumption by
clearing the MOSCEN bit in the Main Oscillator Register (CKGR_MOR).

a8 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit
in PMC_SR is automatically cleared, indicating the main clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal fre-
quency connected to the main oscillator.

When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscil-
lator, the MOSCS bit in PMC_SR (Status Register) is cleared and the counter starts counting
down on the slow clock divided by 8 from the OSCOUNT value. Since the OSCOUNT value is
coded with 8 bits, the maximum startup time is about 62 ms.

When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Set-
ting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor.

26.3.4 Main Clock Frequency Counter

The Main Oscillator features a Main Clock frequency counter that provides the quartz frequency
connected to the Main Oscillator. Generally, this value is known by the system designer; how-
ever, it is useful for the boot program to configure the device with the correct clock speed,
independently of the application.

The Main Clock frequency counter starts incrementing at the Main Clock speed after the next ris-
ing edge of the Slow Clock as soon as the Main Oscillator is stable, i.e., as soon as the MOSCS
bit is set. Then, at the 16th falling edge of Slow Clock, the MAINRDY bit in CKGR_MCFR (Main
Clock Frequency Register) is set and the counter stops counting. Its value can be read in the
MAINF field of CKGR_MCFR and gives the number of Main Clock cycles during 16 periods of
Slow Clock, so that the frequency of the crystal connected on the Main Oscillator can be
determined.

26.3.5 Main Oscillator Bypass

The user can input a clock on the device instead of connecting a crystal. In this case, the user
has to provide the external clock signal on the XIN pin. The input characteristics of the XIN pin
under these conditions are given in the product electrical characteristics section. The program-
mer has to be sure to set the OSCBYPASS bit to 1 and the MOSCEN bit to 0 in the Main OSC
register (CKGR_MOR) for the external clock to operate properly.

26.4 Divider and PLL Block

6249D-ATARM-20-Dec-07

The PLL embeds an input divider to increase the accuracy of the resulting clock signals. How-
ever, the user must respect the PLL minimum input frequency when programming the divider.

Figure 26-4 shows the block diagram of the divider and PLL blocks.

A ||'|E|%D 349

ATMEL

Figure 26-4. Divider and PLL Block Diagram

PLL B PLLBCK

PLLRCB |j

Divider A > PLL A ————>

PLLRCA |£|

PLLBCOUNT

PLLB
Counter LOCKB

PLLACOUNT

PLL A
SLCK —>[__LOCKA |
Counter LOCKA

Y

MAINCK ® Divider B

PLLACK

26.4.1 PLL Filter
The PLL requires connection to an external second-order filter through the PLLRCA and/or PLL-

RCB pin. Figure 26-5 shows a schematic of these filters.

Figure 26-5. PLL Capacitors and Resistors

PLLRC
PLL

—C2
Ct1

T [l GND

Values of R, C1 and C2 to be connected to the PLLRC pin must be calculated as a function of
the PLL input frequency, the PLL output frequency and the phase margin. A trade-off has to be
found between output signal overshoot and startup time.

26.4.2 Divider and Phase Lock Loop Programming
The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the
output of the corresponding divider and the PLL output is a continuous signal at level 0. On
reset, each DIV field is set to 0, thus the corresponding PLL input clock is set to 0.

350 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

6249D-ATARM-20-Dec-07

The PLL allows multiplication of the divider’s outputs. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the parameters DIV and MUL. The
factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0, the
corresponding PLL is disabled and its power consumption is saved. Re-enabling the PLL can be
performed by writing a value higher than 0 in the MUL field.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit (LOCKA or
LOCKB) in PMC_SR is automatically cleared. The values written in the PLLCOUNT field (PLLA-
COUNT or PLLBCOUNT) in CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), are loaded in the
PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it reaches 0.
At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the processor. The
user has to load the number of Slow Clock cycles required to cover the PLL transient time into
the PLLCOUNT field. The transient time depends on the PLL filter. The initial state of the PLL
and its target frequency can be calculated using a specific tool provided by Atmel.

A ||'|E|,® 351

ATMEL

27. Power Management Controller (PMC)

27.1 Description
The Power Management Controller (PMC) optimizes power consumption by controlling all sys-

tem and user peripheral clocks. The PMC enables/disables the clock inputs to many of the
peripherals and the ARM Processor.

The Power Management Controller provides the following clocks:

* MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the AIC
and the Memory Controller.

* Processor Clock (PCK), switched off when entering processor in idle mode.

* Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI,
TWI, TC, MCI, etc.) and independently controllable. In order to reduce the number of clock
names in a product, the Peripheral Clocks are named MCK in the product datasheet.

¢ UHP Clock (UHPCK), required by USB Host Port operations.

* Programmable Clock Outputs can be selected from the clocks provided by the clock
generator and driven on the PCKXx pins.

27.2 Master Clock Controller

The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals and the memory controller.

The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock
saves power consumption of the PLLs.

The Master Clock Controller is made up of a clock selector and a prescaler. It also contains a
Master Clock divider which allows the processor clock to be faster than the Master Clock.

The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64. The PRES field in PMC_MCKR programs the prescaler. The
Master Clock divider can be programmed through the MDIV field in PMC_MCKR.

Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.

32 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 27-1. Master Clock Controller

PMC_MCKR PMC_MCKR
CSS PRES PMC_MCKR

MDIV
SLCK

MAINCK ——— Master

| Mt G Clovk oK

PLLACK ———— Divider

PLLBCK
_ To the Processor

" Clock Controller (PCK)

27.3 Processor Clock Controller

The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle
Mode. The Processor Clock can be disabled by writing the System Clock Disable Register
(PMC_SCDR). The status of this clock (at least for debug purpose) can be read in the System
Clock Status Register (PMC_SCSR).

The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Idle Mode is achieved by disabling the Processor Clock, which
is automatically re-enabled by any enabled fast or normal interrupt, or by the reset of the
product.

When the Processor Clock is disabled, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.

27.4 USB Clock Controller
The USB Source Clock is always generated from the PLL B output. If using the USB, the user
must program the PLL to generate a 48 MHz, a 96 MHz or a 192 MHz signal with an accuracy of
+ 0.25% depending on the USBDIV bit in CKGR_PLLBR (see Figure 27-2).

When the PLL B output is stable, i.e., the LOCKB is set:

* The USB host clock can be enabled by setting the UHP bitin PMC_SCER. To save power on
this peripheral when it is not used, the user can set the UHP bit in PMC_SCDR. The UHP bit
in PMC_SCSR gives the activity of this clock. The USB host port require both the 12/48 MHz
signal and the Master Clock. The Master Clock may be controlled via the Master Clock
Controller.

Figure 27-2. USB Clock Controller

— 1 > UDP Clock (UDPCK)

Divider UDP
/1,/2,/4

USsB
Source
Clock

— 1 > UHP Clock (UHPCK)

27.5 Peripheral Clock Controller

The Power Management Controller controls the clocks of each embedded peripheral by the way
of the Peripheral Clock Controller. The user can individually enable and disable the Master

A ||'|E|%D 353

6249D-ATARM-20-Dec-07

ATMEL

Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Periph-
eral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be
read in the Peripheral Clock Status Register (PMC_PCSR).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.

In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data cor-
ruption or erroneous behavior of the system.

The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and
PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number
corresponds to the interrupt source number assigned to the peripheral.

27.6 Programmable Clock Output Controller

The PMC controls 4 signals to be output on external pins PCKx. Each signal can be indepen-
dently programmed via the PMC_PCKXx registers.

PCKXx can be independently selected between the Slow clock, the PLL A output, the PLL B out-
put and the main clock by writing the CSS field in PMC_PCKXx. Each output signal can also be
divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKXx.

Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).

Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actu-
ally what has been programmed in the Programmable Clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.

27.7 Programming Sequence

354

1. Enabling the Main Oscillator:

The main oscillator is enabled by setting the MOSCEN field in the CKGR_MOR register. In
some cases it may be advantageous to define a start-up time. This can be achieved by writ-
ing a value in the OSCOUNT field in the CKGR_MOR register.

Once this register has been correctly configured, the user must wait for MOSCS field in the
PMC_SR register to be set. This can be done either by polling the status register or by wait-
ing the interrupt line to be raised if the associated interrupt to MOSCS has been enabled in
the PMC_IER register.

Code Example:

write_ register (CKGR_MOR, 0x00000701)
Start Up Time = 8 * OSCOUNT / SLCK = 56 Slow Clock Cycles.

So, the main oscillator will be enabled (MOSCS bit set) after 56 Slow Clock Cycles.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

2. Checking the Main Oscillator Frequency (Optional):

In some situations the user may need an accurate measure of the main oscillator frequency.
This measure can be accomplished via the CKGR_MCFR register.

Once the MAINRDY field is set in CKGR_MCEFR register, the user may read the MAINF field
in CKGR_MCEFR register. This provides the number of main clock cycles within sixteen slow
clock cycles.

3. Setting PLL A and divider A:

All parameters necessary to configure PLL A and divider A are located in the CKGR_PLLAR
register.

It is important to note that Bit 29 must always be set to 1 when programming the
CKGR_PLLAR register.

The DIVA field is used to control the divider A itself. The user can program a value between
0 and 255. Divider A output is divider A input divided by DIVA. By default, DIVA parameter is
set to 0 which means that divider A is turned off.

The OUTA field is used to select the PLL A output frequency range.

The MULA field is the PLL A multiplier factor. This parameter can be programmed between
0 and 2047. If MULA is set to 0, PLL A will be turned off. Otherwise PLL A output frequency
is PLL A input frequency multiplied by (MULA + 1).

The PLLACOUNT field specifies the number of slow clock cycles before LOCKA bit is set in
the PMC_SR register after CKGR_PLLAR register has been written.

Once CKGR_PLLAR register has been written, the user is obliged to wait for the LOCKA bit
to be set in the PMC_SR register. This can be done either by polling the status register or by
waiting the interrupt line to be raised if the associated interrupt to LOCKA has been enabled
in the PMC_IER register.

All parameters in CKGR_PLLAR can be programmed in a single write operation. If at some
stage one of the following parameters, SRCA, MULA, DIVA is modified, LOCKA bit will go
low to indicate that PLL A is not ready yet. When PLL A is locked, LOCKA will be set again.
User has to wait for LOCKA bit to be set before using the PLL A output clock.

Code Example:

write register (CKGR_PLLAR, 0x20030605)

PLL A and divider A are enabled. PLL A input clock is main clock divided by 5. PLL An out-
put clock is PLL A input clock multiplied by 4. Once CKGR_PLLAR has been written,
LOCKA bit will be set after six slow clock cycles.

4. Setting PLL B and divider B:
All parameters needed to configure PLL B and divider B are located in the CKGR_PLLBR
register.

The DIVB field is used to control divider B itself. A value between 0 and 255 can be pro-
grammed. Divider B output is divider B input divided by DIVB parameter. By default DIVB
parameter is set to 0 which means that divider B is turned off.

The OUTB field is used to select the PLL B output frequency range.

A ||'|E|,® 355

6249D-ATARM-20-Dec-07

ATMEL

The MULB field is the PLL B multiplier factor. This parameter can be programmed between
0 and 2047. If MULB is set to 0, PLL B will be turned off, otherwise the PLL B output fre-
quency is PLL B input frequency multiplied by (MULB + 1).

The PLLBCOUNT field specifies the number of slow clock cycles before LOCKB bit is set in
the PMC_SR register after CKGR_PLLBR register has been written.

Once the PMC_PLLB register has been written, the user must wait for the LOCKB bit to be
set in the PMC_SR register. This can be done either by polling the status register or by wait-
ing the interrupt line to be raised if the associated interrupt to LOCKB has been enabled in
the PMC_IER register. All parameters in CKGR_PLLBR can be programmed in a single
write operation. If at some stage one of the following parameters, MULB, DIVB is modified,
LOCKB bit will go low to indicate that PLL B is not ready yet. When PLL B is locked, LOCKB
will be set again. The user is constrained to wait for LOCKB bit to be set before using the
PLL A output clock.

The USBDIV field is used to control the additional divider by 1, 2 or 4, which generates the
USB clock(s).

Code Example:

write register (CKGR_PLLBR, 0x00040805)
If PLL B and divider B are enabled, the PLL B input clock is the main clock. PLL B output
clock is PLL B input clock multiplied by 5. Once CKGR_PLLBR has been written, LOCKB bit
will be set after eight slow clock cycles.

5. Selection of Master Clock and Processor Clock
The Master Clock and the Processor Clock are configurable via the PMC_MCKR register.

The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is slow clock.

The PRES field is used to control the Master Clock prescaler. The user can choose between
different values (1, 2, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by
PRES parameter. By default, PRES parameter is set to 1 which means that master clock is
equal to slow clock.

The MDIV field is used to control the Master Clock prescaler. It is possible to choose
between different values (0, 1, 2). The Master Clock output is Processor Clock divided by 1,
2 or 4, depending on the value programmed in MDIV. By default, MDIV is set to 0, which
indicates that the Processor Clock is equal to the Master Clock.

Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.

The PMC_MCKR register must not be programmed in a single write operation. The pre-
ferred programming sequence for the PMC_MCKR register is as follows:

¢ If a new value for CSS field corresponds to PLL Clock,
— Program the PRES field in the PMC_MCKR register.

36 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

— Wait for the MCKRDY bit to be set in the PMC_SR register.
— Program the CSS field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
¢ If a new value for CSS field corresponds to Main Clock or Slow Clock,
— Program the CSS field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
— Program the PRES field in the PMC_MCKR register.
— Wait for the MCKRDY bit to be set in the PMC_SR register.
If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.

The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR (CKGR_PLLAR or CKGR_PLLBR), the MCKRDY flag will go low while PLL is
unlocked. Once PLL is locked again, LOCK (LOCKA or LOCKB) goes high and MCKRDY is set.
While PLLA is unlocked, the Master Clock selection is automatically changed to Slow Clock. While
PLLB is unlocked, the Master Clock selection is automatically changed to Main Clock. For further
information, see Section 27.8.2. “Clock Switching Waveforms” on page 360.

Code Example:

write register (PMC MCKR, 0x00000001)
wait (MCKRDY=1)

write register (PMC_MCKR, 0x00000011)
wait (MCKRDY=1)

The Master Clock is main clock divided by 16.
The Processor Clock is the Master Clock.

6. Selection of Programmable clocks

Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.

Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. Depending on the system used, 4 Programmable clocks can be enabled or dis-
abled. The PMC_SCSR provides a clear indication as to which Programmable clock is
enabled. By default all Programmable clocks are disabled.

PMC_PCKXx registers are used to configure Programmable clocks.

The CSS field is used to select the Programmable clock divider source. Four clock options
are available: main clock, slow clock, PLLACK, PLLBCK. By default, the clock source
selected is slow clock.

The PRES field is used to control the Programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 1 which means
that master clock is equal to slow clock.

AIMEL 357

6249D-ATARM-20-Dec-07

ATMEL

Once the PMC_PCKXx register has been programmed, The corresponding Programmable
clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in
the PMC_SR register. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the
PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.

If the CSS and PRES parameters are to be modified, the corresponding Programmable
clock must be disabled first. The parameters can then be modified. Once this has been
done, the user must re-enable the Programmable clock and wait for the PCKRDYx bit to be
set.

Code Example:

write register (PMC_PCKO0, 0x00000015)
Programmable clock 0 is main clock divided by 32.

7. Enabling Peripheral Clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled via registers PMC_PCER and PMC_PCDR.

Depending on the system used, 23 peripheral clocks can be enabled or disabled. The
PMC_PCSR provides a clear view as to which peripheral clock is enabled.

Note: Each enabled peripheral clock corresponds to Master Clock.

Code Examples:

write register (PMC_PCER, 0x00000110)

Peripheral clocks 4 and 8 are enabled.

write register (PMC_PCDR, 0x00000010)

Peripheral clock 4 is disabled.

358 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.8 Clock Switching Details

27.8.1 Master Clock Switching Timings
Table 27-1 and Table 27-2 give the worst case timings required for the Master Clock to switch
from one selected clock to another one. This is in the event that the prescaler is de-activated.
When the prescaler is activated, an additional time of 64 clock cycles of the new selected clock
has to be added.

Table 27-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock
To
Main Clock - 4 x SLCK + >);I)D(LSLLC(::IECE '
2.5 x Main Clock 1 x Main Clock
0.5 x Main Clock + 3 x PLL Clock +
SLCK 4.5 x SLCK - 5 x SLCK
0'5: i"@'ﬁ’oﬂ‘fk * 2.5 x PLL Clock + 2.5 x PLL Clock +
PLL Clock PLLCOUNT x SLCK + 5 x SLCK + 4 x SLCK +
PLLCOUNT x SLCK PLLCOUNT x SLCK
2.5 x PLLx Clock

Notes: 1. PLL designates either the PLL A or the PLL B Clock.
2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

Table 27-2. Clock Switching Timings Between Two PLLs (Worst Case)

6249D-ATARM-20-Dec-07

From PLLA Clock PLLB Clock
To
2.5 x PLLA Clock + 3 x PLLA Clock +
PLLA Clock 4 x SLCK + 4 x SLCK +
PLLACOUNT x SLCK 1.5 x PLLA Clock
3 x PLLB Clock + 2.5 x PLLB Clock +
PLLB Clock 4 x SLCK + 4 x SLCK +
1.5 x PLLB Clock PLLBCOUNT x SLCK

ATMEL

359

ATMEL

27.8.2 Clock Switching Waveforms

Figure 27-3. Switch Master Clock from Slow Clock to PLL Clock

SIowCIock||||||||||||||||||||||||||||||||||
PLLCIock|||

LOCK |

MCKRDY

MasterCIock|||||||||||||||||||||||||||| |||||

Write PMC_MCKR |

Figure 27-4. Switch Master Clock from Main Clock to Slow Clock

Slow Clock | | | | | | | | | |_|_

MCKRDY '| |

Write PMC_MCKR |

30 AT91SAM9I263 Preliminary L

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 27-5. Change PLLA Programming

SIowCIock||
PLLA Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | I ||

LOCK

MCKRDY

MasterCIock||||||||||||||||| |||||||||||||||| ||| ||
Slow Clock
Write CKGR_PLLAR | |

Figure 27-6. Change PLLB Programming

MamCIock||
PLLB Clock ||| |||||||||||||||||| | | | | | | | | | | | | | | | l ||

LOCK

MCKRDY

MasterCIock||||||||||||||||| |||||||||||||||| ||| ||

Main Clock
Write CKGR_PLLBR | |

A mE|% 361

6249D-ATARM-20-Dec-07

ATMEL

Figure 27-7. Programmable Clock Output Programming

PCKRDY

PCKx Output ||||||||||||||||||||||||

Write PMC_PCKx |_| PLL Clock is selected

Write PMC_SCER |_| PCKx is enabled

Write PMC_SCDR PCKXx is disabled |_|

32 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9 Power Management Controller (PMC) User Interface

Table 27-3. Register Mapping

6249D-ATARM-20-Dec-07

ATMEL

Offset Register Name Access Reset Value
0x0000 System Clock Enable Register PMC_SCER Write-only -
0x0004 System Clock Disable Register PMC_SCDR Write-only -
0x0008 System Clock Status Register PMC _SCSR Read-only 0x03
0x000C Reserved - - -
0x0010 Peripheral Clock Enable Register PMC _PCER Write-only -
0x0014 Peripheral Clock Disable Register PMC_PCDR Write-only -
0x0018 Peripheral Clock Status Register PMC_PCSR Read-only 0x0
0x001C Reserved - - -
0x0020 Main Oscillator Register CKGR_MOR Read/Write 0x0
0x0024 Main Clock Frequency Register CKGR_MCFR Read-only 0x0
0x0028 PLL A Register CKGR_PLLAR ReadWrite 0x3F00
0x002C PLL B Register CKGR_PLLBR ReadWrite 0x3F00
0x0030 Master Clock Register PMC_MCKR Read/Write 0x0
0x0034 Reserved - - -
0x0038 Reserved - - -
0x003C Reserved - - -
0x0040 Programmable Clock 0 Register PMC_PCKO Read/Write 0x0
0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0
0x0060 Interrupt Enable Register PMC_IER Write-only --
0x0064 Interrupt Disable Register PMC_IDR Write-only --
0x0068 Status Register PMC_SR Read-only 0x08
0x006C Interrupt Mask Register PMC_IMR Read-only 0x0
0x0070 - 0x007C | Reserved - - -
0x0084 - OXOOFC | Reserved - - -
363

27.91 PMC System Clock Enable Register

Register Name: PMC_SCER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | pPcks | pPcke [pPcki | pcko |
7 6 5 4 3 2 1 0

Coop [o [T T 7]

e UHP: USB Host Port Clock Enable
0 = No effect.

1 = Enables the 12 and 48 MHz clock of the USB Host Port.
¢ UDP: USB Device Port Clock Enable

0 = No effect.

1 = Enables the 48 MHz clock of the USB Device Port.

e PCKx: Programmable Clock x Output Enable

0 = No effect.

1 = Enables the corresponding Programmable Clock output.

364 AT9I1SAM9I263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.2 PMC System Clock Disable Register

Register Name: PMC_SCDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | - | — | — | pPcks | pPcke [pPcki | pcko |
7 6 5 4 3 2 1 0

| UDP | UHP | - | - | - | — | - | PCK |

e PCK: Processor Clock Disable
0 = No effect.

1 = Disables the Processor clock. This is used to enter the processor in Idle Mode.

¢ UHP: USB Host Port Clock Disable
0 = No effect.

1 = Disables the 12 and 48 MHz clock of the USB Host Port.
¢ UDP: USB Device Port Clock Disable

0 = No effect.

1 = Disables the 48 MHz clock of the USB Device Port.

e PCKx: Programmable Clock x Output Disable

0 = No effect.

1 = Disables the corresponding Programmable Clock output.

A ||'|E|%D 365

6249D-ATARM-20-Dec-07

27.9.3 PMC System Clock Status Register

Register Name: PMC_SCSR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | pPcks | pPcke [pPcki | pcko |
7 6 5 4 3 2 1 0

| UDP | UHP | - | - | - | - | - | PCK |

¢ PCK: Processor Clock Status
0 = The Processor clock is disabled.

1 = The Processor clock is enabled.

e UHP: USB Host Port Clock Status
0 = The 12 and 48 MHz clock (UHPCK) of the USB Host Port is disabled.

1 =The 12 and 48 MHz clock (UHPCK) of the USB Host Port is enabled.
e UDP: USB Device Port Clock Status

0 = The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1 = The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

e PCKx: Programmable Clock x Output Status

0 = The corresponding Programmable Clock output is disabled.

1 = The corresponding Programmable Clock output is enabled.

36 AT91SAM9I263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.4 PMC Peripheral Clock Enable Register

Register Name: PMC_PCER

Access Type: Write-only
31 30 29 28 27 26 25 24

[PD3t | pPD30 | PD29 | pPD2s | pPD2z | pPD26 | PD25 | PID24 |
23 22 21 20 19 18 17 16

[pPp23 | pPpD22 | PD2t | PD2o | PD19 | pPD18 | pPD17 [PD16 |
15 14 13 12 11 10 9 8

| pPp1s | pPp14 | Ppi3 | PD12 | pPD11 | pPDi0 | Pp9 | pPD8 |
7 6 5 4 3 2 1 0

| PID7 | PD6 | PID5 | PID4 | PID3 | PID2 | - | - |

¢ PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.
Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

A ||'|E|%D 367

6249D-ATARM-20-Dec-07

ATMEL

27.9.5 PMC Peripheral Clock Disable Register

Register Name: PMC_PCDR

Access Type: Write-only
31 30 29 28 27 26 25 24

[pPD31 | PD30 | PD29 | pPD2s | pPD2z | pPD26 | PD25 | PID24
23 22 21 20 19 18 17 16

[pPpD23 | pPpD2 | PD2t | PD20 | pPD19 | pPD18 | pPDi7 [PIDI6
15 14 13 12 11 10 9 8

| pPp1s | pPp14 | Ppi3 | PD12 | pPD11 | pPDi0 | PD9 | PID8
7 6 5 4 3 2 1 0

| PID7 | PD6 | PID5 | PID4 | PID3 | PID2 | - | -

¢ PIDx: Peripheral Clock x Disable

0 = No effect.

1 = Disables the corresponding peripheral clock.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

27.9.6 PMC Peripheral Clock Status Register

Register Name: PMC_PCSR

Access Type: Read-only
31 30 29 28 27 26 25 24

[pPD31 | PD30 | PD29 | pPD28 | pPD2z | pPD26 | PD25 | PID24
23 22 21 20 19 18 17 16

[PD23 | pPD22 | pPD21 | pPD20 | pPD19 | pPDi8 | PD17 | PID16
15 14 13 12 11 10 9 8

| pPp1s | pp14 | PDi3 | PD12 | PD11 | pPDI0 | PD9 | PID8
7 6 5 4 3 2 1 0

[ppz | pPpse | pPDps | pPp4a | pPD3 | PD2 | — | -

¢ PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.

;s AT91SAM9I263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.7 PMC Clock Generator Main Oscillator Register

Register Name: CKGR_MOR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| OSCOUNT |
7 6 5 4 3 2 1 0

| — | _ | — | - | - - OSCBYPASS MOSCEN |

¢ MOSCEN: Main Oscillator Enable
A crystal must be connected between XIN and XOUT.

0 = The Main Oscillator is disabled.
1 = The Main Oscillator is enabled. OSCBYPASS must be set to 0.
When MOSCEN is set, the MOSCS flag is set once the Main Oscillator startup time is achieved.

e OSCBYPASS: Oscillator Bypass
0 = No effect.

1 = The Main Oscillator is bypassed. MOSCEN must be set to 0. An external clock must be connected on XIN.
When OSCBYPASS is set, the MOSCS flag in PMC_SR is automatically set.
Clearing MOSCEN and OSCBYPASS bits allows resetting the MOSCS flag.

e OSCOUNT: Main Oscillator Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the Main Oscillator start-up time.

A ||'|E|%D 369

6249D-ATARM-20-Dec-07

27.9.8 PMC Clock Generator Main Clock Frequency Register

Register Name: CKGR_MCFR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | MAINRDY |
15 14 13 12 11 10 9 8

| MAINF |
7 6 5 4 3 2 1 0

| MAINF |

¢ MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.

¢ MAINRDY: Main Clock Ready
0 = MAINF value is not valid or the Main Oscillator is disabled.

1 = The Main Oscillator has been enabled previously and MAINF value is available.

3o AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.9 PMC Clock Generator PLL A Register

Register Name: CKGR_PLLAR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | 1 - - MULA |
23 22 21 20 19 18 17 16

| MULA |
15 14 13 12 11 10 9 8

| OUTA PLLACOUNT |
7 6 5 4 3 2 1 0

| DIVA |

Possible limitations on PLL A input frequencies and multiplier factors should be checked before using the PMC.
Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR register.
e DIVA: Divider A

DIVA Divider Selected

0 Divider output is 0

1 Divider is bypassed

2-255 Divider output is the Main Clock divided by DIVA.

e PLLACOUNT: PLL A Counter
Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

e OUTA: PLL A Clock Frequency Range

To optimize clock performance, this field must be programmed as specified in “PLL Characteristics” in the Electrical Char-
acteristics section of the product datasheet.

e MULA: PLL A Multiplier
0 = The PLL A is deactivated.

1 up to 2047 = The PLL A Clock frequency is the PLL A input frequency multiplied by MULA + 1.

AIMEL art

6249D-ATARM-20-Dec-07

ATMEL

27.9.10 PMC Clock Generator PLL B Register

Register Name: CKGR_PLLBR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| - | - | USBDIV - MULB |
23 22 21 20 19 18 17 16

| MULB |
15 14 13 12 11 10 9 8

| ouTB PLLBCOUNT |
7 6 5 4 3 2 1 0

DIVB |

Possible limitations on PLL B input frequencies and multiplier factors should be checked before using the PMC.

¢ DIVB: Divider B

DIVB Divider Selected

0 Divider output is 0

1 Divider is bypassed

2-255 Divider output is the selected clock divided by DIVB.

e PLLBCOUNT: PLL B Counter
Specifies the number of slow clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

* OUTB:

PLLB Clock Frequency Range

To optimize clock performance, this field must be programmed as specified in “PLL Characteristics” in the Electrical Char-
acteristics section of the product datasheet.

* MULB:

PLL Multiplier

0 = The PLL B is deactivated.

1 up to 2047 = The PLL B Clock frequency is the PLL B input frequency multiplied by MULB + 1.

* USBDIV: Divider for USB Clock

uUSBDIV Divider for USB Clock(s)
0 0 Divider output is PLL B clock output.
0 1 Divider output is PLL B clock output divided by 2.
1 0 Divider output is PLL B clock output divided by 4.
1 1 Reserved.

372

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.11 PMC Master Clock Register
Register Name: PMC_MCKR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
I - I - I - I - I - - MDIV |
7 6 5 4 3 2 1 0
| - | - | - | PRES CSS |
¢ CSS: Master Clock Selection
CSSs Clock Source Selection
0 0 Slow Clock is selected
0 1 Main Clock is selected
1 0 PLL A Clock is selected

PLL B Clock is selected

* PRES: Processor Clock Prescaler

PRES

Processor Clock

Selected clock

Selected clock divided by 2

Selected clock divided by 4

o |Oo|o o

Selected clock divided by 8

Selected clock divided by 16

Selected clock divided by 32

Selected clock divided by 64

Reserved

¢ MDIV: Master Clock Division

MDIV

Master Clock Division

Master Clock is Processor Clock.

Master Clock is Processor Clock divided by 2.

Master Clock is Processor Clock divided by 4.

Reserved.

6249D-ATARM-20-Dec-07

ATMEL

373

27.9.12 PMC Programmable Clock Register

Register Name: PMC_PCKXx
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | - | - | PRES | CSS |
e CSS: Master Clock Selection
CSsSs Clock Source Selection
0 0 Slow Clock is selected
0 1 Main Clock is selected
1 0 PLL A Clock is selected
1 1 PLL B Clock is selected
¢ PRES: Programmable Clock Prescaler
PRES Programmable Clock
0 0 0 Selected clock
0 0 1 Selected clock divided by 2
0 1 0 Selected clock divided by 4
0 1 1 Selected clock divided by 8
1 0 0 Selected clock divided by 16
1 0 1 Selected clock divided by 32
1 1 0 Selected clock divided by 64
1 1 1 Reserved

sz AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.13 PMC Interrupt Enable Register

Register Name: PMC_IER
Access Type: Write-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | — | - | - | PckrDY3 | PckmrDY2 [PckmDY1 | PCKRDYO |
7 6 5 4 3 2 1 0
| - | - | - | - | MCKRDY | LOCKB | LOCKA | MOSCS |
¢ MOSCS: Main Oscillator Status Interrupt Enable
e LOCKA: PLL A Lock Interrupt Enable
e LOCKB: PLL B Lock Interrupt Enable
¢ MCKRDY: Master Clock Ready Interrupt Enable
¢ PCKRDYx: Programmable Clock Ready x Interrupt Enable
0 = No effect.
1 = Enables the corresponding interrupt.
375

6249D-ATARM-20-Dec-07

ATMEL

27.9.14 PMC Interrupt Disable Register

Register Name: PMC_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | pckrDYs | PckrDY2 [PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - | - | - | MCKRDY [|ockB [LockA | wmoscs |

¢ MOSCS: Main Oscillator Status Interrupt Disable
e LOCKA: PLL A Lock Interrupt Disable

e LOCKB: PLL B Lock Interrupt Disable

¢ MCKRDY: Master Clock Ready Interrupt Disable

¢ PCKRDYx: Programmable Clock Ready x Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

sze AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

27.9.15 PMC Status Register

Register Name: PMC_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | = | = | - | PckrDY3 | PckmrDY2 [PckmDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| - | - | - | - | MCKRDY | LockB | Locka | wmoscs |

MOSCS: MOSCS Flag Status
0 = Main oscillator is not stabilized.

1 = Main oscillator is stabilized.
e LOCKA: PLL A Lock Status
0 = PLL A is not locked

1 = PLL A is locked.

LOCKB: PLL B Lock Status
0 = PLL B is not locked.

1 = PLL B is locked.
¢ MCKRDY: Master Clock Status
0 = Master Clock is not ready.

1 = Master Clock is ready.

PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.

1 = Programmable Clock x is ready.

6249D-ATARM-20-Dec-07

ATMEL

377

27.9.16 PMC Interrupt Mask Register

Register Name: PMC_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | pckrDYs | PckrDY2 [PCKRDY1 | PCKRDYO |
7 6 5 4 3 2 1 0

| n | - | - [- | MCKRDY | LockB | Locka | wmoscs |

¢ MOSCS: Main Oscillator Status Interrupt Mask
e LOCKA: PLL A Lock Interrupt Mask

e LOCKB: PLL B Lock Interrupt Mask

¢ MCKRDY: Master Clock Ready Interrupt Mask

¢ PCKRDYx: Programmable Clock Ready x Interrupt Mask
0 = The corresponding interrupt is enabled.

1 = The corresponding interrupt is disabled.

szs AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28. Advanced Interrupt Controller (AIC)

28.1 Description

6249D-ATARM-20-Dec-07

The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to sub-
stantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external inter-
rupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

The fast forcing feature redirects any internal or external interrupt source to provide a fast inter-
rupt rather than a normal interrupt.

A ||'|E|%D 379

28.2 Block Diagram

Figure 28-1. Block Diagram

FIQ AIC
| I ARM
IRQO-IRQN Processor
Up to
Thirty-two »| nFlQ
~._Embedded | Sources
“.._Embedded | >| nIRQ
! Embedded >
Peripheral
4
) J ApB

28.3 Application Block Diagram

Figure 28-2. Description of the Application Block

0OS-based Applications
Standalone
Applications OS Drivers RTOS Drivers
Hard Real Time Tasks
General OS Interrupt Handler
Advanced Interrupt Controller
’ External Peripherals
Embedded Peripherals (External Interrupts)

28.4 AIC Detailed Block Diagram

Figure 28-3. AIC Detailed Block Diagram

Advanced Interrupt Controller ARM
DFIQ Processor
PIO " |External ” | Fast nFIQ
Controller Source Cmetrru"pt
Input I—» ontroller
Stage
D —> > nIRQ
RAo-IRan Fast Interrupt 2
PIOIRQ as
. Forcing R Priority Processor
Internal Controller Clock
Source
»| Input Power
Embedded Stage Management
Peripherals Controller
User Interface Wake Up
A
Y APB

A

0 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.5 /0 Line Description

Table 28-1. 1/O Line Description

Pin Name Pin Description Type
FlQ Fast Interrupt Input
IRQO - IRQN Interrupt O - Interrupt n Input

28.6 Product Dependencies

28.6.1 I/O Lines
The interrupt signals FIQ and IRQO to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

28.6.2 Power Management

The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

28.6.3 Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock, the
Power Management Controller and the Memory Controller. When a system interrupt occurs, the
service routine must first distinguish the cause of the interrupt. This is performed by reading suc-
cessively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to sim-
plify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.

A ||'|E|%D 381

6249D-ATARM-20-Dec-07

ATMEL

28.7 Functional Description

28.7.1

28.7.1.1

28.7.1.2

28.7.1.3

28.7.1.4

382

Interrupt Source Control

Interrupt Source Mode

The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.

Interrupt Source Enabling

Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.

Interrupt Clearing and Setting

All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See “Priority Controller” on page 385.) The automatic clear reduces
the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note
that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature
enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast Forcing” on
page 389.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

Interrupt Status

For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.

The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on page
385) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the
processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

28.7.1.5 Internal Interrupt Source Input Stage

Figure 28-4. Internal Interrupt Source Input Stage

AIC_SMRI
(SRCTYPE)

Source i Level/ | AIC_IPR I
Fdge AIC_IMR

D : Fast Interrupt Controller
or
Priority Controller
Edge

Set Clear
]

[AiciscRr_] FF
AIC_ICCR
e

28.7.1.6 External Interrupt Source Input Stage

Figure 28-5. External Interrupt Source Input Stage

AIC_SMRi
High/Low SRCTYPE
Level/ AIC_IPR
Edge
. | AIC_IMR |
Source i
|:| | . E.ralst Interrupt Controller
Priority Controller
Pos./Neg. | AIC_IECR |
I
Edge
Detector FF
Set Clear
| I
| AIC_ISCR | | AIC_IDCR |

| AIC_ICCR |

A ||'|E|%D 383

6249D-ATARM-20-Dec-07

ATMEL

28.7.2 Interrupt Latencies
Global interrupt latencies depend on several parameters, including:
¢ The time the software masks the interrupts.
* Occurrence, either at the processor level or at the AIC level.
* The execution time of the instruction in progress when the interrupt occurs.
* The treatment of higher priority interrupts and the resynchronization of the hardware signals.

This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the pro-
cessor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

28.7.2.1 External Interrupt Edge Triggered Source

Figure 28-6. External Interrupt Edge Triggered Source

IRQ or FIQ
(Positive Edge)

|

I
I
I
|
l
IRQ or FIQ ! | |
(Negative Edge) I
l
niRQ e
. Maximum IRQ Latency = 4 Cycles |
| 3
nFIQ 1
;‘ Maximum FIQ Latency = 4 Cycles
28.7.2.2 External Interrupt Level Sensitive Source

Figure 28-7. External Interrupt Level Sensitive Source

MCK l l I l
IRQ or FIQ
(High Level) l

[}
}
}
[}
[}
[}
T
IRQ or FIQ ! | |
(Low Level) |
l
nIRQ \
' Maximum IRQ
1 Latency = 3 Cycles |
[}
! |
nFIQ <
1 Maximum FIQ
[}

Latency = 3 cycles

s8¢ AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.7.2.3 Internal Interrupt Edge Triggered Source

Figure 28-8. Internal Interrupt Edge Triggered Source

MCK
LA A A :
nRQ
L | 1
L | \
L | \
!4 [»
. 1 1Maximum IRQ Latency = 4.5 Cycles '
1 1 1
Peripheral Interrupt
Becomes Active
28.7.2.4 Internal Interrupt Level Sensitive Source

Figure 28-9. Internal Interrupt Level Sensitive Source

MCK |

nIRQ

1
1
1
>» |

Maximum IRQ Latency = 3.5 Cycles

PR
e S I
e

Peripheral Interrupt
Becomes Active

28.7.3 Normal Interrupt

28.7.3.1 Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast
Forcing).

Each interrupt source has a programmabile priority level of 7 to 0, which is user-definable by writ-
ing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR
(Source Mode Register), the nIRQ line is asserted. As a new interrupt condition might have hap-
pened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.

A ||'|E|%D 385

6249D-ATARM-20-Dec-07

ATMEL

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in
progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.

28.7.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled
during the service of lower priority interrupts. This requires the interrupt service routines of the
lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service rou-
tine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.

28.7.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the reg-
isters AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the cur-
rent interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address OxFFFF F100 and thus acces-
sible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:

LDR PC, [PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by support-
ing the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
s0, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral han-
dling) to be handled efficiently and independently of the application running under an operating
system.

28.7.3.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and the associated status bits.

s AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

It is assumed that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring

LDR PC, [PC, # -&F20]
When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1. The CPSRis stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, dec-
rementing it by four.

2. The ARM core enters Interrupt mode, if it has not already done so.

3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

— Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

— De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

— Automatically clears the interrupt, if it has been programmed to be edge-triggered.
— Pushes the current level and the current interrupt number on to the stack.
— Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB pcC,
LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

6. The interrupt handler can then proceed as required, saving the registers that are used
and restoring them at the end. During this phase, an interrupt of higher priority than the
current level restarts the sequence from step 1.

Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared dur-
ing this phase.

7. The “I” bitin CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the inter-
rupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has the effect of returning from the interrupt to whatever was being exe-
cuted before, and of loading the CPSR with the stored SPSR, masking or unmasking
the interrupts depending on the state saved in SPSR_irq.

A ||'|E|%D 387

6249D-ATARM-20-Dec-07

28.7.4

28.7.4.1

28.74.2

28.7.4.3

28.7.4.4

388

ATMEL

Note: The “I” bitin SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).

Fast Interrupt

Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the processor
except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the
product, either directly or through a PIO Controller.

Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMRO and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMRO enables programming the fast inter-
rupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

Fast Interrupt Vectoring
The fast interrupt handler address can be stored in AIC_SVRO (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Reg-
ister). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address OxFFFF F104 and thus accessible from the ARM fast inter-
rupt vector at address 0x0000 001C through the following instruction:

LDR PC, [PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically per-
forms the clear of the fast interrupt source if it is programmed in edge-triggered mode.

Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and associated status bits.

Assuming that:
1. The Advanced Interrupt Controller has been programmed, AIC_SVRO is loaded with

the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:

LDR PC, [PC, # -&F20]
3. The user does not need nested fast interrupts.
When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:

1. The CPSR is stored in SPSR_{fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-
cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, RO to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB pPC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bitin SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address of

the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must

be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.

28.7.4.5 Fast Forcing
The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal
Interrupt source on the fast interrupt controller.

Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER)
and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers results in an
update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature for each inter-
nal or external interrupt source.

When Fast Forcing is disabled, the interrupt sources are handled as described in the previous
pages.

When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detec-
tion of the interrupt source is still active but the source cannot trigger a normal interrupt to the
processor and is not seen by the priority handler.

If the interrupt source is programmed in level-sensitive mode and an active level is sampled,
Fast Forcing results in the assertion of the nFIQ line to the core.

If the interrupt source is programmed in edge-triggered mode and an active edge is detected,
Fast Forcing results in the assertion of the nFIQ line to the core.

The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Reg-
ister (AIC_IPR).

A ||'|E|%D 389

6249D-ATARM-20-Dec-07

ATMEL

The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0
(AIC_SVRO0), whatever the source of the fast interrupt may be. The read of the FVR does not
clear the Source 0 when the fast forcing feature is used and the interrupt source should be
cleared by writing to the Interrupt Clear Command Register (AIC_ICCR).

All enabled and pending interrupt sources that have the fast forcing feature enabled and that are
programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear Command
Register. In doing so, they are cleared independently and thus lost interrupts are prevented.

The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.

The source 0, reserved to the fast interrupt, continues operating normally and becomes one of
the Fast Interrupt sources.

Figure 28-10. Fast Forcing
Source 0 ~ FIQ [AIC_IPR]
[

28.7.5

390

Source n

Protect Mode

Input Stage T
Automatic Clear AIC_IMR
Read FVR if Fast Forcing is !
disabled on Sources 1 to 31. i

nFIQ

AIC_FFSR
AIC_IPR

Input Stage Priority
Manager
Automatic Clear AIC_IMR O—— > nIRQ

Read IVR if Source n is the current interrupt

and if Fast Forcing is disabled on Source n.

The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

e If an enabled interrupt with a higher priority than the current one is pending, it is stacked.
¢ |f there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.

This is avoided by using the Protect Mode. Writing DBGM in AIC_DCR (Debug Control Register)
at Ox1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

Calculates active interrupt (higher than current or spurious).
Determines and returns the vector of the active interrupt.
Memorizes the interrupt.

Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

O Dbd -

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

28.7.6 Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:

* An external interrupt source is programmed in level-sensitive mode and an active level occurs
for only a short time.

¢ An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

¢ An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

28.7.7 General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.

A ||'|E|%D 391

6249D-ATARM-20-Dec-07

ATMEL

28.8 Advanced Interrupt Controller (AIC) User Interface

28.8.1 Base Address
The AIC is mapped at the address O0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
support only a + 4-Kbyte offset.

28.8.2 Register Mapping

Table 28-2. Register Mapping

Offset Register Name Access Reset Value
0000 Source Mode Register 0 AIC_SMRO Read/Write 0x0
0x04 Source Mode Register 1 AIC_SMR1 Read/Write 0x0
0x7C Source Mode Register 31 AIC_SMRS31 Read/Write 0x0
0x80 Source Vector Register 0 AIC_SVRO Read/Write 0x0
0x84 Source Vector Register 1 AIC_SVR1 Read/Write 0x0
O0xFC Source Vector Register 31 AIC_SVR31 Read/Write 0x0
0x100 Interrupt Vector Register AIC_IVR Read-only 0x0
0x104 FI1Q Interrupt Vector Register AIC_FVR Read-only 0x0
0x108 Interrupt Status Register AIC_ISR Read-only 0x0
0x10C Interrupt Pending Register® AIC_IPR Read-only oxo™
0x110 Interrupt Mask Register® AIC_IMR Read-only 0x0
0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0
0x118 Reserved
0x11C Reserved
0x120 Interrupt Enable Command Register® AIC_IECR Write-only -
0x124 Interrupt Disable Command Register® AIC_IDCR Write-only -
0x128 Interrupt Clear Command Register® AIC_ICCR Write-only -
0x12C Interrupt Set Command Register® AIC_ISCR Write-only
0x130 End of Interrupt Command Register AIC_EOICR Write-only
0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write 0x0
0x138 Debug Control Register AIC_DCR Read/Write 0x0
0x13C Reserved --- ---
0x140 Fast Forcing Enable Register®® AIC_FFER Write-only -
0x144 Fast Forcing Disable Register®?® AIC_FFDR Write-only
0x148 Fast Forcing Status Register® AIC_FFSR Read-only 0x0
Notes: 1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset,

thus not pending.

2. PID2...PID31 bit fields refer to the identifiers as defined in the section “Peripheral Identifiers” of the product datasheet.

32 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.8.3 AIC Source Mode Register

Register Name: AIC_SMRO..AIC_SMR31

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

I - I - I = I - I - I - I = I - |
23 22 21 20 19 18 17 16

I - I - I = I - I - I - I = I - |
15 14 13 12 11 10 9 8

I - I - I = I - I - I - I = I - |
7 6 5 4 3 2 1 0

| - | SRCTYPE | - | - | PRIOR |

¢ PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).
The priority level is not used for the FIQ in the related SMR register AIC_SMRXx.

e SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

SRCTYPE Internal Interrupt Sources External Interrupt Sources
0 0 High level Sensitive Low level Sensitive
0 1 Positive edge triggered Negative edge triggered
1 0 High level Sensitive High level Sensitive
1 1 Positive edge triggered Positive edge triggered

A ||'|E|%D 393

6249D-ATARM-20-Dec-07

28.8.4 AIC Source Vector Register
Register Name: AIC_SVRO0..AIC_SVR31

ATMEL

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

| VECTOR |
23 22 21 20 19 18 17 16

| VECTOR |
15 14 13 12 11 10 9 8

| VECTOR |
7 6 5 4 3 2 1 0

| VECTOR |

e VECTOR: Source Vector

The user may store in these registers the addresses of the corresponding handler for each interrupt source.

28.8.5 AIC Interrupt Vector Register

Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0x0
31 30 29 28 27 26 25 24

| IRQV |
23 22 21 20 19 18 17 16

| IRQV |
15 14 13 12 11 10 9 8

| IRQV |
7 6 5 4 3 2 1 0

| IRQV |

¢ IRQV: Interrupt Vector Register

The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to

the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

304 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.8.6 AIC FIQ Vector Register

Register Name: AIC_FVR

Access Type: Read-only

Reset Value: 0x0
31 30 29 28 27 26 25 24

| FIQV |
23 22 21 20 19 18 17 16

| FIQV |
15 14 13 12 11 10 9 8

| FIQV |
7 6 5 4 3 2 1 0

| FIQV |

* FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU.

28.8.7 AIC Interrupt Status Register

Register Name: AIC_ISR

Access Type: Read-only

Reset Value: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - [- | IRQID |

¢ |RQID: Current Interrupt Identifier
The Interrupt Status Register returns the current interrupt source number.

A ||'|E|%D 395

6249D-ATARM-20-Dec-07

28.8.8 AIC Interrupt Pending Register

Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0x0
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYsS | FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Pending
0 = Corresponding interrupt is not pending.

1 = Corresponding interrupt is pending.

28.8.9 AIC Interrupt Mask Register

Register Name: AIC_IMR

Access Type: Read-only

Reset Value: 0x0
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS | FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Mask
0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

396 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.8.10 AIC Core Interrupt Status Register

Register Name: AIC_CISR

Access Type: Read-only

Reset Value: 0x0
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - [- | — [- - — NIRQ NIFQ |

¢ NFIQ: NFIQ Status

0 = nFIQ line is deactivated.

1 =nFIQ line is active.

+ NIRQ: NIRQ Status

0 = nIRQ line is deactivated.

1 =nlIRQ line is active.

28.8.11 AIC Interrupt Enable Command Register

Register Name: AIC_IECR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 [PID29 | PID28 PID27 PID26 PID25 PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 [PID21 | PID20 PID19 PID18 PID17 PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 [PID13 | PID12 PID11 PID10 PID9 PIDS |
7 6 5 4 3 2 1 0

| PID7 | PID6 [PID5 | PID4 PID3 PID2 SYS FIQ |

¢ FIQ, SYS, PID2-PID3: Interrupt Enable
0 = No effect.

1 = Enables corresponding interrupt.

6249D-ATARM-20-Dec-07

ATMEL

397

28.8.12 AIC Interrupt Disable Command Register

ATMEL

Register Name: AIC_IDCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS | FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Disable

0 = No effect.

1 = Disables corresponding interrupt.

28.8.13 AIC Interrupt Clear Command Register

Register Name: AIC_ICCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 [PID29 | PID28 | PID27 | PID26 | PID25 [PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 [PID21 | PID20 | PID19 | PID18 | PID17 [PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 [PID13 | PID12 | PID11 | PID10 | PID9 [PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 [PID5 | PID4 | PID3 | PID2 | SYS | FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Clear
0 = No effect.

1 = Clears corresponding interrupt.

s AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.8.14 AIC Interrupt Set Command Register

Register Name: AIC_ISCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS | FIQ |

¢ FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.

1 = Sets corresponding interrupt.

28.8.15 AIC End of Interrupt Command Register

Register Name: AIC_EOICR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

A ||'|E|%D 399

6249D-ATARM-20-Dec-07

28.8.16 AIC Spurious Interrupt Vector Register

Register Name: AIC_SPU

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

| siQv |
23 22 21 20 19 18 17 16

| siQv |
15 14 13 12 11 10 9 8

| slqQv |
7 6 5 4 3 2 1 0

| slqQv |

e SIQV: Spurious Interrupt Vector Register
The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.

28.8.17 AIC Debug Control Register

Register Name: AIC_DEBUG

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - | ewsk | PrOT |

e PROT: Protection Mode
0 = The Protection Mode is disabled.

1 = The Protection Mode is enabled.
¢ GMSK: General Mask
0 = The nIRQ and nFIQ lines are normally controlled by the AIC.

1 = The nIRQ and nFIQ lines are tied to their inactive state.

a0 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

28.8.18 AIC Fast Forcing Enable Register

Register Name: AIC_FFER

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 PID27 | PID26 PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 PID19 | PID18 PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 PID11 | PID10 PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 PID3 | PID2 SYS | - |

e SYS, PID2-PID31: Fast Forcing Enable

0 = No effect.

1 = Enables the fast forcing feature on the corresponding interrupt.

28.8.19 AIC Fast Forcing Disable Register

Register Name: AIC_FFDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 [PID29 | PID28 PID27 | PID26 PID25 [PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 [PID21 | PID20 PID19 | PID18 PID17 [PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 [PID13 | PID12 PID11 | PID10 PID9 [PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 [PID5 | PID4 PID3 | PID2 SYS [- |

e SYS, PID2-PID31: Fast Forcing Disable

0 = No effect.

1 = Disables the Fast Forcing feature on the corresponding interrupt.

6249D-ATARM-20-Dec-07

ATMEL

401

e A T91SAM9263 Preliminary

28.8.20 AIC Fast Forcing Status Register

Register Name: AIC_FFSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 SYS | - |

e SYS, PID2-PID31: Fast Forcing Status

0 = The Fast Forcing feature is disabled on the corresponding interrupt.

1 = The Fast Forcing feature is enabled on the corresponding interrupt.

6249D-ATARM-20-Dec-07

ATMEL

402

e A T91SAM9263 Preliminary

29. Debug Unit (DBGU)

29.1 Description

6249D-ATARM-20-Dec-07

The Debug Unit provides a single entry point from the processor for access to all the debug
capabilities of Atmel’s ARM-based systems.

The Debug Unit features a two-pin UART that can be used for several debug and trace purposes
and offers an ideal medium for in-situ programming solutions and debug monitor communica-
tions. Moreover, the association with two peripheral data controller channels permits packet
handling for these tasks with processor time reduced to a minimum.

The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by the
In-circuit Emulator of the ARM processor visible to the software. These signals indicate the sta-
tus of the DCC read and write registers and generate an interrupt to the ARM processor, making
possible the handling of the DCC under interrupt control.

Chip Identifier registers permit recognition of the device and its revision. These registers inform
as to the sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Finally, the Debug Unit features a Force NTRST capability that enables the software to decide
whether to prevent access to the system via the In-circuit Emulator. This permits protection of
the code, stored in ROM.

A ||'|E|%D 403

ATMEL

29.2 Block Diagram

Figure 29-1. Debug Unit Functional Block Diagram

Peripheral
Bridge

—— Peripheral DMA Controller
APB Debug Unit
> N DTXD
Transmit I:l
Power MCK Baud Rate l-’ Parallel
Management Generator Input/
Controller T—» Output I:l
Receive
DRXD
ARM® B HDCd? Chip ID
COMMTX andler
Processor
nTRST
ICE Interrupt
Access P dbgu_irq
Control
Handler
Power-on
Reset

D force_ntrst

Table 29-1. Debug Unit Pin Description

Pin Name Description Type
DRXD Debug Receive Data Input
DTXD Debug Transmit Data Output

Figure 29-2. Debug Unit Application Example

Boot Program Debug Monitor Trace Manager

T—l l_T

Debug Unit

RS232 Drivers

Programming Tool Debug Console Trace Console

a4 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.3 Product Dependencies

29.3.1 I/O Lines
Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In this
case, the programmer must first configure the corresponding PIO Controller to enable 1/O lines
operations of the Debug Unit.

29.3.2 Power Management
Depending on product integration, the Debug Unit clock may be controllable through the Power
Management Controller. In this case, the programmer must first configure the PMC to enable the
Debug Unit clock. Usually, the peripheral identifier used for this purpose is 1.

29.3.3 Interrupt Source
Depending on product integration, the Debug Unit interrupt line is connected to one of the inter-
rupt sources of the Advanced Interrupt Controller. Interrupt handling requires programming of
the AIC before configuring the Debug Unit. Usually, the Debug Unit interrupt line connects to the
interrupt source 1 of the AIC, which may be shared with the real-time clock, the system timer
interrupt lines and other system peripheral interrupts, as shown in Figure 29-1. This sharing
requires the programmer to determine the source of the interrupt when the source 1 is triggered.

29.4 UART Operations

The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit charac-
ter handling (with parity). It has no clock pin.

The Debug Unit's UART is made up of a receiver and a transmitter that operate independently,
and a common baud rate generator. Receiver timeout and transmitter time guard are not imple-
mented. However, all the implemented features are compatible with those of a standard USART.

29.4.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver
and the transmitter.

The baud rate clock is the master clock divided by 16 times the value (CD) written in
DBGU_BRGR (Baud Rate Generator Register). If DBGU_BRGR is set to 0, the baud rate clock
is disabled and the Debug Unit's UART remains inactive. The maximum allowable baud rate is
Master Clock divided by 16. The minimum allowable baud rate is Master Clock divided by (16 x
65536).

MCK

Baud Rate =
audnale = 15 cb

A ||'|E|,® 405

6249D-ATARM-20-Dec-07

ATMEL

Figure 29-3. Baud Rate Generator

29.4.2

29.4.2.1

29.4.2.2

406

Receiver

MCK

oo]

> 16-bit Counter
ouT
>1
J »| Divide | _ Baud Rate
by 16 Clock
0—»{0
. Receiver

g Sampling Clock

Receiver Reset, Enable and Disable

After device reset, the Debug Unit receiver is disabled and must be enabled before being used.
The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At
this command, the receiver starts looking for a start bit.

The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the
receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already
detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its
operation.

The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit
RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled,
whatever its current state. If RSTRX is applied when data is being processed, this data is lost.

Start Detection and Data Sampling

The Debug Unit only supports asynchronous operations, and this affects only its receiver. The
Debug Unit receiver detects the start of a received character by sampling the DRXD signal until
it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if it is
detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a
space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is
7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the DRXD at the theoretical mid-
point of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period)
so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling
point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 29-4. Start Bit Detection

Sampling Clock l |_| |_|

I I I I
DRXD _I 3 3 i 3
Prrrrtt o o 1
True Start | | | DO
Detection | | I
[— | I~
Figure 29-5. Character Reception
Example: 8-bit, parity enabled 1 stop
0.5bit 1 bit
period , period
DRXD NN RN RN RN
Sampling Do D1 D2 D3 D4 D5 D6 D7 St:op Bit
True Start Detection Parity Bit

29.4.2.3 Receiver Ready
When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY sta-
tus bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the
receive holding register DBGU_RHR is read.

Figure 29-6. Receiver Ready

oRxp | s [oo [o1 [p2 [o3[pa]ps[os o7 [P | |s [po[or][o2]ps]os]os]os]o7]P |

RXRDY | I_

Read DBGU_RHR

29.4.2.4 Receiver Overrun
If DBGU_RHR has not been read by the software (or the Peripheral Data Controller) since the
last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in
DBGU_SR is set. OVRE is cleared when the software writes the control register DBGU_CR with
the bit RSTSTA (Reset Status) at 1.

Figure 29-7. Receiver Overrun

pRxp | s [po [o1]p2 [D3] D4 b5 o6 [p7] P [siop| 8 [D0] 1] D2 D8] Da [D5 [D6 [07 P [stop]

RXRDY |

OVRE l_l—
f

RSTSTA

29.4.2.5 Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in
accordance with the field PAR in DBGU_MR. It then compares the result with the received parity

A ||'|E|,® 407

6249D-ATARM-20-Dec-07

ATMEL

bit. If different, the parity error bit PARE in DBGU_SR is set at the same time the RXRDY is set.
The parity bit is cleared when the control register DBGU_CR is written with the bit RSTSTA
(Reset Status) at 1. If a new character is received before the reset status command is written,
the PARE bit remains at 1.

Figure 29-8. Parity Error

orxp | s [po [p1]p2 [o3[pa]ps[oe o7 [P [stop]

RXRDY |

PARE []
f

Wrong Parity Bit RSTSTA

29.4.2.6 Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been
sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error)
bit in DBGU_SR is set at the same time the RXRDY bit is set. The bit FRAME remains high until
the control register DBGU_CR is written with the bit RSTSTA at 1.

Figure 29-9. Receiver Framing Error

oRxp | s [po [o1 o2 [3] p4a] ps[ps [o7 [P |stop]

RXRDY

FRAME
Stop Bit RSTSTA
Detected at 0

29.4.3 Transmitter

29.4.3.1 Transmitter Reset, Enable and Disable
After device reset, the Debug Unit transmitter is disabled and it must be enabled before being
used. The transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at 1.
From this command, the transmitter waits for a character to be written in the Transmit Holding
Register DBGU_THR before actually starting the transmission.

The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If the
transmitter is not operating, it is immediately stopped. However, if a character is being pro-
cessed into the Shift Register and/or a character has been written in the Transmit Holding
Register, the characters are completed before the transmitter is actually stopped.

The programmer can also put the transmitter in its reset state by writing the DBGU_CR with the
bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing
characters.

29.4.3.2 Transmit Format
The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is driven
depending on the format defined in the Mode Register and the data stored in the Shift Register.
One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one optional parity
bit and one stop bit at 1 are consecutively shifted out as shown on the following figure. The field

a8 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

PARE in the mode register DBGU_MR defines whether or not a parity bit is shifted out. When a
parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or
mark bit.

Figure 29-10. Character Transmission

Example: Parity enabled

S mininininininininininly

DTXD _|

iStat DO DI D2 D3 D4 D5 D6 D7 iParty Stop
Bit Bit Bit

29.4.3.3 Transmitter Control

When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register
DBGU_SR. The transmission starts when the programmer writes in the Transmit Holding Regis-
ter DBGU_THR, and after the written character is transferred from DBGU_THR to the Shift
Register. The bit TXRDY remains high until a second character is written in DBGU_THR. As
soon as the first character is completed, the last character written in DBGU_THR is transferred
into the shift register and TXRDY rises again, showing that the holding register is empty.

When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in
DBGU_THR have been processed, the bit TXEMPTY rises after the last stop bit has been
completed.

Figure 29-11. Transmitter Control

DBGU_THR X paao X Data 1
A

A

Shift Register

>< Data 0 >< Data 1

DTXD | s | Data 0 | P |stop| S Data 1 | P | stopl

TXRDY

TXEMPTY

] |

Write Data 0
in DBGU_THR

Write Data 1
in DBGU_THR

2944 Peripheral Data Controller

6249D-ATARM-20-Dec-07

Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a
Peripheral Data Controller (PDC) channel.

The peripheral data controller channels are programmed via registers that are mapped within
the Debug Unit user interface from the offset 0x100. The status bits are reported in the Debug
Unit status register DBGU_SR and can generate an interrupt.

A ||'|E|%D 409

29.4.5 Test Modes

Figure 29-12. Test Modes

ATMEL

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of
the data in DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmit-
ter. This results in a write of a data in DBGU_THR.

The Debug Unit supports three tests modes. These modes of operation are programmed by
using the field CHMODE (Channel Mode) in the mode register DBGU_MR.

The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the DRXD
line, it is sent to the DTXD line. The transmitter operates normally, but has no effect on the
DTXD line.

The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD
pins are not used and the output of the transmitter is internally connected to the input of the
receiver. The DRXD pin level has no effect and the DTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmitter
and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission.

Automatic Echo

Receiver RXD

Disabl
Transmitter | Disabled |, TXD

Local Loopback

Receiver Pls2od . gxp
Vbp
Transmitter Debled L 1xp
Remote Loopback Vbb
Disabled
Receiver [~ ----- «— RXD
Disabled
Transmitter [------ TXD

29.4.6 Debug Communication Channel Support

The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug Com-
munication Channel of the ARM Processor and are driven by the In-circuit Emulator.

210 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.4.7 Chip Identifier

The Debug Communication Channel contains two registers that are accessible through the ICE
Breaker on the JTAG side and through the coprocessor 0 on the ARM Processor side.

As a reminder, the following instructions are used to read and write the Debug Communication
Channel:

MRC pl4, 0, Rd, cl1, c0, ©
Returns the debug communication data read register into Rd

MCR pl4, 0, R4, cl, cO, O
Writes the value in Rd to the debug communication data write register.
The bits COMMRX and COMMTX, which indicate, respectively, that the read register has been
written by the debugger but not yet read by the processor, and that the write register has been
written by the processor and not yet read by the debugger, are wired on the two highest bits of
the status register DBGU_SR. These bits can generate an interrupt. This feature permits han-

dling under interrupt a debug link between a debug monitor running on the target system and a
debugger.

The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and
DBGU_EXID (Extension ID). Both registers contain a hard-wired value that is read-only. The first
register contains the following fields:

* EXT - shows the use of the extension identifier register

* NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size

* ARCH - identifies the set of embedded peripheral

* SRAMSIZ - indicates the size of the embedded SRAM

¢ EPROC - indicates the embedded ARM processor

* VERSION - gives the revision of the silicon
The second register is device-dependent and reads 0 if the bit EXT is 0.

29.4.8 ICE Access Prevention

6249D-ATARM-20-Dec-07

The Debug Unit allows blockage of access to the system through the ARM processor's ICE
interface. This feature is implemented via the register Force NTRST (DBGU_FNR), that allows
assertion of the NTRST signal of the ICE Interface. Writing the bit FNTRST (Force NTRST) to 1
in this register prevents any activity on the TAP controller.

On standard devices, the bit FNTRST resets to 0 and thus does not prevent ICE access.

This feature is especially useful on custom ROM devices for customers who do not want their
on-chip code to be visible.

A ||'|E|,® 411

29.5 Debug Unit (DBGU) User Interface

ATMEL

Table 29-2. Debug Unit Memory Map

Offset Register Name Access Reset Value
0x0000 Control Register DBGU_CR Write-only -
0x0004 Mode Register DBGU_MR Read/Write 0x0
0x0008 Interrupt Enable Register DBGU_IER Write-only -
0x000C Interrupt Disable Register DBGU_IDR Write-only -
0x0010 Interrupt Mask Register DBGU_IMR Read-only 0x0
0x0014 Status Register DBGU_SR Read-only -
0x0018 Receive Holding Register DBGU_RHR Read-only 0x0
0x001C Transmit Holding Register DBGU_THR Write-only -
0x0020 Baud Rate Generator Register DBGU_BRGR Read/Write 0x0

0x0024 - 0x003C | Reserved - - -
0x0040 Chip ID Register DBGU_CIDR Read-only -
0x0044 Chip ID Extension Register DBGU_EXID Read-only -
0x0048 Force NTRST Register DBGU_FNR Read/Write 0x0

0x0100 - 0x0124 | PDC Area - - -

4212 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.5.1 Debug Unit Control Register

Name: DBGU_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | - | RstsA |
7 6 5 4 3 2 1 0

[Txos | 7t™en | mxois | mRxen | mstix | RsTRx | - | - |

* RSTRX: Reset Receiver
0 = No effect.

1 = The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

e RSTTX: Reset Transmitter

0 = No effect.

1 = The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.
* RXEN: Receiver Enable

0 = No effect.

1 = The receiver is enabled if RXDIS is 0.

* RXDIS: Receiver Disable

0 = No effect.

1 = The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.

¢ TXEN: Transmitter Enable

0 = No effect.

1 = The transmitter is enabled if TXDIS is 0.

e TXDIS: Transmitter Disable

0 = No effect.

1 = The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.

e RSTSTA: Reset Status Bits

0 = No effect.

1 = Resets the status bits PARE, FRAME and OVRE in the DBGU_SR.

A ||'|E|,® 413

6249D-ATARM-20-Dec-07

29.5.2 Debug Unit Mode Register

Name: DBGU_MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

| CHMODE | - | - | PAR | - |
7 6 5 4 3 2 1 0

* PAR: Parity Type

PAR Parity Type
0 0 0 Even parity
0 0 1 Odd parity
0 1 0 Space: parity forced to 0
0 1 1 Mark: parity forced to 1
1 X X No parity

¢ CHMODE: Channel Mode

CHMODE Mode Description
0 0 Normal Mode
0 1 Automatic Echo
1 0 Local Loopback
1 1 Remote Loopback

214 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.5.3 Debug Unit Interrupt Enable Register

Name: DBGU_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| commrx [commtx | - [— [— [_ [_ [Z |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | mxsurr | TxBUFE | - | xempry | - |
7 6 5 4 3 2 1 0

| PaRe | rFRAME | ovwee | EnbTx | EnDRX | - | Txmoy | mxmDY |

¢ RXRDY: Enable RXRDY Interrupt

e TXRDY: Enable TXRDY Interrupt

¢ ENDRX: Enable End of Receive Transfer Interrupt
¢ ENDTX: Enable End of Transmit Interrupt

e OVRE: Enable Overrun Error Interrupt

* FRAME: Enable Framing Error Interrupt

* PARE: Enable Parity Error Interrupt

e TXEMPTY: Enable TXEMPTY Interrupt

* TXBUFE: Enable Buffer Empty Interrupt

¢ RXBUFF: Enable Buffer Full Interrupt

e COMMTX: Enable COMMTX (from ARM) Interrupt

¢ COMMRX: Enable COMMRX (from ARM) Interrupt
0 = No effect.

1 = Enables the corresponding interrupt.

A ||'|E|,® 415

6249D-ATARM-20-Dec-07

29.5.4 Debug Unit Interrupt Disable Register

Name: DBGU_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| commrx [commtx | - [— [— [_ [_ [Z |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | mxsurr | TxBUFE | - | xempry | - |
7 6 5 4 3 2 1 0

| PaRe | rFRAME | ovwee | EnbTx | EnDRX | - | Txmoy | mxmDY |

¢ RXRDY: Disable RXRDY Interrupt

¢ TXRDY: Disable TXRDY Interrupt

e ENDRX: Disable End of Receive Transfer Interrupt
e ENDTX: Disable End of Transmit Interrupt

¢ OVRE: Disable Overrun Error Interrupt

* FRAME: Disable Framing Error Interrupt

* PARE: Disable Parity Error Interrupt

e TXEMPTY: Disable TXEMPTY Interrupt

e TXBUFE: Disable Buffer Empty Interrupt

¢ RXBUFF: Disable Buffer Full Interrupt

¢ COMMTX: Disable COMMTX (from ARM) Interrupt

e COMMRX: Disable COMMRX (from ARM) Interrupt
0 = No effect.

1 = Disables the corresponding interrupt.

26 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.5.5 Debug Unit Interrupt Mask Register

Name: DBGU_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| commrx [commtx | - [— [— [_ [_ [_ |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | mxsurF [TxBUFE | - | TxempTy | - |
7 6 5 4 3 2 1 0

| PaRe | rFRAME | ovwee | EnbTx | EnDRX | - | Txmoy | mxmDY |

* RXRDY: Mask RXRDY Interrupt

¢ TXRDY: Disable TXRDY Interrupt

¢ ENDRX: Mask End of Receive Transfer Interrupt
¢ ENDTX: Mask End of Transmit Interrupt
e OVRE: Mask Overrun Error Interrupt

¢ FRAME: Mask Framing Error Interrupt
¢ PARE: Mask Parity Error Interrupt

e TXEMPTY: Mask TXEMPTY Interrupt

¢ TXBUFE: Mask TXBUFE Interrupt

¢ RXBUFF: Mask RXBUFF Interrupt

e COMMTX: Mask COMMTX Interrupt

¢ COMMRX: Mask COMMRX Interrupt
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

A ||'|E|,® 417

6249D-ATARM-20-Dec-07

29.5.6 Debug Unit Status Register

Name: DBGU_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

| commrx [commtx | - [— [— [_ [_ [_ |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 11 10 9 8

| - | - | - | mxsurF [TxBUFE | - | TxempTy | - |
7 6 5 4 3 2 1 0

| PaRe | rFRAME | ovwee | EnbTx | EnDRX | - | Txmoy | mxmDY |

¢ RXRDY: Receiver Ready
0 = No character has been received since the last read of the DBGU_RHR or the receiver is disabled.

1 = At least one complete character has been received, transferred to DBGU_RHR and not yet read.
¢ TXRDY: Transmitter Ready
0 = A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled.

1 = There is no character written to DBGU_THR not yet transferred to the Shift Register.

ENDRX: End of Receiver Transfer
0 = The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the receiver Peripheral Data Controller channel is active.
* ENDTX: End of Transmitter Transfer
0 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive.

1 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is active.

OVRE: Overrun Error
0 = No overrun error has occurred since the last RSTSTA.

1 = At least one overrun error has occurred since the last RSTSTA.

FRAME: Framing Error
0 = No framing error has occurred since the last RSTSTA.

1 = At least one framing error has occurred since the last RSTSTA.

PARE: Parity Error
0 = No parity error has occurred since the last RSTSTA.

1 = At least one parity error has occurred since the last RSTSTA.

TXEMPTY: Transmitter Empty
0 = There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled.

1 = There are no characters in DBGU_THR and there are no characters being processed by the transmitter.

218 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

* TXBUFE: Transmission Buffer Empty
0 = The buffer empty signal from the transmitter PDC channel is inactive.

1 = The buffer empty signal from the transmitter PDC channel is active.
* RXBUFF: Receive Buffer Full

0 = The buffer full signal from the receiver PDC channel is inactive.

1 = The buffer full signal from the receiver PDC channel is active.

¢ COMMTX: Debug Communication Channel Write Status

0 = COMMTX from the ARM processor is inactive.

1 = COMMTX from the ARM processor is active.

¢ COMMRX: Debug Communication Channel Read Status

0 = COMMRX from the ARM processor is inactive.

1 = COMMRX from the ARM processor is active.

A ||'|E|,® 419

6249D-ATARM-20-Dec-07

29.5.7 Debug Unit Receiver Holding Register

Name: DBGU_RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| RXCHR |

¢ RXCHR: Received Character

Last received character if RXRDY is set.

29.5.8 Debug Unit Transmit Holding Register

Name: DBGU_THR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| TXCHR |

¢ TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

220 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.5.9 Debug Unit Baud Rate Generator Register

Name: DBGU_BRGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - ¢ - - [- [- | - [-]
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | - [-]
15 14 13 12 11 10 9 8

I cD |
7 6 5 4 3 2 1 0

I cD |

e CD: Clock Divisor

CD Baud Rate Clock
0 Disabled
1 MCK
2 to 65535 MCK / (CD x 16)

A ||'|E|,® 421

6249D-ATARM-20-Dec-07

29.5.10 Debug Unit Chip ID Register

ATMEL

Name: DBGU_CIDR
Access Type: Read-only
31 30 29 28 27 26 25 24
| EXT | NVPTYP | ARCH |
23 22 21 20 19 18 17 16
| ARCH | SRAMSIZ |
15 14 13 12 11 10 9 8
| NVPSIZ2 | NVPSIZ |
7 6 5 4 3 2 1 0
| EPROC VERSION |
e VERSION: Version of the Device
e EPROC: Embedded Processor
EPROC Processor
0 0 1 ARM946ES™
0 1 0 ARM7TDMI®
1 0 0 ARM920T™
1 0 1 ARM926EJ-S™
¢ NVPSIZ: Nonvolatile Program Memory Size
NVPSIZ Size
0 0 0 0 None
0 0 0 1 8K bytes
0 0 1 0 16K bytes
0 0 1 1 32K bytes
0 1 0 0 Reserved
0 1 0 1 64K bytes
0 1 1 0 Reserved
0 1 1 1 128K bytes
1 0 0 0 Reserved
1 0 0 1 256K bytes
1 0 1 0 512K bytes
1 0 1 1 Reserved
1 1 0 0 1024K bytes
1 1 0 1 Reserved
1 1 1 0 2048K bytes
1 1 1 1 Reserved

s22 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

* NVPSIZ2 Second Nonvolatile Program Memory Size

NVPSIZ2 Size
0 0 0 0 None
0 0 0 1 8K bytes
0 0 1 0 16K bytes
0 0 1 1 32K bytes
0 1 0 0 Reserved
0 1 0 1 64K bytes
0 1 1 0 Reserved
0 1 1 1 128K bytes
1 0 0 0 Reserved
1 0 0 1 256K bytes
1 0 1 0 512K bytes
1 0 1 1 Reserved
1 1 0 0 1024K bytes
1 1 0 1 Reserved
1 1 1 0 2048K bytes
1 1 1 1 Reserved

e SRAMSIZ: Internal SRAM Size

SRAMSIZ Size

0 0 0 0 Reserved
0 0 0 1 1K bytes

0 0 1 0 2K bytes

0 0 1 1 6K bytes

0 1 0 0 112K bytes
0 1 0 1 4K bytes

0 1 1 0 80K bytes
0 1 1 1 160K bytes
1 0 0 0 8K bytes

1 0 0 1 16K bytes
1 0 1 0 32K bytes
1 0 1 1 64K bytes
1 1 0 0 128K bytes
1 1 0 1 256K bytes
1 1 1 0 96K bytes
1 1 1 1 512K bytes

A ||'|E|,® 423

6249D-ATARM-20-Dec-07

¢ ARCH: Architecture Identifier

ARCH
Hex Bin Architecture
0x19 0001 1001 AT91SAM9xx Series
0x29 0010 1001 AT91SAM9IXExx Series
0x34 0011 0100 AT91x34 Series
0x37 0011 0111 CAP7 Series
0x39 0011 1001 CAP9 Series
0x3B 0011 1011 CAP11 Series
0x40 0100 0000 AT91x40 Series
0x42 0100 0010 AT91x42 Series
0x55 0101 0101 AT91x55 Series
0x60 0110 0000 AT91SAM7Axx Series
0x61 0110 0001 AT91SAM7AQxx Series
0x63 0110 0011 AT91x63 Series
0x70 0111 0000 AT91SAM7Sxx Series
0x71 0111 0001 AT91SAM7XCxx Series
0x72 0111 0010 AT91SAM7SExx Series
0x73 0111 0011 AT91SAM7Lxx Series
0x75 0111 0101 AT91SAM7Xxx Series
0x92 1001 0010 AT91x92 Series
0xFO 1111 0000 AT75Cxx Series

¢ NVPTYP: Nonvolatile Program Memory Type

NVPTYP Memory
0 0 0 ROM
0 0 1 ROMless or on-chip Flash
1 0 0 SRAM emulating ROM
0 1 0 Embedded Flash Memory
ROM and Embedded Flash Memory

0 1 1 NVPSIZ is ROM size

NVPSIZ2 is Flash size

e EXT: Extension Flag
0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

1224 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

29.5.11 Debug Unit Chip ID Extension Register

Name: DBGU_EXID

Access Type: Read-only
31 30 29 28 27 26 25 24

| EXID |
23 22 21 20 19 18 17 16

| EXID |
15 14 13 12 11 10 9 8

| EXID |
7 6 5 4 3 2 1 0

| EXID |

e EXID: Chip ID Extension

Reads 0 if the bit EXT in DBGU_CIDR is 0.

6249D-ATARM-20-Dec-07

ATMEL

425

29.5.12 Debug Unit Force NTRST Register

ATMEL

Name: DBGU_FNR
Access T ype: Read/Write

31 30 29 28 27 26 25 24
I N I B - SR
23 22 21 20 19 18 17 16
—— 1 1 71 T - T
15 14 13 12 11 10 9 8
IS I I B - — T
7 6 5 4 3 2 0
1 71 11 - — T et]

e FNTRST: Force NTRST

0 = NTRST of the ARM processor’s TAP controller is driven by power-on reset.

1 = NTRST of the ARM processor’s TAP controller is held low.

s26 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30. Parallel Input/Output (PIO) Controller

30.1 Description

6249D-ATARM-20-Dec-07

The Parallel Input/Output (P1O) Controller manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.

Each /O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.

Each 1/0O line of the PIO Controller features:

¢ An input change interrupt enabling level change detection on any I/O line.

* A glitch filter providing rejection of pulses lower than one-half of clock cycle.
* Multi-drive capability similar to an open drain I/O line.

¢ Control of the the pull-up of the I/O line.

* Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.

A ||'|E|,® 427

ATMEL

30.2 Block Diagram

Figure 30-1. Block Diagram

P10 Controller
PIO Interrupt
AIC
PIO Clock
PMC
| Data, Enable N
——
| € > > Up to 32
peripheral I0s
Embedded |
Peripheral
< <—>|:| PIN 0
Data, Enable
|) <—>|:| PIN 1
|<—> . Up to 32 pins
> Up to 32 °
Embedded > peripheral 10s b
Peripheral PIN 31
J 'l:l

APB

Figure 30-2. Application Block Diagram

On-Chip Peripheral Drivers

Keyboard Driver Control & Command
Driver
On-Chip Peripherals

PIO Controller

Keyboard Driver General Purpose I/Os External Devices

122 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.3 Product Dependencies

30.3.1 Pin Multiplexing

Each pin is configurable, according to product definition as either a general-purpose 1/O line
only, or as an /O line multiplexed with one or two peripheral 1/0s. As the multiplexing is hard-
ware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e., not multiplexed with any peripheral I/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Con-
troller can control how the pin is driven by the product.

30.3.2 External Interrupt Lines

The interrupt signals FIQ and IRQO to IRQn are most generally multiplexed through the P1O
Controllers. However, it is not necessary to assign the 1/O line to the interrupt function as the
P10 Controller has no effect on inputs and the interrupt lines (FIQ or IRQs) are used only as
inputs.

30.3.3 Power Management

The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the 1/O lines does not require the PIO Controller
clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available.
Note that the Input Change Interrupt and the read of the pin level require the clock to be
validated.

After a hardware reset, the PIO clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line
information.

30.34 Interrupt Generation

6249D-ATARM-20-Dec-07

For interrupt handling, the PIO Controllers are considered as user peripherals. This means that
the P10 Controller interrupt lines are connected among the interrupt sources 2 to 31. Refer to the
P10 Controller peripheral identifier in the product description to identify the interrupt sources
dedicated to the PIO Controllers.

The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.

A ||'|E|,® 429

ATMEL

30.4 Functional Description
The PIO Controller features up to 32 fully-programmable 1/O lines. Most of the control logic asso-
ciated to each 1/0 is represented in Figure 30-3. In this description each signal shown
represents but one of up to 32 possible indexes.

Figure 30-3. 1/O Line Control Logic

| PIO_OER[0] |

| Pi0_osRio]
[Pio_oprio] | [PI0_PUER(0] | g
| Pi0_PUsR[0] |3

1 PIO_PUDRI[O0]
Peripheral A
Output Enable —\

N—

0
Peripheral B /1
Output Enable —— -:
| PIO_ASRI0] | | PIO_PER[0] |
| PI0_ABSRI0] | Pio_Psmio] [+
| PIO_BSRI0] | | PIO_PDR[0] | | PIO_MDER[O]l
Peripheral A | PIO_MDSR[0]
Output

IEW | PIO_MDDRIO] |

Peripheral B

// [[P1o_soorp |
Output) PIO_SODRI0]

| PIO_ODSR[0] [
| Pio_copRio] | —

Peripheral A
Input

Peripheral B
PI0_PDSR[0] [| PIO_ISR[0] | — Input

(Up to 32 possible inputs)

Edge
Detector

Glitch
Filter

| PIO_IFER[0] |

| PIO_IFSR[0] | PIO_IER[0] |
| PIO_IFDRI[0] | | PIO_IMRIO]

| PIO_IDR[0] |
| PIO_IER[31] |

| PIO_IMR[31]

| PIO_IDR[31] |

PIO Interrupt

30 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.4.1 Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pull-
up Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit
in PIO_PUSR (Pull-up Status Register). Reading a 1 in PIO_PUSR means the pull-up is dis-
abled and reading a 0 means the pull-up is enabled.

Control of the pull-up resistor is possible regardless of the configuration of the 1/0 line.

After reset, all of the pull-ups are enabled, i.e., PIO_PUSR resets at the value 0x0.

30.4.2 I/0 Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO
controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the 1/O lines are controlled by the PIO controller, i.e., PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.

30.4.3 Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Regis-
ter). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently selected.
For each pin, the corresponding bit at level 0 means peripheral A is selected whereas the corre-
sponding bit at level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.

After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A.
However, peripheral A generally does not drive the pin as the PIO Controller resets in 1/O line
mode.

Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the corresponding
peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.

3044 Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the 1/O line is controlled by the peripheral. Peripheral A or B, depending on the
value in PIO_ABSR, determines whether the pin is driven or not.

When the 1/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).

A ||'|E|,® 431

6249D-ATARM-20-Dec-07

30.4.5

30.4.6

30.4.7

432

ATMEL

The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding /O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the 1/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configura-
tion of the 1/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the /O line.

Synchronous Data Output

Controlling all parallel buses using several PIOs requires two successive write operations in the
PIO_SODR and PIO_CODR registers. This may lead to unexpected transient values. The PIO
controller offers a direct control of PIO outputs by single write access to PIO_ODSR (Output
Data Status Register). Only bits unmasked by PIO_OWSR (Output Write Status Register) are
written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER (Output Write Enable
Register) and cleared by writing to PIO_OWDR (Output Write Disable Register).

After reset, the synchronous data output is disabled on all the 1/O lines as PIO_OWSR resets at
0x0.

Multi Drive Control (Open Drain)

Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guar-
antee a high level on the line.

The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.

After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.

Output Line Timings

Figure 30-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 30-4 also shows when the feedback in PIO_PDSR is available.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 30-4. Output Line Timings

mek || | |

Write PIO_SODR APB Access
Write PIO_ODSR at 1

Write PIO_CODR APB A
Write PIO_ODSR at 0

ccess

PIO_ODSR

2 cycles . 2 cycles

PIO_PDSR

30.4.8 Inputs
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This reg-
ister indicates the level of the 1/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.

Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the 1/O line at the time the clock was disabled.

30.4.9 Input Glitch Filtering

Optional input glitch filters are independently programmable on each I/O line. When the glitch fil-
ter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in Figure 30-5.

The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.

When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.

A ||'|E|%D 433

6249D-ATARM-20-Dec-07

ATMEL

Figure 30-5. Input Glitch Filter Timing

MCK |

Pin Level

m

up tp 1.5 cycles

L M [I

PIO_PDSR
if PIO_IFSR =0

PIO_PDSR
if PIO_IFSR =1

lcycle | 1cycle 1cycle 1cycle
2 cycles A 1 cycle
up to 2.5 pycles up to R cycles

30.4.10 Input Change Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable
Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and disable the
input change interrupt by setting and clearing the corresponding bit in PIO_IMR (Interrupt Mask
Register). As Input change detection is possible only by comparing two successive samplings of
the input of the I/O line, the P1O Controller clock must be enabled. The Input Change Interrupt is
available, regardless of the configuration of the 1/O line, i.e. configured as an input only, con-
trolled by the P1O Controller or assigned to a peripheral function.

When an input change is detected on an 1/O line, the corresponding bit in PIO_ISR (Interrupt
Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt
line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to gen-
erate a single interrupt signal to the Advanced Interrupt Controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled.

Figure 30-6. Input Change Interrupt Timings

McK |

Pin Level

PIO_ISR

Read PIO_ISR

APB Access APB Access

13 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.5 /O Lines Programming Example
The programing example as shown in Table 30-1 below is used to define the following
configuration.
* 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain,
with pull-up resistor
 Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor

* Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts

e Four input signals on 1/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter

* /O lines 16 to 19 assigned to peripheral A functions with pull-up resistor
¢ 1/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor
¢ 1/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor

Table 30-1. Programming Example

Register Value to be Written
PIO_PER 0x0000 FFFF
PIO_PDR 0xOFFF 0000
PIO_OER 0x0000 00FF
PIO_ODR OxOFFF FFOO
PIO_IFER 0x0000 OF00
PIO_IFDR OXOFFF FOFF
PIO_SODR 0x0000 0000
PIO_CODR OxOFFF FFFF
PIO_IER 0x0F00 OF00
PIO_IDR 0x00FF FOFF
PIO_MDER 0x0000 000F
PIO_MDDR OXOFFF FFFO
PIO_PUDR 0x00FO0 00FO0
PIO_PUER O0xOFOF FFOF
PIO_ASR 0xOFOF 0000
PIO_BSR 0x00F0 0000
PIO_OWER 0x0000 000F
PIO_OWDR OXOFFF FFFO

A ||'|E|,® 435

6249D-ATARM-20-Dec-07

ATMEL

30.6 Parallel Input/Ouput (P10) Controller User Interface

Each 1/O line controlled by the PIO Controller is associated with a bit in each of the PIO Control-
ler User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not mul-
tiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PIO_PSR returns

1 systematically.

Table 30-2. Register Mapping

Offset Register Name Access Reset Value
0x0000 PIO Enable Register PIO_PER Write-only -
0x0004 PIO Disable Register PIO_PDR Write-only -
0x0008 PIO Status Register PIO_PSR Read-only)
0x000C Reserved

0x0010 Output Enable Register PIO_OER Write-only -
0x0014 Output Disable Register PIO_ODR Write-only -
0x0018 Output Status Register PIO_OSR Read-only 0x0000 0000
0x001C Reserved

0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only -
0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only -
0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x0000 0000
0x002C Reserved

0x0030 Set Output Data Register PIO_SODR Write-only -
0x0034 Clear Output Data Register PIO_CODR Write-only -

Read-only
0x0038 Output Data Status Register PIO_ODSR or® 0x0000 0000
Read/Write

0x003C Pin Data Status Register PIO_PDSR Read-only ®
0x0040 Interrupt Enable Register PIO_IER Write-only -
0x0044 Interrupt Disable Register PIO_IDR Write-only -
0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000
0x004C Interrupt Status Register® PIO_ISR Read-only 0x00000000
0x0050 Multi-driver Enable Register PIO_MDER Write-only -
0x0054 Multi-driver Disable Register PIO_MDDR Write-only -
0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000
0x005C Reserved

0x0060 Pull-up Disable Register PIO_PUDR Write-only -
0x0064 Pull-up Enable Register PIO_PUER Write-only -
0x0068 Pad Pull-up Status Register PIO_PUSR Read-only 0x00000000
0x006C Reserved

436 AT91SAM9263 Preliminary -

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 30-2. Register Mapping (Continued)

Offset Register Name Access Reset Value
0x0070 Peripheral A Select Register® PIO_ASR Write-only -
0x0074 Peripheral B Select Register® PIO_BSR Write-only -
0x0078 AB Status Register® PIO_ABSR Read-only 0x00000000
0x007C

to Reserved

0x009C

0x00A0 Output Write Enable PIO_OWER Write-only -
0x00A4 Output Write Disable PIO_OWDR Write-only -
0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000
0x00AC Reserved

Notes: 1. Reset value of PIO_PSR depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR 1/O lines.

3. Reset value of PIO_PDSR depends on the level of the 1/O lines. Reading the 1/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.

5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second
register.

A ||'|E|,® 437

6249D-ATARM-20-Dec-07

ATMEL

30.6.1 PIO Controller PIO Enable Register

Name: PIO_PER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: PIO Enable
0 = No effect.

1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

30.6.2 PIO Controller PIO Disable Register

Name: PIO_PDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Disable
0 = No effect.

1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

w33 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.3 PIO Controller PIO Status Register

Name: PIO_PSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: PIO Status
0 = PIO is inactive on the corresponding /O line (peripheral is active).

1 = PIO is active on the corresponding I/O line (peripheral is inactive).

A ||'|E|%D 439

6249D-ATARM-20-Dec-07

ATMEL

30.6.4 PIO Controller Output Enable Register

Name: PIO_OER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Enable
0 = No effect.

1 = Enables the output on the I/O line.

30.6.5 PIO Controller Output Disable Register

Name: PIO_ODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Disable
0 = No effect.

1 = Disables the output on the 1/O line.

a0 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.6 PIO Controller Output Status Register

Name: PIO_OSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Output Status
0 = The I/O line is a pure input.

1 =The I/O line is enabled in output.

A ||'|E|,® 441

6249D-ATARM-20-Dec-07

ATMEL

30.6.7 PIO Controller Input Filter Enable Register

Name: PIO_IFER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Input Filter Enable
0 = No effect.

1 = Enables the input glitch filter on the 1/O line.

30.6.8 PIO Controller Input Filter Disable Register

Name: PIO_IFDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Filter Disable
0 = No effect.

1 = Disables the input glitch filter on the I/O line.

a2 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.9 PIO Controller Input Filter Status Register

Name: PIO_IFSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO-P31: Input Filer Status
0 = The input glitch filter is disabled on the 1/O line.

1 = The input glitch filter is enabled on the I/O line.

A ||'|E|,® 443

6249D-ATARM-20-Dec-07

ATMEL

30.6.10 PIO Controller Set Output Data Register

Name: PIO_SODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Set Output Data
0 = No effect.

1 = Sets the data to be driven on the I/O line.

30.6.11 PIO Controller Clear Output Data Register

Name: PIO_CODR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Set Output Data
0 = No effect.

1 = Clears the data to be driven on the 1/O line.

a4 AT91SAM9263 Preliminary m——————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.12 PIO Controller Output Data Status Register

Name: PIO_ODSR

Access Type: Read-only or Read/Write
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Data Status
0 = The data to be driven on the 1/O line is 0.

1 = The data to be driven on the I/O line is 1.

A ||'|E|,® 445

6249D-ATARM-20-Dec-07

ATMEL

30.6.13 PIO Controller Pin Data Status Register

Name: PIO_PDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Data Status
0 =The I/O line is at level 0.

1 =The I/Oline is at level 1.

a6 AT91SAM9I263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.14 PIO Controller Interrupt Enable Register

Name: PIO_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Enable
0 = No effect.

1 = Enables the Input Change Interrupt on the 1/O line.

30.6.15 PIO Controller Interrupt Disable Register

Name: PIO_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ P0-P31: Input Change Interrupt Disable
0 = No effect.

1 = Disables the Input Change Interrupt on the I/O line.

A ||'|E|,® 447

6249D-ATARM-20-Dec-07

ATMEL

30.6.16 PIO Controller Interrupt Mask Register

Name: PIO_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the 1/O line.

1 = Input Change Interrupt is enabled on the I/O line.

30.6.17 PIO Controller Interrupt Status Register

Name: PIO_ISR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.

s AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.18 PIO Multi-driver Enable Register

Name: PIO_MDER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Multi Drive Enable.
0 = No effect.

1 = Enables Multi Drive on the I/O line.

30.6.19 PIO Multi-driver Disable Register

Name: PIO_MDDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Multi Drive Disable.
0 = No effect.

1 = Disables Multi Drive on the I/O line.

A ||'|E|,® 449

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.20 PIO Multi-driver Status Register

Name: PIO_MDSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Multi Drive Status.
0 = The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.

1 = The Multi Drive is enabled on the 1/O line. The pin is driven at low level only.

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.21 PIO Pull Up Disable Register

Name: PIO_PUDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Pull Up Disable.
0 = No effect.

1 = Disables the pull up resistor on the 1/O line.

30.6.22 PIO Pull Up Enable Register

Name: PIO_PUER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Pull Up Enable.
0 = No effect.

1 = Enables the pull up resistor on the I/O line.

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.23 PIO Pull Up Status Register

Name: PIO_PUSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e PO0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.

1 = Pull Up resistor is disabled on the I/O line.

A ||'|E|,® 452

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.24 PIO Peripheral A Select Register

Name: PIO_ASR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Peripheral A Select.
0 = No effect.

1 = Assigns the 1/O line to the Peripheral A function.

30.6.25 PIO Peripheral B Select Register

Name: PIO_BSR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Peripheral B Select.
0 = No effect.

1 = Assigns the 1/O line to the peripheral B function.

6249D-ATARM-20-Dec-07

ATMEL

30.6.26 PIO Peripheral A B Status Register

Name: PIO_ABSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

¢ PO0-P31: Peripheral A B Status.
0 = The I/O line is assigned to the Peripheral A.

1 =The I/O line is assigned to the Peripheral B.

15 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

30.6.27 PIO Output Write Enable Register

Name: PIO_OWER

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Enable.
0 = No effect.

1 = Enables writing PIO_ODSR for the 1/O line.

30.6.28 PIO Output Write Disable Register

Name: PIO_OWDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Disable.
0 = No effect.

1 = Disables writing PIO_ODSR for the 1/O line.

A ||'|E|,® 455

6249D-ATARM-20-Dec-07

ATMEL

30.6.29 PIO Output Write Status Register

Name: PIO_OWSR

Access Type: Read-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

e P0-P31: Output Write Status.
0 = Writing PIO_ODSR does not affect the 1/O line.

1 = Writing PIO_ODSR affects the 1/O line.

w56 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31. Serial Peripheral Interface (SPI)

31.1 Description

6249D-ATARM-20-Dec-07

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master™ which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

¢ Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

¢ Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master. There may be no more than one slave transmitting data during any particular
transfer.

* Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.

¢ Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

A mEIZ@ 457

31.2 Block Diagram

Figure 31-1. Block Diagram

A
|) PDC
APB \
<[] spex
B —
! e wso
VICK]] wmosi
PMC
SP! Interface Po [«] NPcsomss
<—>|:| NPCS1
<—>|:| NPCS2
Interrupt Control
]] npess
SPI Interrupt
31.3 Application Block Diagram
Figure 31-2. Application Block Diagram: Single Master/Multiple Slave Implementation
4)
SPCK SPCK
MISO MISO
Slave 0
MOSI MOSI
SPI Master NPCSO0 NSS Y,
4)
NPCS1 SPCK
MISO
NPCS2[—X NC Slave 1
NPCS3 MOSI
NSS)
4)
SPCK
MISO
Slave 2
MOSI
\NSS)

w58 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.4 Si

gnal Description

Table 31-1. Signal Description
Type

Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO0/NSS Peripheral Chip Select/Slave Select Output Input

31.5 Product Dependencies

31.5.1

31.5.2

3153

6249D-ATARM-20-Dec-07

I/0 Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PI1O controllers to assign the SPI pins to their peripheral

functions.

Power Management

The SPI may be clocked through the Power Management Controller (PMC), thus the program-

mer must first configure the PMC to enable the SPI clock.

Interrupt

The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the SPI interrupt requires programming the AIC before configuring the SPI.

ATMEL

459

ATMEL

31.6 Functional Description

31.6.1

31.6.2

460

Modes of Operation

Data Transfer

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCSO0 to NPCSS are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCSS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 31-2 shows the four modes and corresponding parameter settings.

Table 31-2. SPI Bus Protocol Mode

SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

Figure 31-3 and Figure 31-4 show examples of data transfers.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 31-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

1 2 3 4 5 6

MSB 6 5 4 3

>< LSB

MSB 6 5 4 3

>< LSB

* Not defined, but normally MSB of previous character received.

Figure 31-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL =0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

6249D-ATARM-20-Dec-07

1 2 3 4 5 6

MSB 6 5 4 3

>< LSB

LSB

* Not defined but normally LSB of previous character transmitted.

ATMEL

461

31.6.3

462

ATMEL

Master Mode Operations

When configured in Master Mode, the SPI operates on the clock generated by the internal pro-
grammable baud rate generator. It fully controls the data transfers to and from the slave(s)
connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock
signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Trans-
mit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writting the TDR, the PCS field must be set in order to select a slave.

If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is
completed. Then, the received data is transferred from the Shift Register to SPI_RDR, the data
in SPI_TDR is loaded in the Shift Register and a new transfer starts.

The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit
(Transmit Data Register Empty) in the Status Register (SPI_SR). When new data is written in
SPI_TDR, this bit is cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR register. If a transfer delay
(DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said
delay. The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SPI_SR). When the received data is read,
the RDRF bit is cleared.

If the SPI_RDR (Receive Data Register) has not been read before new data is received, the
Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in
SPI_RDR. The user has to read the status register to clear the OVRES bit.

Figure 31-6 on page 464 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 31-6 on page 464 shows a flow chart describing how transfers are handled.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.6.3.1

Master Mode Block Diagram

Figure 31-5. Master Mode Block Diagram

SPI_CSRO0..3
| SCBR
|
MCK Baud Rate Generator I | SPCK
SPI
Clock
SPI_CSRO0..3
BITS SPI_RDR —> RDRF
NGPHA | RrD —1{ OVRES
CPOL T
|
MISO D LSB Shift Register MSB I | MOSI
SPI_TDR
[—>| TDRE_|
SPI_CSRO0..3 SPI RDA
CSAAT -
| I__> PCS
DNPCSS
SPI MR PCSDEC
PCS Current I |NPCSZ
0 Peripheral
I |NPCS1
SPI_TDR ——
PCS I |NPCSO
I
|~
MSTR
[wsTR } ——
NPCSO0 | I O
MODFDIS

6249D-ATARM-20-Dec-07

ATMEL

463

ATMEL

31.6.3.2 Master Mode Flow Diagram

Figure 31-6. Master Mode Flow Diagram S

| SPI Enable | - NPCS defines the current Chip Select
| - CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select
- When NPCS is OxF, CSAAT is 0.

Fixed
peripheral

CSAAT ?

Variable
peripheral

Fixed

peripheral

SPI_TDR(PCS) SPI_MR(PCS)

=NPCS ? =NPCS ?
Variable
1 peripheral
NPCS = SPI_TDR(PCS) NPCS = SPI_MR(P NPCS = OxF NPCS = OxF

CS =S (PCS CS=S (PCS) CS CS
| Delay DLYBCS | | Delay DLYBCS |
[npcs =spiToR(PCS) | NP = SR b ok, |

v

Delay DLYBS
T

'

Serializer = SPI_TDR(TD)
TDRE =1

!

Data Transfer

!

SPI_RDR(RD) = Serializer
RDRF =1

I

Delay DLYBCT

CSAAT ?

| NPCS = OxF |

l

| Delay DLYBCS |

64 AT91SAM9I263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.6.3.3 Clock Generation
The SPI Baud rate clock is generated by dividing the Master Clock (MCK) , by a value between
1 and 255.

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

31.6.3.4 Transfer Delays
Figure 31-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

* The delay between chip selects, programmable only once for all the chip selects by writing
the DLYBCS field in the Mode Register. Allows insertion of a delay between release of one
chip select and before assertion of a new one.

* The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

* The delay between consecutive transfers, independently programmable for each chip select
by writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on
the same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 31-7. Programmable Delays

| J §
J J

SPCK
DLYBCS DLYBS DLYBCT DLYBCT

31.6.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCSO0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

* Fixed Peripheral Select: SPI exchanges data with only one peripheral

A ||'|E|,® 465

6249D-ATARM-20-Dec-07

ATMEL

* Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In
this case, the current peripheral is defined by the PCS field in SPI_MR and the PCS field in the
SPI_TDR has no effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is
used to select the current peripheral. This means that the peripheral selection can be defined for
each new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data
to be transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit
wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, how-
ever the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI
lines with the chip select configuration registers. This is not the optimal means in term of mem-
ory size for the buffers, but it provides a very effective means to exchange data with several
peripherals without any intervention of the processor.

31.6.3.6 Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (SPI_MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0to0 3, 4to 7,8 to 11 and 12 to 14.

31.6.3.7 Peripheral Deselection
When operating normally, as soon as the transfer of the last data written in SPI_TDR is com-
pleted, the NPCS lines all rise. This might lead to runtime error if the processor is too long in
responding to an interrupt, and thus might lead to difficulties for interfacing with some serial
peripherals requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

66 AT91SAM9I263 Preliminary L

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 31-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 31-8. Peripheral Deselection

TDRE

NPCSJ0..3]

Write SPI_TDR

TDRE

NPCS[0..3]

Write SPI_TDR

TDRE

NPCSJ0..3]

Write SPI_TDR

CSAAT =0 CSAAT =1

DLYBCT |— DLYBCT

| A A A A

DLYBCS DLYBCS
PCS=A PCS=A

DLYBCT | DLYBCT |
| A A
DLYBCS DLYBCS
PCS=A PCS = A
DLYBCT | DLYBCT
B A B
DLYBCS DLYBCS
PCS =B PCS =B

I 1

31.6.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCSO0/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read and
the SPI is automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR (Con-
trol Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (SPI_MR).

31.6.4 SPI Slave Mode

6249D-ATARM-20-Dec-07

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits

A ||'|E|,® 467

ATMEL

defined by the BITS field of the Chip Select Register 0 (SPI_CSRO0). These bits are processed
following a phase and a polarity defined respectively by the NCPHA and CPOL bits of the
SPI_CSRO. Note that BITS, CPOL and NCPHA of the other Chip Select Registers have no
effect when the SPI is programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDREF bit rises. If the SPI_RDR (Receive Data Register) has not been read before new
data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data
is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (SPI_TDR), the last data received is transferred.
If no data has been received since the last reset, all bits are transmitted low, as the Shift Regis-
ter resets at 0.

When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in SPI_TDR until a transfer occurs, i.e. NSS falls
and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in
SPI_TDR is transferred in the Shift Register and the TDRE bit rises. This enables frequent
updates of critical variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in SPI_TDR since the last
load from SPI_TDR to the Shift Register, the Shift Register is not modified and the last received
character is retransmitted.

Figure 31-9 shows a block diagram of the SPI when operating in Slave Mode.

Figure 31-9. Slave Mode Functional Block Diagram

468

NSS D D'; SPI

Clock
| SPIEN I
| SPIENS
| SPIDIS |
SPI_CSR0
NCPHA [RD |[—>{ OVRES
CPOL T
l
LSB ; ; MSB
MOSI | I S Shift Register S I |MISO

A

SPI_TDR

[t |~ ToRE]

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.7 Serial Peripheral Interface (SPI) User Interface

Table 31-3. SPI Register Mapping

Offset Register Register Name Access Reset
0x00 Control Register SPI_CR Write-only
0x04 Mode Register SPI_MR Read/Write 0x0
0x08 Receive Data Register SPI_RDR Read-only 0x0
0x0C Transmit Data Register SPI_TDR Write-only
0x10 Status Register SPI_SR Read-only 0x000000F0
0x14 Interrupt Enable Register SPI_IER Write-only ---
0x18 Interrupt Disable Register SPI_IDR Write-only ---
0x1C Interrupt Mask Register SPI_IMR Read-only 0x0
0x20 - 0x2C Reserved
0x30 Chip Select Register 0 SPI_CSRO0 Read/Write 0x0
0x34 Chip Select Register 1 SPI_CSR1 Read/Write 0x0
0x38 Chip Select Register 2 SPI_CSR2 Read/Write 0x0
0x3C Chip Select Register 3 SPI_CSRS3 Read/Write 0x0
0x004C - 0xO0F8 Reserved - - -
0x100 - 0x124 Reserved for the PDC

A ||'|E|%D 469

6249D-ATARM-20-Dec-07

31.71 SPI Control Register

Name: SPI_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | LASTXFER |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

[swRsT | — [- [_ [- [- | spibis [SPEN |

e SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

¢ SPIDIS: SPI Disable

0 = No effect.

1 = Disables the SPI.

As soon as SPIDIS is set, SPI finishes its tranfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.
e SWRST: SPI Software Reset

0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
The SPl is in slave mode after software reset.

PDC channels are not affected by software reset.

e LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

sr0 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.7.2 SPI Mode Register

Name: SPI_MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCS |
23 22 21 20 19 18 17 16

| - | - | - | - | PCS |
15 14 13 12 11 10 9 8

| - | - I - | - | - | - | - I - |
7 6 5 4 3 2 1 0

| LLB | - | - | moODFDIS | | PCSDEC | PS [wmsTR |

¢ MSTR: Master/Slave Mode
0 = SPlis in Slave mode.

1 = SPl is in Master mode.

¢ PS: Peripheral Select

0 = Fixed Peripheral Select.

1 = Variable Peripheral Select.

e PCSDEC: Chip Select Decode

0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

SPI_CSRO defines peripheral chip select signals 0 to 3.
SPI_CSR1 defines peripheral chip select signals 4 to 7.
SPI_CSR2 defines peripheral chip select signals 8 to 11.
SPI_CSR3 defines peripheral chip select signals 12 to 14.

e MODFDIS: Mode Fault Detection

0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

e LLB: Local Loopback Enable

0 = Local loopback path disabled.

1 = Local loopback path enabled (

LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on

MOSI.)

e PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

A ||'|E|,® 471

6249D-ATARM-20-Dec-07

ATMEL

If PCSDEC = 0:
PCS = xxx0 NPCS[3:0] = 1110
PCS =xx01 NPCS[3:0] = 1101
PCS=x011 NPCS[3:0] = 1011
PCS =0111 NPCS[3:0] = 0111
PCS = 1111 forbidden (no peripheral is selected)
(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.
e DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods will be inserted by default.
Otherwise, the following equation determines the delay:

Delay Between Chip Selects = 2LYBCS
MCK

a2 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.73 SPI Receive Data Register

Name: SPI_RDR

Access Type: Read-only
31 30 29 28 27 26 25 24

I S I R S —]
23 22 21 20 19 18 17 16

I - I - I - I - I PCS |
15 14 13 12 11 10 9 8

I RD |
7 6 5 4 3 2 1 0

I RD |

* RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

e PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.

AIMEL a73

6249D-ATARM-20-Dec-07

31.7.4 SPI Transmit Data Register

ATMEL

Name: SPI_TDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - | - - [- - [_ LASTXFER |
23 22 21 20 19 18 17 16

| - | - | - - | PCS |
15 14 13 12 11 10 9 8

| D |
7 6 5 4 3 2 1 0

| i) |

e TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the

transmit data register in a right-justified format.

PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:
PCS = xxx0
PCS = xx01
PCS = x011
PCS = 0111
PCS =1111

(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] = 1110
NPCS[3:0] = 1101
NPCS[3:0] = 1011
NPCS[3:0] = 0111

forbidden (no peripheral is selected)

NPCS[3:0] output signals = PCS

e LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

sz AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.75 SPI Status Register

Name: SPI_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - | _SPIENS |
15 14 13 12 11 10 9 8

| — | — | — | — | — | — | TxEMPTY [NSSR |
7 6 5 4 3 2 1 0

| 7xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | MobF | TORE | RDRF |

* RDRF: Receive Data Register Full
0 = No data has been received since the last read of SPI_RDR

1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.

¢ TDRE: Transmit Data Register Empty

0 = Data has been written to SPI_TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

¢ MODF: Mode Fault Error

0 = No Mode Fault has been detected since the last read of SPI_SR.

1 = A Mode Fault occurred since the last read of the SPI_SR.

e OVRES: Overrun Error Status

0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.
¢ ENDRX: End of RX buffer

0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR™ or SPI_RNCR"),
1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR" or SPI_RNCR.

¢ ENDTX: End of TX buffer

0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR™ or SPI_TNCR™.
1 = The Transmit Counter Register has reached 0 since the last write in SPI_TCR) or SPI_TNCR(".

¢ RXBUFF: RX Buffer Full

0 = SPI_RCR" or SPI_RNCR(has a value other than 0.

1 = Both SPI_RCR(and SPI_RNCR(") have a value of 0.

A ||'|E|,® 475

6249D-ATARM-20-Dec-07

e TXBUFE: TX Buffer Empty
0 = SPI_TCR™" or SPI_TNCR has a value other than 0.

1 = Both SPI_TCR and SPI_TNCR") have a value of 0.
¢ NSSR: NSS Rising

0 = No rising edge detected on NSS pin since last read.

1 = A rising edge occurred on NSS pin since last read.

e TXEMPTY: Transmission Registers Empty

0 = As soon as data is written in SPI_TDR.

1 = SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of
such delay.

e SPIENS: SPI Enable Status

0 = SPIl is disabled.

1 = SPl is enabled.

Note: 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC.

sz AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.7.6 SPI Interrupt Enable Register

Name: SPI_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I I I S N B R R
23 22 21 20 19 18 17 16

| - | - I - | - | - | - | - I - |
15 14 13 12 11 10 9 8

| _ | Z [_ [— [— [- | TXEMPTY | NSSR |
7 6 5 4 3 2 1 0

| 7xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | MobF | TORE | RDRF |

* RDRF: Receive Data Register Full Interrupt Enable

e TDRE: SPI Transmit Data Register Empty Interrupt Enable
¢ MODF: Mode Fault Error Interrupt Enable

e OVRES: Overrun Error Interrupt Enable

¢ ENDRX: End of Receive Buffer Interrupt Enable

¢ ENDTX: End of Transmit Buffer Interrupt Enable

¢ RXBUFF: Receive Buffer Full Interrupt Enable

* TXBUFE: Transmit Buffer Empty Interrupt Enable

TXEMPTY: Transmission Registers Empty Enable

NSSR: NSS Rising Interrupt Enable
0 = No effect.

1 = Enables the corresponding interrupt.

6249D-ATARM-20-Dec-07

ATMEL

477

31.7.7 SPI Interrupt Disable Register

Name: SPI_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I I I S N B R R
23 22 21 20 19 18 17 16

| - | - I - | - | - | - | - I - |
15 14 13 12 11 10 9 8

| _ | Z [_ [— [— [- | TXEMPTY | NSSR |
7 6 5 4 3 2 1 0

| 7xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | MobF | TORE | RDRF |

* RDRF: Receive Data Register Full Interrupt Disable

e TDRE: SPI Transmit Data Register Empty Interrupt Disable
¢ MODF: Mode Fault Error Interrupt Disable

e OVRES: Overrun Error Interrupt Disable

¢ ENDRX: End of Receive Buffer Interrupt Disable

¢ ENDTX: End of Transmit Buffer Interrupt Disable

¢ RXBUFF: Receive Buffer Full Interrupt Disable

* TXBUFE: Transmit Buffer Empty Interrupt Disable

TXEMPTY: Transmission Registers Empty Disable

NSSR: NSS Rising Interrupt Disable
0 = No effect.

1 = Disables the corresponding interrupt.

szs AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.7.8 SPI Interrupt Mask Register

Name: SPI_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| — | — | — | — | — | — | TxEMPTY [NSSR |
7 6 5 4 3 2 1 0

| 7xBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | MobF | TORE | RDRF |

* RDRF: Receive Data Register Full Interrupt Mask

e TDRE: SPI Transmit Data Register Empty Interrupt Mask
¢ MODF: Mode Fault Error Interrupt Mask

e OVRES: Overrun Error Interrupt Mask

e ENDRX: End of Receive Buffer Interrupt Mask

¢ ENDTX: End of Transmit Buffer Interrupt Mask

¢ RXBUFF: Receive Buffer Full Interrupt Mask

* TXBUFE: Transmit Buffer Empty Interrupt Mask

e TXEMPTY: Transmission Registers Empty Mask

¢ NSSR: NSS Rising Interrupt Mask
0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

AIMEL 479

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

31.7.9 SPI Chip Select Register

Name: SPI_CSRO... SPI_CSR3

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCT |
23 22 21 20 19 18 17 16

| DLYBS |
15 14 13 12 11 10 9 8

| SCBR |
7 6 5 4 3 2 1 0

| BITS | CSAAT - | NcPHA [cpoL |

e CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

¢ NCPHA: Clock Phase

0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

e CSAAT: Chip Select Active After Transfer

0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is

requested on a different chip select.

¢ BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16

A ||'|E|%D 480

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

BITS Bits Per Transfer
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

¢ SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

SPCK Baudrate = MCK

SCBR
Programming the SCBR field at O is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.
e DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.
When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

Otherwise, the following equations determine the delay:

DLYBS
MCK

Delay Before SPCK =

e DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

32 xDLYBCT

Delay Between Consecutive Transfers =
MCK

A ||'|E|,® 481

6249D-ATARM-20-Dec-07

ATMEL

sz AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

32. Two-wire Interface (TWI)

32.1 Description
The Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of
one clock line and one data line with speeds of up to 400 Kbits per second, based on a byte-ori-
ented transfer format. It can be used with any Atmel Two-wire Interface bus Serial EEPROM and
I2C compatible device such as Real Time Clock (RTC), Dot Matrix/Graphic LCD Controllers and
Temperature Sensor, to name but a few. The TWI is programmable as master transmitter or
master receiver with sequential or single-byte access. A configurable baud rate generator per-
mits the output data rate to be adapted to a wide range of core clock frequencies. Below, Table
32-1 lists the compatibility level of the Atmel Two-wire Interface and a full 1°C compatible device.

Table 32-1. Atmel TWI compatibility with i2C Standard

I’C Standard Atmel TWI

Standard Mode Speed (100 KHz) Supported

Fast Mode Speed (400 KHz) Supported

7 or 10 bits Slave Addressing Supported

START BYTE(" Not Supported
Repeated Start (Sr) Condition Not Fully Supported®
ACK and NACK Management Supported

Slope control and input filtering (Fast mode) Not Supported

Clock strectching Supported

Notes: 1. START + b000000001 + Ack + Sr

2. A repeated start condition is only supported in Master Receiver mode. See Section 32.5.5
“Internal Address” on page 487

32.2 Block Diagram

Figure 32-1. Block Diagram

APB Bridge
«—> < -]] twex
PIO
Two-wire > ‘—’D TWD
- MCK Interface
T™WI
interrupt__| A1

A ||'|E|%D 483

6249D-ATARM-20-Dec-07

ATMEL

32.3 Application Block Diagram

Figure 32-2. Application Block Diagram

VDD
Rp Rp
TWD
Host with & >
TWI
Interface | TWCK >
Atmel TWI [2C LCD [2C Temp.
Serial EEPROM PCRTC Controller Sensor
Slave 1 Slave 2 Slave 3 Slave 4
Rp: Pull up value as given by the I12C Standard
32.3.1 I/O Lines Description
Table 32-2. 1/O Lines Description
Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output

32.4 Product Dependencies

3241 I/O Lines
Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 32-2 on page 484). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-
lector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must perform the following steps:
* Program the PIO controller to:
— Dedicate TWD and TWCK as peripheral lines.
— Define TWD and TWCK as open-drain.

32.4.2 Power Management
¢ Enable the peripheral clock.

The TWI interface may be clocked through the Power Management Controller (PMC), thus the
programmer must first configure the PMC to enable the TWI clock.

3243 Interrupt
The TWI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). In
order to handle interrupts, the AIC must be programmed before configuring the TWI.

s8¢ AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

ATMEL

32.5 Functional Description

32.5.1 Transfer format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
32-4 on page 485).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
32-3 on page 485).

* A high-to-low transition on the TWD line while TWCK is high defines the START condition.
* A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 32-3. START and STOP Conditions

Figure 32-4. Transfer Format

Start Address R/W Ack Data Ack Data Ack Stop

32.5.2 Modes of Operation
The TWI has two modes of operation:

¢ Master transmitter mode
¢ Master receiver mode

The TWI Control Register (TWI_CR) allows configuration of the interface in Master Mode. In this
mode, it generates the clock according to the value programmed in the Clock Waveform Gener-
ator Register (TWI_CWGR). This register defines the TWCK signal completely, enabling the
interface to be adapted to a wide range of clocks.

32.5.3 Master Transmitter Mode
After the master initiates a Start condition when writing into the Transmit Holding Register,
TWI_THR, it sends a 7-bit slave address, configured in the Master Mode register (DADR in
TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer
direction, 0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the Not Acknowledge bit (NACK) in the status register if the slave does not

s8s AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

acknowledge the byte. As with the other status bits, an interrupt can be generated if enabled in
the interrupt enable register (TWI_IER). If the slave acknowledges the byte, the data written in
the TWI_THR, is then shifted in the internal shifter and transferred. When an acknowledge is
detected, the TXRDY bit is set until a new write in the TWI_THR. When no more data is written
into the TWI_THR, the master generates a stop condition to end the transfer. The end of the
complete transfer is marked by the TWI_TXCOMP bit set to one. See Figure 32-5, Figure 32-6,
and Figure 32-7.

Figure 32-5. Master Write with One Data Byte

Txcomp |, B
TXRDY | \
Wr|te THR (DATA) STOP sent automaticaly

(ACK received and TXRDY = 1)

Figure 32-6. Master Write with Multiple Data Byte

TXCOMP |, [

TXRDY]\ [. [T |5

erte THR (Data n) Write THR (Data n+1) Write THR (Data n+x) STOP sent automaticaly
Last data sent (ACK received and TXRDY = 1)

Figure 32-7. Master Write with One Byte Internal Address and Multiple Data Bytes

TWD S DADR X W X A X 1ADR(7:0))X A X DATAn <$ DATA n+5 X A XCDATA n+x XX A X P
TXCOMP |x [
TXRDY | ,X 1 """ [
<
Write THR (Data n) Write THR (Data n+1) Write THR (Data n+x) STOP sent automaticaly

Last data sent (ACK received and TXRDY = 1)

s86 AT91SAM9I263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

32.5.4 Master Receiver Mode

The read sequence begins by setting the START bit. After the start condition has been sent, the
master sends a 7-bit slave address to notify the slave device. The bit following the slave address
indicates the transfer direction, 1 in this case (MREAD = 1 in TWI_MMR). During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK bit in the status register if the slave does not acknowledge the byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data
has been received, the master sends an acknowledge condition to notify the slave that the data
has been received except for the last data, after the stop condition. See Figure 32-9. When the
RXRDY bit is set in the status register, a character has been received in the receive-holding reg-
ister (TWI_RHR). The RXRDY bit is reset when reading the TWI_RHR.

When a single data byte read is performed, with or without internal address (IADR), the START
and STOP bits must be set at the same time. See Figure 32-8. When a multiple data byte read is
performed, with or without internal address (IADR), the STOP bit must be set after the next-to-
last data received. See Figure 32-9. For Internal Address usage see Section 32.5.5.

Figure 32-8. Master Read with One Data Byte

o XEX T X EX X T XX
TXCOMP | x, [

Write START &

STO i Y
RXADY TOP Bl —/|

Read RHR

Figure 32-9. Master Read with Multiple Data Bytes

[
Wb X5 X DADR X R XA X DatAn X A XDATA (n+ 1) XA PATA (nvm)- 1 A XDATA (nempX N XK P X

TXCOMP | %,

-

Write START Bit .

RXRDY

[1 [11 N

t t t t
Read RHR Read RHR Read RHR Read RHR
DATA n DATA (n+1) DATA (n+m)-1 DATA (n+m)

Write STOP Bit
after next-to-last data read

32.5.5 Internal Address

The TWI interface can perform various transfer formats: Transfers with 7-bit slave address
devices and 10-bit slave address devices.

a8z AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

ATMEL

32.5.5.1 7-bit Slave Addressing

When Addressing 7-bit slave devices, the internal address bytes are used to perform random
address (read or write) accesses to reach one or more data bytes, within a memory page loca-
tion in a serial memory, for example. When performing read operations with an internal address,
the TWI performs a write operation to set the internal address into the slave device, and then
switch to Master Receiver mode. Note that the second start condition (after sending the IADR) is
sometimes called “repeated start” (Sr) in 12C fully-compatible devices. See Figure 32-10, Figure
32-11 and Figure 32-12.

The three internal address bytes are configurable through the Master Mode register
(TWI_MMR).

If the slave device supports only a 7-bit address, i.e. no internal address, IADRSZ must be set to
0.

In the figures below the following abbreviations are used:

Table 32-3.
*S Start
*P Stop
*W Write
*R Read
*A Acknowledge
*N Not Acknowledge

* DADR Device Address
* IADR |Internal Address

Figure 32-10. Master Write with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address
rwn X5 X_oaoR X A Xpores o A Xaorts X A AoRz0 Y A X oA X A X P

Two bytes internal address

WD €D D D €Y CHED) € G € SN € D

One byte internal address

o X5 X_0AoR XTImO oitn X P

Figure 32-11. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Three bytes internal address

WD ED D €D € LD O CERED D i) € € €D G &>
_oAA X N X P)
Two bytes internal address

o XX 8 X AR X W X A X1ADR(15:8)X A X 1ADR7:0) X A X 8 X_DADR X R X A X DATA X N X P)
One byte internal address

T 25 X oAoA XX BRI Y X S IR X omn XX

|

a8 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

32552 10-bit Slave Addressing
For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and
set the other slave address bits in the internal address register (TWI_IADR). The two remaining
Internal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave
Addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

1. Program IADRSZ =1,
2. Program DADR with 11110 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)

3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit
address)
Figure 32-12 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates
the use of internal addresses to access the device.

Figure 32-12. Internal Address Usage

S W
T R S
A) I T
R Device T FIRST SECOND e}
T Address E WORD ADDRESS WORD ADDRESS DATA P
1 rrrrriri rrrrriri rrrrriri
U el]
1 | I T N I N | | N I I N I | | I T N I N |
M LRA M A LA A
S S/ C S C SC C
B BWK B K B K

89 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

32.5.6

Figure 32-13. TWI Write Operation with Single Data Byte without Internal Address

490

Read/Write Flowcharts

ATMEL

The following flowcharts shown in Figure 32-13, Figure 32-14 on page 491, Figure 32-15 on
page 492, Figure 32-16 on page 493, Figure 32-17 on page 494 and Figure 32-18 on page 495
give examples for read and write operations. A polling or interrupt method can be used to check

the status bits. The interrupt method requires that the interrupt enable register (TWI_IER) be
configured first.

=

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address (DADR)
- Transfer direction bit
Write ==> bit MREAD = 0

Load Transmit register
TWI_THR = Data to send

Read Status register

No
TXRDY =1?

A

Yes

Read Status register

<

Yes

(Transfer finished)

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

ATMEL

Figure 32-14. TWI Write Operation with Single Data Byte and Internal Address

=

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address (DADR)
- Internal address size (IADRSZ)
- Transfer direction bit
Write ==> bit MREAD = 0

Set the internal address
TWI_IADR = address

Load transmit register
TWI_THR = Data to send

|
Read Status register
No
TXRDY =1?
Yes |«
Read Status register
No

Yes

(Transfer finished)

291 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

ATMEL

Figure 32-15. TWI Write Operation with Multiple Data Bytes with or without Internal Address

(=)

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Write ==> bit MREAD =0

No

Internal address size = 0?

v

Set the internal address
TWI_IADR = address

Yes

Load Transmit register
TWI_THR = Data to send

Read Status register

TWI_THR = data to send

Data to send?

Yes

Read Status register

Yes

No

22 AT91SAM9263 Preliminary m————

6249D-ATARM-20-Dec-07

ATMEL

Figure 32-16. TWI Read Operation with Single Data Byte without Internal Address

=)

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address
- Transfer direction bit
Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

—

Yes

Read Receive Holding Register

Read Status register

293 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

ATMEL

Figure 32-17. TWI Read Operation with Single Data Byte and Internal Address

=

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size (IADRSZ)
- Transfer direction bit
Read ==> bit MREAD = 1

Set the internal address
TWI_IADR = address

Start the transfer
TWI_CR = START | STOP

Read Status register

No
Yes
Read Receive Holding register
Read Status register
No

294 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

ATMEL

Figure 32-18. TWI Read Operation with Multiple Data Bytes with or without Internal Address

C BElGIN)

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN

Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Read ==> bit MREAD = 1

Internal address size = 0?

v

Set the internal address
TWI_IADR = address

Yes

Start the transfer
TWI_CR = START

Read Status register

—

Read Receive Holding register (TWI_RHR)

Last data to read
but one?

Stop the transfer
TWI_CR = STOP

Read Status register

No
Yes
Read Receive Holding register (TWI_RHR)
|
|
Read status register
No

C END D)

a5 AT91SAM9263 Preliminary m——

6249D-ATARM-20-Dec-07

ATMEL

32.6 Two-wire Interface (TWI) User Interface

Table 32-4. Two-wire Interface (TWI) User Interface

Offset Register Name Access Reset Value
0x0000 Control Register TWI_CR Write-only N/A
0x0004 Master Mode Register TWI_MMR Read/Write 0x0000
0x0008 Reserved - - -
0x000C Internal Address Register TWI_IADR Read/Write 0x0000
0x0010 Clock Waveform Generator Register TWI_CWGR Read/Write 0x0000
0x0020 Status Register TWI_SR Read-only 0x0008
0x0024 Interrupt Enable Register TWIL_IER Write-only N/A
0x0028 Interrupt Disable Register TWIL_IDR Write-only N/A
0x002C Interrupt Mask Register TWI_IMR Read-only 0x0000
0x0030 Receive Holding Register TWI_RHR Read-only 0x0000
0x0034 Transmit Holding Register TWI_THR Read/Write 0x0000

296 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

32.6.1 TWI Control Register

Register Name: TWI_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| SWRST | - | - | - | MSDIS | MSEN | STOP | START |

e START: Send a START Condition
0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.
This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a

write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).

¢ STOP: Send a STOP Condition
0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read mode.

— In single data byte master read, the START and STOP must both be set.
— In multiple data bytes master read, the STOP must be set after the last data received but one.
— In master read mode, if a NACK bit is received, the STOP is automatically performed.

— In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically
sent.

¢ MSEN: TWI Master Transfer Enabled

0 = No effect.

1 = If MSDIS = 0, the master data transfer is enabled.
e MSDIS: TWI Master Transfer Disabled

0 = No effect.

1 = The master data transfer is disabled, all pending data is transmitted. The shifter and holding characters (if they contain
data) are transmitted in case of write operation. In read operation, the character being transferred must be completely
received before disabling.

e SWRST: Software Reset
0 = No effect.

1 = Equivalent to a system reset.

a7 AT91SAM9263 Preliminary m—————

6249D-ATARM-20-Dec-07

32.6.2 TWI Master Mode Register

Register Name: TWI_MMR
Address Type: Read/Write
31 30 29 28 27 26 25 24
r - [- [- - - - - -
23 22 21 20 19 18 17 16
| - | DADR
15 14 13 12 11 10 9 8
| - | - | - | MREAD | - | - | IADRSZ
7 6 5 4 3 2 1 0
T - 1 =T =71 =T =T = -
e IADRSZ: Internal Device Address Size
IADRSZ[9:8]
0 0 No internal device address (Byte command protocol)
0 1 One-byte internal device address
1 0 Two-byte internal device address
1 1 Three-byte internal device address

e MREAD: Master Read Direction
0 = Master write direction.

1 = Master read direction.

e DADR: Device Address
The device address is used to access slave devices in read or write mode.

298 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

32.6.3 TWI Internal Address Register

Register Name: TWI_IADR

Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IADR |
15 14 13 12 11 10 9 8

| IADR |
7 6 5 4 3 2 1 0

| IADR |

¢ |ADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.

— Low significant byte address in 10-bit mode addresses.

299 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

ATMEL

32.6.4 TWI Clock Waveform Generator Register

Register Name: TWI_CWGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - - - 1 - [- [- - |
23 22 21 20 19 18 17 16

. - rr - r - [- [- 1] CKDIV |
15 14 13 12 11 10 9 8

| CHDIV |
7 6 5 4 3 2 1 0

| CLDIV |

e CLDIV: Clock Low Divider
The SCL low period is defined as follows:

CKDIV

Tiow = ((CLDIV x 277y £3) x Tyyc

e CHDIV: Clock High Divider
The SCL high period is defined as follows:

CKDIV

e CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.

so00 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

32.6.5 TWI Status Register

Register Name: TWI_SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - r - ¢ - - 1 - [= [- [NACK |
7 6 5 4 3 2 1 0

| — | - | - | - | - | TXRDY | RXRDY | TXCOMP |

e TXCOMP: Transmission Completed
0 = During the length of the current frame.

1 = When both holding and shift registers are empty and STOP condition has been sent, or when MSEN is set (enable
TWI).

* RXRDY: Receive Holding Register Ready

0 = No character has been received since the last TWI_RHR read operation.

1 = A byte has been received in the TWI_RHR since the last read.

e TXRDY: Transmit Holding Register Ready

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR register.
1 = As soon as data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

¢ NACK: Not Acknowledged

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP. Reset after read.

s00. AT91SAM9263 Preliminary m———

6249D-ATARM-20-Dec-07

32.6.6 TWI Interrupt Enable Register

ATMEL

Register Name: TWI_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - I - |
15 14 13 12 11 10 8

I - I - I - I - I - - I - | NACK |
7 6 5 4 2 1 0

| - | - | - | | - TXRDY | RXRDY | TXCOMP |

TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready

TXRDY: Transmit Holding Register Ready

* NACK: Not Acknowledge
0 = No effect.

1 = Enables the corresponding interrupt.

s2 AT91SAM9263 Preliminary m———

6249D-ATARM-20-Dec-07

32.6.7 TWI Interrupt Disable Register

ATMEL

Register Name: TWI_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - - |
15 14 13 12 11 10 8

I - I - I - I - I - - I - [Nack |
7 6 5 4 2 1 0

| - | - | - | [- TXRDY | RXRDY [TXCOMP |

TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready

TXRDY: Transmit Holding Register Ready

* NACK: Not Acknowledge
0 = No effect.

1 = Disables the corresponding interrupt.

503 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

32.6.8 TWI Interrupt Mask Register

ATMEL

Register Name: TWI_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - - |
15 14 13 12 11 10 8

I - I - I - I - I - - I - [Nack |
7 6 5 4 3 2 1 0

| - | - | - | - [- TXRDY | RXRDY [TXCOMP |

TXCOMP: Transmission Completed

¢ RXRDY: Receive Holding Register Ready

TXRDY: Transmit Holding Register Ready

* NACK: Not Acknowledge
0 = The corresponding interrupt is disabled.

1 = The corresponding interrupt is enabled.

s4 AT91SAM9263 Preliminary m———

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

32.6.9 TWI Receive Holding Register

Register Name: TWI_RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I R — T - - - —]
23 22 21 20 19 18 17 16

- T - T - — 1 - - - —]
15 14 13 12 11 10

[~ T - T - — 1 - - - —]
7 6 5 4 3 2 1 0

RXDATA

¢ RXDATA: Receive Holding Data

6249D-ATARM-20-Dec-07

ATMEL

505

32.6.10 TWI Transmit Holding Register

Register Name: TWI_THR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| TXDATA |

¢ TXDATA: Transmit Holding Data

so06 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33. Universal Synchronous Asynchronous Receiver Transmitter (USART)

33.1 Description

6249D-ATARM-20-Dec-07

The Universal Synchronous Asynchronous Receiver Transmitter (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 buses, with
ISO7816 T =0 or T = 1 smart card slots and infrared transceivers. The hardware handshaking
feature enables an out-of-band flow control by automatic management of the pins RTS and
CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

AIMEL 507

ATMEL

33.2 Block Diagram

Figure 33-1. USART Block Diagram

Peripheral DMA
Controller
Channel Channel
PIO
USART Controller
. <_.|:| RXD
Receiver
<_.|:| RTS
AIC USART . <_.|:| TXD
« Interrupt Transmitter
. <_.|:| CcTS
PMC |:|
° MCK > Baud Rate > SCK
I Generator
MCK/DIV
DIV |—»
User Interface
SLCK *

APB i

so6 AT91SAM9263 Preliminary L

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.3 Application Block Diagram

Figure 33-2. Application Block Diagram

33.4 /O Lines Description

PPP IrLAP
. Field Bus EMV
Serial Driver Driver IrPA
Driver Driver
USART
RS232 RS485 Smart IrDA
Drivers Drivers Card Transceivers
Slot
Serial Differential
Port Bus

Table 33-1. 1/O Line Description
Name Description Type Active Level
SCK Serial Clock I/0
TXD Transmit Serial Data I/0
RXD Receive Serial Data Input
CTS Clear to Send Input Low
RTS Request to Send Output Low

6249D-ATARM-20-Dec-07

ATMEL

509

e A T91SAM9263 Preliminary

33.5 Product Dependencies

33.5.1 I/0 Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If 1/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory. If the hardware handshaking feature or Modem mode is used, the internal pull up
on TXD must also be enabled.

33.5.2 Power Management

33.5.3 Interrupt

6249D-ATARM-20-Dec-07

The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Management Controller (PMC) before using the USART. However, if the application
does not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the USART interrupt requires the AIC to be programmed first. Note that it is not
recommended to use the USART interrupt line in edge sensitive mode.

A ||'|E|%D 510

e A T91SAM9263 Preliminary

33.6 Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous
communications.
It supports the following communication modes:

¢ 5- to 9-bit full-duplex asynchronous serial communication
— MSB- or LSB-first
—1, 1.5 or 2 stop bits
— Parity even, odd, marked, space or none
— By 8 or by 16 over-sampling receiver frequency
— Optional hardware handshaking
— Optional break management
— Optional multidrop serial communication
* High-speed 5- to 9-bit full-duplex synchronous serial communication
— MSB- or LSB-first
— 1 or 2 stop bits
— Parity even, odd, marked, space or none
— By 8 or by 16 over-sampling frequency
— Optional hardware handshaking
— Optional break management
— Optional multidrop serial communication
* RS485 with driver control signal
* 1SO7816, TO or T1 protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
¢ InfraRed IrDA Modulation and Demodulation
* Test modes
— Remote loopback, local loopback, automatic echo

33.6.1 Baud Rate Generator
The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (US_MR) between:

¢ the Master Clock MCK

* a division of the Master Clock, the divider being product dependent, but generally set to 8

¢ the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (US_BRGR). If CD is programmed at 0, the Baud Rate
Generator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal pro-
vided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 4.5 times lower than MCK.

A ||'|E|,® 511

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 33-3. Baud Rate Generator

=
MCK | [co] sCK

0
MCK/DIV 1 I |
Reserved 16-bit Counter
SCK —? ® FIDI e]
D s 1 OVER
[
0—{ 0 Sampling 0
Divider
Baud Rate
1 > Clock
1
SYNC
Sampling
USCLKS =3 > Clock

33.6.1.1 Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR).
The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in US_MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

SelectedClock

Baudrate = —SelectedClock
audrate = g _over)cD)

This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possi-
ble clock and that OVER is programmed at 1.

33.6.1.2 Baud Rate Calculation Example
Table 33-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.

Table 33-2. Baud Rate Example (OVER = 0)

Expected Baud
Source Clock Rate Calculation Result CcDh Actual Baud Rate Error
MHz Bit/s Bit/s
3 686 400 38 400 6.00 6 38 400.00 0.00%
4915 200 38 400 8.00 8 38 400.00 0.00%
5 000 000 38 400 8.14 8 39 062.50 1.70%
7 372 800 38 400 12.00 12 38 400.00 0.00%
8 000 000 38 400 13.02 13 38 461.54 0.16%
12 000 000 38 400 19.53 20 37 500.00 2.40%
12 288 000 38 400 20.00 20 38 400.00 0.00%

A ||'|E|,® 512

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 33-2. Baud Rate Example (OVER = 0) (Continued)

Expected Baud
Source Clock Rate Calculation Result CD Actual Baud Rate Error
14 318 180 38 400 23.30 23 38 908.10 1.31%
14 745 600 38 400 24.00 24 38 400.00 0.00%
18 432 000 38 400 30.00 30 38 400.00 0.00%
24 000 000 38 400 39.06 39 38 461.54 0.16%
24 576 000 38 400 40.00 40 38 400.00 0.00%
25 000 000 38 400 40.69 40 38 109.76 0.76%
32 000 000 38 400 52.08 52 38 461.54 0.16%
32 768 000 38 400 53.33 53 38 641.51 0.63%
33 000 000 38 400 53.71 54 38 194.44 0.54%
40 000 000 38 400 65.10 65 38 461.54 0.16%
50 000 000 38 400 81.38 81 38 580.25 0.47%
60 000 000 38 400 97.66 98 38 265.31 0.35%
70 000 000 38 400 113.93 114 38 377.19 0.06%

The baud rate is calculated with the following formula:
BaudRate = MCK/CD x 16

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

Error = 1 _(EXpectedBaudRate)

ActualBaudRate

33.6.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the
clock divider. This feature is only available when using USART normal mode. The fractional
Baud Rate is calculated using the following formula:

SelectedClock
(8(2 - Over)(CD + %D

Baudrate =

The modified architecture is presented below:

A ||'|E|%D 513

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Figure 33-4. Fractional Baud Rate Generator

7]

[usotks | [op] |Modus —
oo]

MCK | | €D SCK

0
MCK/DIV 1 I |
ScK Reserved 5 16-bit Counter glitch-free 1 =
logic > > SYNC
3 — [sme]
1 0
0 —» 0 Sampling 0
Divider
Baud Rate
1 > Clock
1
SYNC Sampling
USCLKS =3 > Clock

33.6.1.4 Baud Rate in Synchronous Mode
If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in US_BRGR.

SelectedClock

BaudRate =
CD

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in
US_BRGR has no effect. The external clock frequency must be at least 4.5 times lower than the
system clock.

When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the
SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty
cycle on the SCK pin, even if the value programmed in CD is odd.

33.6.1.5 Baud Rate in ISO 7816 Mode
The 1SO7816 specification defines the bit rate with the following formula:
_Di
B = = x f

where:
¢ B is the bit rate
¢ Di is the bit-rate adjustment factor
¢ Fi is the clock frequency division factor
* fis the ISO7816 clock frequency (Hz)

A ||'|E|,® 514

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 33-3.

Table 33-3. Binary and Decimal Values for Di
Dl field 0001 0010 0011 0100 0101 0110 1000 1001
Di (decimal) 1 2 4 8 16 32 12 20
Fi is a binary value encoded on a 4-bit field, named Fl, as represented in Table 33-4.
Table 33-4. Binary and Decimal Values for Fi
Fl field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101
Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048
Table 33-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.
Table 33-5. Possible Values for the Fi/Di Ratio
Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048
1 372 558 744 1116 1488 1860 512 768 1024 1536 2048
2 186 279 372 558 744 930 256 384 512 768 1024
4 93 139.5 186 279 372 465 128 192 256 384 512
8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256
16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128
32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64
12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6
20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

6249D-ATARM-20-Dec-07

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud
Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to
feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (US_FIDI). This is performed by the Sampling Divider, which performs a division by up
to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the
user must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 33-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the I1SO 7816 clock.

515

ATMEL

AT91SAM9263 Preliminary

Figure 33-5. Elementary Time Unit (ETU)

33.6.2

33.6.3

33.6.3.1

6249D-ATARM-20-Dec-07

FI_DI_RATIO
1807816 Clock Cycles

1SO7816 Clock Illlllllllllll |||||||||||||
on SCK

ISO7816 1/0 Line

on TXD ((

Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (US_CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (US_CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register
(US_CR). The software resets clear the status flag and reset internal state machines but the
user interface configuration registers hold the value configured prior to software reset. Regard-
less of what the receiver or the transmitter is performing, the communication is immediately
stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the
USART waits until the end of reception of the current character, then the reception is stopped. If
the transmitter is disabled while it is operating, the USART waits the end of transmission of both
the current character and character being stored in the Transmit Holding Register (US_THR). If
a timeguard is programmed, it is handled normally.

Synchronous and Asynchronous Modes

Transmitter Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The
parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or none
parity bit can be configured. The MSBF field in US_MR configures which data bit is sent first. If
written at 1, the most significant bit is sent first. At 0, the less significant bit is sent first. The num-
ber of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is supported in
asynchronous mode only.

A ||'|E|%D 516

AT91SAM9263 Preliminary

Figure 33-6. Character Transmit

Example: 8-bit, Parity Enabled One Stop

Baud Rate
Clock

TXD

Figure 33-7. Transmitter
Baud Rate
Clock

TXD

Write
US_THR

TXRDY

TXEMPTY

SpEREEEEEEEEEEEEEREN

‘Start DO D1 D2 D3 D4 D5 D6 D7 | Parity Stop
Bit Bit Bit

The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter
reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready),
which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters
written in US_THR have been processed. When the current character processing is completed,
the last character written in US_THR is transferred into the Shift Register of the transmitter and
US_THR becomes empty, thus TXRDY raises.

Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
US_THR while TXRDY is active has no effect and the written character is lost.

Status

Juivivuvuivviuirivdiuyuu
JEEEEEEEEEEpEEEEEEEEER

Start Parity Stop Start Parity Stop
git D0 D1 D2 D3 D4 D5 D6 D7 " "gi" gy DO D1 D2 D3 D4 D5 D6 D7 gy gy

I I

U L |
B [

33.6.3.2 Asynchronous Receiver

6249D-ATARM-20-Dec-07

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (US_MR).

The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization
mechanism only, the number of stop bits has no effect on the receiver as it considers only one
stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the

A ||'|E|,® 517

e A T91SAM9263 Preliminary

transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking
for a new start bit so that resynchronization can also be accomplished when the transmitter is
operating with one stop bit.

Figure 33-8 and Figure 33-9 illustrate start detection and character reception when USART
operates in asynchronous mode.

Figure 33-8. Asynchronous Start Detection

| | | -
samoing. [[[T UHUUUUUUUUUUHULUUUUULT
Clock (x16)
RXD] [
Samping —t 1 1 P11 11 NN
2 3 4 5 6 7 8

[N A A A
1 2 3 4 5 6 7 8 9 10 11 1213141516DO
Start Sampling
Detection

RXD_”
= T

1

11
3 4
Start

Rejection

Figure 33-9. Asynchronous Character Reception

Example: 8-bit, Parity Enabled

> G JEpEEEEEREREEEEEEEN
o S P T T[T T T]

Start 16 16 16 16 16 16 16 16 16 16
Detection samples|samples|samples|samples|samples|samples|samples|samples|samples|samples
DO D1 D2 D3 D4 D5 D6 D7 Parity ~ Stop
Bit Bit
33.6.3.3 Synchronous Receiver

In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 33-10 illustrates a character reception in synchronous mode.

A ||'|E|%D 518

6249D-ATARM-20-Dec-07

AT91SAM9263 Preliminary

Figure 33-10. Synchronous Mode Character Reception
Example: 8-bit, Parity Enabled 1 Stop

Baud Rate

- JEpEREREEEREEEN.
o 7| [T T T T T T T[T 1]

Samplin |
9 Start DO D1 D2 D3 D4 D5 D6 D7 Stop Bit

Parity Bit

33.6.3.4 Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is com-
pleted while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is
transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing
the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1.

Figure 33-11. Receiver Status

Baud Rate
Clock

me "LLTTIITTT IV TTTITITL]

S@ Do D1 D2 D3 D4 Ds D6 D7 LaVSPPSRT o p1 D2 D3 D4 D5 De D7 PAYSPP

Bit
RSTSTA =1

Write
US_CR

Read 1
US_RHR

RXRDY |
OVRE _| —\—

A ||'|E|%D 519

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.6.35 Parity

6249D-ATARM-20-Dec-07

The USART supports five parity modes selected by programming the PAR field in the Mode
Register (US_MR). The PAR field also enables the Multidrop mode, see “Multidrop Mode” on
page 521. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at O if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at O if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 33-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.

Table 33-6. Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode
A 0x41 0100 0001 1 Odd
A Ox41 0100 0001 0 Even
A 0x41 0100 0001 1 Mark
A 0x41 0100 0001 0 Space
A 0x41 0100 0001 None None

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with
the RSTSTA bit at 1. Figure 33-12 illustrates the parity bit status setting and clearing.

A ||'|E|%D 520

AT91SAM9263 Preliminary

Figure 33-12. Parity Error

33.6.3.6

33.6.3.7

6249D-ATARM-20-Dec-07

Baud Rate
Clock Illlllllllllllllllllll |||||||||||||
Ao] [T T T T T T TT00

Sg"n” DO DI D2 D3 D4 D5 D6 D7 Pz"ii‘t’yséi’tp
Bit RSTSTA=1
Write T

US_CR

PARE |_
RXRDY _|

Multidrop Mode

If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x07, the
USART runs in Multidrop Mode. This mode differentiates the data characters and the address
characters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the
parity bit at 1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this
case, the next byte written to US_THR is transmitted as an address. Any character written in
US_THR without having written the command SENDA is transmitted normally with the parity at
0.

Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (US_TTGR). When this field is programmed at zero no timeguard is generated. Otherwise,
the transmitter holds a high level on TXD after each transmitted byte during the number of bit
periods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 33-13, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
US_THR. TXEMPTY remains low until the timeguard transmission is completed as the time-
guard is part of the current character being transmitted.

A ||'|E|,® 521

AT91SAM9263 Preliminary

Figure 33-13. Timeguard Operations

Baud Rate
Clock

TXD

Write
US_THR

TXRDY

TXEMPTY

33.6.3.8

LT TTTTITTT] HEEEEEEEN

Start
Bit

1

DO D1 D2 D3 D4 D5 D6 D7

Parity Stop| Start Parity Stop
Bit Bit Bit Do D1 D2 D3 D4 D5 D6 D7 Bit Bit

1

U
-

Table 33-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.

Table 33-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard
Bit/sec ps ms
1200 833 212.50
9 600 104 26.56
14400 69.4 17.71
19200 52.1 13.28
28800 34.7 8.85
33400 29.9 7.63
56000 17.9 4.55
57600 17.4 4.43
115200 8.7 2.21

Receiver Time-out

6249D-ATARM-20-Dec-07

The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an
end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed at
0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR
remains at 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO.
This counter is decremented at each bit period and reloaded each time a new character is
received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user
can either:

 Stop the counter clock until a new character is received. This is performed by writing the
Control Register (US_CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state

A ||'|E|,® 522

e A T91SAM9263 Preliminary

on RXD before a new character is received will not provide a time-out. This prevents having

to handle an interrupt before a character is received and allows waiting for the next idle state
on RXD after a frame is received.

* Obtain an interrupt while no character is received. This is performed by writing US_CR with
the RETTO (Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts
counting down immediately from the value TO. This enables generation of a periodic interrupt
so that a user time-out can be handled, for example when no key is pressed on a keyboard.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to

obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This

enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 33-14 shows the block diagram of the Receiver Time-out feature.

Figure 33-14. Receiver Time-out Block Diagram

Baud Rate | TO I

Clock
16-bit
1—1p aq iD@: 16-bit Time-out Value [N\
Counter
STTT0 S = |——| TIMEOUT
Load 00—
Clear
Character
Received
RETTO

Table 33-8 gives the maximum time-out period for some standard baud rates.

Table 33-8. Maximum Time-out Period

Baud Rate Bit Time Time-out
bit/sec ys ms
600 1 667 109 225
1200 833 54 613
2400 417 27 306
4 800 208 13 653
9 600 104 6 827
14400 69 4 551
19200 52 3413
28800 35 2276
33400 30 1962

A ||'|E|%D 523

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.6.3.9

Table 33-8. Maximum Time-out Period (Continued)
Baud Rate Bit Time Time-out
56000 18 1170
57600 17 1138
200000 5 328

Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1.

Figure 33-15. Framing Error Status

33.6.3.10

6249D-ATARM-20-Dec-07

Baud Rate
Clock
o] [T TTTTTTT1]
Sltaaitn DO D1 D2 D3 D4 D5 D6 D7 P;riittyStitp RSTSTA = 1
Write T
US_CR

FRAME |_
RXRDY _|

Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This
can be performed at any time, either while the transmitter is empty (no character in either the
Shift Register or in US_THR) or when a character is being transmitted. If a break is requested
while a character is being shifted out, the character is first completed before the TXD line is held
low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

A ||'|E|,® 524

e A T91SAM9263 Preliminary

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the
break condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable
result. Al STPBRK commands requested without a previous STTBRK command are ignored. A
byte written into the Transmit Holding Register while a break is pending, but not started, is
ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 33-16 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.

Figure 33-16. Break Transmission

Baud Rate Illllllllllllllllllll Illllllllllllllllllllll
Clock Illllllllllllllllll L

TXD _|

Start
Bit

Write

DO D1 D2 D3 D4 D5 D6 D7

STTBRK =1 STPBRK = 1

Parity Stop

Bt Bit Break Transmission End of Break

1 I

US_CR

TXRDY |

TXEMPTY _|

33.6.3.11 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may
be cleared by writing the Control Register (US_CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

33.6.3.12 Hardware Handshaking

6249D-ATARM-20-Dec-07

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 33-17.

A ||'|E|,® 525

e A T91SAM9263 Preliminary

Figure 33-17. Connection with a Remote Device for Hardware Handshaking

USART Remote
Device
TXD » RXD
RXD TXD
CTS RTS
RTS » CTS

Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 33-18 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) com-
ing from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 33-18. Receiver Behavior when Operating with Hardware Handshaking

RXD

sy)
X
m
pz4
I

Write
US_CR

RXDIS =1

RTS

i

\

RXBUFF

f | T
KI (I

Figure 33-19 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.

Figure 33-19. Transmitter Behavior when Operating with Hardware Handshaking

6249D-ATARM-20-Dec-07

cTs __(| [77

™0 U | L |

A ||'|E|%D 526

e A T91SAM9263 Preliminary

33.6.4 ISO7816 Mode
The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T=0and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.

33.6.4.1 1SO7816 Mode Overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see “Baud Rate Generator”
on page 511).

The USART connects to a smart card as shown in Figure 33-20. The TXD line becomes bidirec-
tional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is con-
sidered as the master of the communication as it generates the clock.

Figure 33-20. Connection of a Smart Card to the USART

USART
CLK
SCK Smart
Card
1/0
TXD

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
“USART Mode Register’ on page 538 and “PAR: Parity Type” on page 539.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The 1SO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the 1/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).

33.6.4.2 Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the 1/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 33-21.

A ||'|E|,® 527

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 33-22. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Reg-
ister (US_SR) so that the software can handle the error.

Figure 33-21. T = 0 Protocol without Parity Error

Baud Rate
Clock

RXD _|

Start

DO D1 D2 D3 D4 D5 D6 D7 Parity Guard Guard Next
Bit Time1 Time2 Start
Bit

Figure 33-22. T = 0 Protocol with Parity Error

Baud Rate
Clock|_||_||||||||||||||||| |||||

o] I I L5 | [
Start DO D1 D2 D3 D4 D5 D6 D7 Parity | Guard Guard | Start DO D1
Bit Bit |Time 1 Time 2| Bit
Repetition
33.6.4.3 Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of
Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading US_NER
automatically clears the NB_ERRORS field.

33.6.4.4 Receive NACK Inhibit

The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (US_MR). If INACK is at 1, no error signal is driven on the I/O
line even if a parity bit is detected, but the INACK bit is set in the Status Register (US_SR). The
INACK bit can be cleared by writing the Control Register (US_CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

33.6.4.5 Transmit Character Repetition

6249D-ATARM-20-Dec-07

When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetition is enabled by writing the
MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each character
can be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

A ||'|E|%D 528

e A T91SAM9263 Preliminary

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (US_CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit
at1.

33.6.4.6 Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum
number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as
MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

33.6.4.7 Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR).

33.6.5 IrDA Mode
The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 33-23. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to
115.2 Kb/s.

The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register
(US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator
filter. The USART transmitter and receiver operate in a normal asynchronous mode and all
parameters are accessible. Note that the modulator and the demodulator are activated.

Figure 33-23. Connection to IrDA Transceivers

USART IrDA
Transceivers
Receiver Demodulator RXD RX j /V
TX iz Y4
Transmitter Modulator TXD

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

A ||'|E|%D 529

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.6.5.1 IrDA Modulation
For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 33-9.

Table 33-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)
2.4 Kb/s 78.13 ys

9.6 Kb/s 19.53 ps

19.2 Kb/s 9.77 ps

38.4 Kb/s 4.88 ps

57.6 Kb/s 3.26 ps

115.2 Kb/s 1.63 ps

Figure 33-24 shows an example of character transmission.

Figure 33-24. IrDA Modulation

Start Data Bits |St0p
Bit [=| Bit

meemte] o [Tl o710 of T Tlof
TXD |‘| |‘| |‘|_|_|

< > —»‘H

Bit Period -2 Bit Period

33.6.5.2 IrDA Baud Rate

Table 33-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of +1.87% must be met.

Table 33-10. IrDA Baud Rate Error

Peripheral Clock Baud Rate CcD Baud Rate Error Pulse Time
3 686 400 115 200 2 0.00% 1.63
20 000 000 115 200 11 1.38% 1.63
32 768 000 115 200 18 1.25% 1.63
40 000 000 115 200 22 1.38% 1.63
3 686 400 57 600 4 0.00% 3.26
20 000 000 57 600 22 1.38% 3.26
32 768 000 57 600 36 1.25% 3.26
40 000 000 57 600 43 0.93% 3.26
3 686 400 38 400 6 0.00% 4.88
20 000 000 38 400 33 1.38% 4.88

A ||'|E|%D 530

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

Table 33-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time
32 768 000 38 400 53 0.63% 4.88
40 000 000 38 400 65 0.16% 4.88
3 686 400 19 200 12 0.00% 9.77
20 000 000 19 200 65 0.16% 9.77
32 768 000 19 200 107 0.31% 9.77
40 000 000 19 200 130 0.16% 9.77
3 686 400 9 600 24 0.00% 19.53
20 000 000 9 600 130 0.16% 19.53
32 768 000 9 600 213 0.16% 19.53
40 000 000 9 600 260 0.16% 19.53
3 686 400 2400 96 0.00% 78.13
20 000 000 2400 521 0.03% 78.13
32 768 000 2400 853 0.04% 78.13

33.6.5.3 IrDA Demodulator
The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin,
the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is
detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is
detected when the counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 33-25 illustrates the operations of the IrDA demodulator.

Figure 33-25. IrDA Demodulator Operations

Axo] | | []
e LLUIED TTITTT]

1
1
Value :6 2 1 0
Pulse 1 Pulse
. Rejected 1 Accepted
Receiver '
Input ! L

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in
US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate
correctly.

A ||'|E|,® 531

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.6.6 RS485 Mode
The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 33-26.

Figure 33-26. Typical Connection to a RS485 Bus

USART

RXD %
—@—— Differential
TXD Bus

RTS

The USART is set in RS485 mode by programming the USART_MODE field in the Mode Regis-
ter (US_MR) to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 33-27 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.

Figure 33-27. Example of RTS Drive with Timeguard
TG=4

e S UL
vo L [TTTTTTTT]

A
\

Start Parity Stop
Bit Do D1 D2 D3 D4 D5 D6 D7 Bit Bit
Write I
US_THR
TXRDY | I
TXEMPTY |
RTS |

A ||'|E|,® 532

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.6.7 Test Modes
The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

33.6.7.1 Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD

pin.

Figure 33-28. Normal Mode Configuration

XD
Receiver

TXD

Transmitter >

33.6.7.2 Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 33-29. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.

Figure 33-29. Automatic Echo Mode Configuration

XD
Receiver

TXD

Transmitter — 4’|:|

33.6.7.3 Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 33-30. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 33-30. Local Loopback Mode Configuration

XD
Receiver

TXD

Transmitter

A ||'|E|%D 533

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.6.7.4 Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 33-31.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.

Figure 33-31. Remote Loopback Mode Configuration

XD
Receiver 1

TXD

Transmitter ———— —D

A ||'|E|,® 534

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7 USART User Interface

Table 33-11. USART Memory Map

Offset Register Name Access Reset State
0x0000 Control Register US_CR Write-only -
0x0004 Mode Register US_MR Read/Write -
0x0008 Interrupt Enable Register US_IER Write-only -
0x000C Interrupt Disable Register US_IDR Write-only -
0x0010 Interrupt Mask Register US_IMR Read-only 0x0
0x0014 Channel Status Register US_CSR Read-only -
0x0018 Receiver Holding Register US_RHR Read-only 0x0
0x001C Transmitter Holding Register US_THR Write-only -
0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0
0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0
0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0
0x2C - 0x3C Reserved - - -
0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174
0x0044 Number of Errors Register US_NER Read-only -
0x0048 Reserved - - -
0x004C IrDA Filter Register US_IF Read/Write 0x0
0x5C - OxFC Reserved - - -
0x100 - 0x128 Reserved for PDC Registers - - -

6249D-ATARM-20-Dec-07

ATMEL

535

e A T91SAM9263 Preliminary

33.71 USART Control Register

Name: US_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | RTSDIS | RTSEN | - | - |
15 14 13 12 11 10 9 8

| RETTO | RSTNACK | RSTIT | SENDA | STTTO | STPBRK | STTBRK | RSTSTA |
7 6 5 4 3 2 1 0

| TXDIS | TXEN | RXDIS | RXEN | RSTTX | RSTRX | - | - |

e RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

e RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

e RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

e RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

e TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.
¢ TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

e RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, and RXBRK in US_CSR.

o STTBRK: Start Break
0: No effect.

A ||'|E|%D 536

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been trans-
mitted. No effect if a break is already being transmitted.

e STPBRK: Stop Break

0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

e STTTO: Start Time-out

0: No effect.

1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in US_CSR.
e SENDA: Send Address

0: No effect.

1: In Multidrop Mode only, the next character written to the US_THR is sent with the address bit set.
¢ RSTIT: Reset Iterations

0: No effect.

1: Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.

¢ RSTNACK: Reset Non Acknowledge

0: No effect

1: Resets NACK in US_CSR.

e RETTO: Rearm Time-out

0: No effect

1: Restart Time-out

¢ RTSEN: Request to Send Enable

0: No effect.

1: Drives the pin RTS to 0.

¢ RTSDIS: Request to Send Disable

0: No effect.

1: Drives the pin RTS to 1.

AIMEL 537

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.2 USART Mode Register
Name: US_MR
Access Type: Read/Write
31 30 29 28 27 26 25 24
| - | - | - | FILTER | - | MAX_ITERATION |
23 22 21 20 19 18 17 16
| - | - | DSNACK | INACK | OVER | CLKO MODE9 | MSBF |
15 14 13 12 11 10 9 8
| CHMODE | NBSTOP | PAR | SYNC |
7 6 5 4 3 2 1 0
| CHRL | USCLKS | USART_MODE |
e USART_MODE
USART_MODE Mode of the USART
0 0 0 0 Normal
0 0 0 1 RS485
0 0 1 0 Hardware Handshaking
0 0 1 1 Reserved
0 1 0 0 IS07816 Protocol: T=0
0 1 0 1 Reserved
0 1 1 0 1IS07816 Protocol: T =1
0 1 1 1 Reserved
1 0 0 0 IrDA
1 1 X X Reserved
¢ USCLKS: Clock Selection
USCLKS Selected Clock
0 MCK
0 MCK/DIV (DIV = 8)
1 Reserved
1 SCK
538

6249D-ATARM-20-Dec-07

ATMEL

e A T91SAM9263 Preliminary

e CHRL: Character Length.

CHRL Character Length
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits

e SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.

1: USART operates in Synchronous Mode.

¢ PAR: Parity Type

PAR Parity Type
0 0 0 Even parity
0 0 1 Odd parity
0 1 0 Parity forced to 0 (Space)
0 1 1 Parity forced to 1 (Mark)
1 0 X No parity
1 1 X Multidrop mode

e NBSTOP: Number of Stop Bits

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)
0 0 1 stop bit 1 stop bit
0 1 1.5 stop bits Reserved
1 0 2 stop bits 2 stop bits
1 1 Reserved Reserved

¢ CHMODE: Channel Mode

CHMODE Mode Description
0 0 Normal Mode
0 1 Automatic Echo. Receiver input is connected to the TXD pin.
1 0 Local Loopback. Transmitter output is connected to the Receiver Input..
1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

e MSBF: Bit Order

0: Least Significant Bit is sent/received first.

1: Most Significant Bit is sent/received first.

6249D-ATARM-20-Dec-07

ATMEL

539

e A T91SAM9263 Preliminary

0:
1:

MODES9: 9-bit Character Length

: CHRL defines character length.
: 9-bit character length.

CLKO: Clock Output Select

: The USART does not drive the SCK pin.
: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

OVER: Oversampling Mode

: 16x Oversampling.

: 8x Oversampling.

INACK: Inhibit Non Acknowledge

: The NACK is generated.
: The NACK is not generated.

DSNACK: Disable Successive NACK
NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-

ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

MAX_ITERATION

Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

0:
1:

6249D-ATARM-20-Dec-07

FILTER: Infrared Receive Line Filter
The USART does not filter the receive line.

The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

A ||'|E|%D 540

e A T91SAM9263 Preliminary

33.7.3 USART Interrupt Enable Register

Name: US_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - | oTsic | - - - |
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

e RXRDY: RXRDY Interrupt Enable

e TXRDY: TXRDY Interrupt Enable

¢ RXBRK: Receiver Break Interrupt Enable
e ENDRX: End of Receive Transfer Interrupt Enable
e ENDTX: End of Transmit Interrupt Enable
e OVRE: Overrun Error Interrupt Enable

e FRAME: Framing Error Interrupt Enable

e PARE: Parity Error Interrupt Enable

e TIMEOUT: Time-out Interrupt Enable

e TXEMPTY: TXEMPTY Interrupt Enable

¢ ITERATION: Iteration Interrupt Enable

e TXBUFE: Buffer Empty Interrupt Enable

e RXBUFF: Buffer Full Interrupt Enable

¢ NACK: Non Acknowledge Interrupt Enable

e CTSIC: Clear to Send Input Change Interrupt Enable

A ||'|E|,® 541

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.4 USART Interrupt Disable Register

Name: US_IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - | oTsic | - - - |
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

e RXRDY: RXRDY Interrupt Disable

e TXRDY: TXRDY Interrupt Disable

¢ RXBRK: Receiver Break Interrupt Disable
e ENDRX: End of Receive Transfer Interrupt Disable
e ENDTX: End of Transmit Interrupt Disable
e OVRE: Overrun Error Interrupt Disable

e FRAME: Framing Error Interrupt Disable

e PARE: Parity Error Interrupt Disable

e TIMEOUT: Time-out Interrupt Disable

e TXEMPTY: TXEMPTY Interrupt Disable

¢ ITERATION: Iteration Interrupt Disable

e TXBUFE: Buffer Empty Interrupt Disable

e RXBUFF: Buffer Full Interrupt Disable

¢ NACK: Non Acknowledge Interrupt Disable

e CTSIC: Clear to Send Input Change Interrupt Disable

A ||'|E|,® 542

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.75 USART Interrupt Mask Register

Name: US_IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - | cTsic | - - -
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

e RXRDY: RXRDY Interrupt Mask

e TXRDY: TXRDY Interrupt Mask

¢ RXBRK: Receiver Break Interrupt Mask
e ENDRX: End of Receive Transfer Interrupt Mask
e ENDTX: End of Transmit Interrupt Mask
e OVRE: Overrun Error Interrupt Mask

¢ FRAME: Framing Error Interrupt Mask

¢ PARE: Parity Error Interrupt Mask

e TIMEOUT: Time-out Interrupt Mask

e TXEMPTY: TXEMPTY Interrupt Mask

¢ ITERATION: Iteration Interrupt Mask

e TXBUFE: Buffer Empty Interrupt Mask

e RXBUFF: Buffer Full Interrupt Mask

¢ NACK: Non Acknowledge Interrupt Mask

e CTSIC: Clear to Send Input Change Interrupt Mask

A ||'|E|%D 543

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.6 USART Channel Status Register

Name: US_CSR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

[©CTS | - - - | o186 | - - -
15 14 13 12 11 10 9 8

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

RXRDY: Receiver Ready

0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

TXRDY: Transmitter Ready

0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1:

6249D-ATARM-20-Dec-07

There is no character in the US_THR.

RXBRK: Break Received/End of Break

: No Break received or End of Break detected since the last RSTSTA.
: Break Received or End of Break detected since the last RSTSTA.

ENDRX: End of Receiver Transfer

: The End of Transfer signal from the Receive PDC channel is inactive.

: The End of Transfer signal from the Receive PDC channel is active.

ENDTX: End of Transmitter Transfer

: The End of Transfer signal from the Transmit PDC channel is inactive.

: The End of Transfer signal from the Transmit PDC channel is active.

OVRE: Overrun Error

: No overrun error has occurred since the last RSTSTA.

: At least one overrun error has occurred since the last RSTSTA.

FRAME: Framing Error

: No stop bit has been detected low since the last RSTSTA.

: At least one stop bit has been detected low since the last RSTSTA.

ATMEL

544

e A T91SAM9263 Preliminary

e PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

e TIMEOUT: Receiver Time-out

0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.
1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).

e TXEMPTY: Transmitter Empty

0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.
1: There are no characters in US_THR, nor in the Transmit Shift Register.

¢ ITERATION: Max number of Repetitions Reached

0: Maximum number of repetitions has not been reached since the last RSIT.

1: Maximum number of repetitions has been reached since the last RSIT.

e TXBUFE: Transmission Buffer Empty

0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

* RXBUFF: Reception Buffer Full

0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

* NACK: Non Acknowledge

0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.

e CTSIC: Clear to Send Input Change Flag

0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.
e CTS: Image of CTS Input

0: CTSis at 0.

1: CTSisat 1.

A ||'|E|,® 545

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.7 USART Receive Holding Register

Name: US_RHR

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

[RXSYNH | - | - | - | - | - | - [RXCHR |
7 6 5 4 3 2 1 0

RXCHR |

e RXCHR: Received Character
Last character received if RXRDY is set.

* RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

6249D-ATARM-20-Dec-07

A ||'|E|%D 546

e A T91SAM9263 Preliminary

33.7.8 USART Transmit Holding Register

Name: US_THR

Access Type: Write-only
31 30 29 28 27 26 25 24

- T - T - — 1 - - — -]
23 22 21 20 19 18 17 16

- T - 1 - — T _- - — T -]
15 14 13 12 11 10 9 8

| TXSYNH | - | - - | - - - | TXCHR |
7 6 5 4 3 2 1 0

TXCHR

e TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.

e TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start Frame Delimiteris COMMAND SYNC.

6249D-ATARM-20-Dec-07

ATMEL

547

e A T91SAM9263 Preliminary

33.7.9 USART Baud Rate Generator Register

Name: US_BRGR
Access Type: Read/Write

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16
| - | - I - | - | - | FP |

15 14 13 12 11 10 9 8
| cb |

7 6 5 4 3 2 1 0
| cb |
e CD: Clock Divider

USART_MODE # ISO7816
USART_MODE =
CD SYNC =0 SYNC =1 1SO7816
OVER =0 OVER =1
0 Baud Rate Clock Disabled
1 to 65535 Baud Rate = Baud Rate = Baud Rate = Baud Rate = Selected
Selected Clock/16/CD | Selected Clock/8/CD Selected Clock /CD Clock/CD/FI_DI_RATIO

¢ FP: Fractional Part
0: Fractional divider is disabled.

1 - 7: Baudrate resolution, defined by FP x 1/8.

A ||'|E|%D 548

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.10 USART Receiver Time-out Register

Name: US_RTOR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I 0 |
7 6 5 4 3 2 1 0

I 0 |

¢ TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

A ||'|E|%D 549

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.11 USART Transmitter Timeguard Register

Name: US_TTGR

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| TG |

e TG: Timeguard Value
0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

A ||'|E|,® 550

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.12 USART FI DI RATIO Register

Name: US_FIDI

Access Type: Read/Write

Reset Value : 0x174
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| ” | _ [Z [_ [— [FI_DI_RATIO |
7 6 5 4 3 2 1 0

| FI_DI_RATIO |

* FI_DI_RATIO: Fl Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 -2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

33.7.13 USART Number of Errors Register

Name: US_NER

Access Type: Read-only
31 30 29 28 27 26 25 24

I = I - I = I - I = I - I = I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| NB_ERRORS |

e NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

A ||'|E|,® 551

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

33.7.14 USART IrDA FILTER Register

Name: US_IF

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| IRDA_FILTER |

* IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

A ||'|E|,® 552

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

34. Serial Synchronous Controller (SSC)

34.1 Description

6249D-ATARM-20-Dec-07

The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as I12S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TD/RD signal for data, the
TK/RK signal for the clock and the TF/RF signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDC channels, the SSC permits interfacing with low processor
overhead to the following:

e CODEC'’s in master or slave mode
¢ DAC through dedicated serial interface, particularly 12S
* Magnetic card reader

A ||'|E|,® 553

34.2 Block Diagram

Figure 34-1. Block Diagram

System
Bus
APB Bridge
A
(—) PDC
Peripheral
Bus
<_>|:| TF
(—)
TK
Y ’l:l
oK —f] ™
pMc |[-MC
SSC Interface PIO
p <—>|:| RF
<—>D RK
Interrupt Control
._-D RD

SSC Interrupt

34.3 Application Block Diagram

Figure 34-2. Application Block Diagram

0S or RTOS Driver Power Interrupt Test
Management Management Management
SSC
Serial AUDIO Codec Time Slat Frame Line Interface
Management | Management

554 AT91SAM9263 Preliminary m———

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

34.4 Pin Name List

Table 34-1. 1/O Lines Description

Pin Name Pin Description Type
RF Receiver Frame Synchro Input/Output
RK Receiver Clock Input/Output
RD Receiver Data Input

TF Transmitter Frame Synchro Input/Output
TK Transmitter Clock Input/Output
TD Transmitter Data Output

34.5 Product Dependencies

34.5.1 I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.

34.5.2 Power Management
The SSC is not continuously clocked. The SSC interface may be clocked through the Power
Management Controller (PMC), therefore the programmer must first configure the PMC to
enable the SSC clock.

34.5.3 Interrupt
The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling interrupts requires programming the AIC before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

34.6 Functional Description

This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2.

A ||'|E|,® 555

6249D-ATARM-20-Dec-07

ATMEL

Figure 34-3. SSC Functional Block Diagram

Transmitter Clock Output >
Controller
TK Input >
MCK QIC_)Ck ‘ Transmit Clock | TX clock Frame Sync TE
Divider Controller Controller
RX clock ———>
TF v
—>| Start o .]
< RF Selector —>| +Transmlt Shift Regls’[er+ [TD
TXPDC| Transmit Holding Transmit Sync
APB - Register Holding Register
< > Load Shift —1 ¥
User
Interface
Receiver Clock Output
RK
€ > Controller
RK Input — 5
Receive Clock [3X Clock Frame Sync RF
Controller Controller
TX Clock ——>
i S: t |
ar) . .
TF Selector —>| +Fiecelve Shift Reglster+ [RD
4 RX PDC | Receive Holding Receive Sync
Register Holding Register
PDC Interrupt Control Load Shift ‘)

l

AIC

34.6.1 Clock Management

The transmitter clock can be generated by:
¢ an external clock received on the TK I/O pad
e the receiver clock
¢ the internal clock divider

The receiver clock can be generated by:

¢ an external clock received on the RK 1/O pad

¢ the transmitter clock

¢ the internal clock divider
Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the
receiver block can generate an external clock on the RK I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

556

e A T91SAM9263 Preliminary

34.6.1.1 Clock Divider

Figure 34-4. Divided Clock Block Diagram

Clock Divider
SSC_CMR
MCK ivi
12-bit Counter DIVIded>CIOCk

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register SSC_CMR, allowing a Master Clock division
by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this
field is programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 34-5. Divided Clock Generation

MasterCIock||||||||||||
Divided Clock I

DIV =1
| . ,
Divided Clock Frequency = MCK/2

MasterCIock|||||||||I|I||

Divided Clock ~ ___| E E : : l_
DIV=3 : ' ' : ' |

'
- >
- L]

Divided Clock Frequency = MCK/6

Table 34-2.
Maximum Minimum
MCK /2 MCK /8190

34.6.1.2 Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in
SSC_TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by
the CKI bits in SSC_TCMR.

The transmitter can also drive the TK I/0O pad continuously or be limited to the actual data trans-
fer. The clock output is configured by the SSC_TCMR register. The Transmit Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the TCMR register to select TK pin

A ||'|E|,® 557

6249D-ATARM-20-Dec-07

(CKS field) and at the same time Continuous Transmit Clock (CKO field) might lead to unpredict-

able results.

Figure 34-6. Transmitter Clock Management

TK(pin) —

MUX

Receiver >

ATMEL

\

Clock

Divider >
Clock

CKs

Tri_state

Clock

Controller

|

CKO

|

Data Transfer

INV
MUX

CKI

Tri-state
Controller

CKG

> Output

Transmitter
Clock

34.6.1.3 Receiver Clock Management
The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in
SSC_RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by

the CKI bits in SSC_RCMR.

The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer.
The clock output is configured by the SSC_RCMR register. The Receive Clock Inversion (CKI)
bits have no effect on the clock outputs. Programming the RCMR register to select RK pin (CKS
field) and at the same time Continuous Receive Clock (CKO field) can lead to unpredictable
results.

Figure 34-7. Receiver Clock Management

RK (pin) >

MUX
Transmitter >
Clock

Divider >
Clock

CKS

558

Y

Tri-state

Clock

Controller

|

CKO

|

Data Transfer

INV
MUX

> Output

Tri-state

Controller Receiver

CKI

Y

Clock

CKG

AT91SAM9263 Preliminary s —

6249D-ATARM-20-Dec-07

e A T91SAM9263 Preliminary

34.6.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. In
this case, the maximum clock speed allowed on the RK pin is:

— Master Clock divided by 2 if Receiver Frame Synchro is input

— Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TK pin is:

— Master Clock divided by 6 if Transmit Frame Synchro is input
— Master Clock divided by 2 if Transmit Frame Synchro is output

34.6.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). See
“Start” on page 560.

The frame synchronization is configured setting the Transmit Frame Mode Register
(SSC_TFMR). See “Frame Sync” on page 562.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the SSC_TCMR. Data is written by the application to the SSC_THR
register then transferred to the shift register according to the data format selected.

When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY is
set in SSC_SR. When the Transmit Holding register is transferred in the Transmit shift register,
the status flag TXRDY is set in SSC_SR and additional data