8-bit Microcontroller

CMOS

F²MC-8L MB89202 Series

MB89202/202Y/F202/F202Y/V201

DESCRIPTION

The MB89202 series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such, timers, a serial interface, an A/D converter and an external interrupt.

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- F2MC-8L family CPU core
- Maximum memory space: 64 Kbytes
- Minimum execution time: 0.32 μs/12.5 MHz Interrupt processing time: 2.88 μs/12.5 MHz
- I/O ports : Max 26 channels
- · 21-bit time-base timer
- 8-bit PWM timer
- 8/16-bit capture timer/counter
- 10-bit A/D converter: 8 channels
- UART
- 8-bit serial I/O
- External interrupt 1: 3 channels
- External interrupt 2: 8 channels
- Wild Register: 2 bytes
- MB89F202: Flash (at least 10,000 program / erase cycles) with read protection
- Low-power consumption modes (sleep mode, and stop mode)
- SH-DIP-32, SSOP-34 package
- CMOS Technology

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

■ PRODUCT LINEUP

Part number Parameter	MB89202 MB89202Y	MB89F202 MB89F202Y	MB89V201		
Classification	Mask ROM product	Flash memory product (read protection)	Evaluation product (for development)		
ROM size	16 K × 8 bits (internal Mask ROM)	16 K \times 8 bits (internal flash)	32 K × 8 bits (external EPROM)		
RAM size		512 × 8 bits			
CPU functions		136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.32 μs to 5.1 μs (12.5 MHz) 2.88 μs to 46.1 μs (12.5 MHz)	:)		
Ports		e I/O ports (CMOS) : 26 (also ports are also an N-ch open-di			
21-bit time-base timer	21-bit Interrupt cycle : 0.6	6 ms, 2.64 ms, 21 ms, or 335.	5 ms with 12.5 MHz main clock		
Watchdog timer	Reset generation	cycle: 335.5 ms minimum w	ith 12.5 MHz main clock		
8-bit PWM timer	8-bit resolution PWM opera	peration (square output capab 0.32 μs , 2.56 μs, 5.1 μs, 20. ation (conversion cycle : 81.9 μ rnal shift clock of 8/16-bit capt ctable between 8-bit and 16-bi	5 μs) μs to 21.47 s : in the selection of ure timer)		
8/16-bit capture timer/counter	16	8-bit capture timer/counter × 1 channel + 8-bit timer or 16-bit capture timer/counter × 1 channel Capable of event count operation and square wave output using external clock input with 8-bit timer 0 or 16-bit counter			
UART		Transfer data length: 6/7/8	bits		
8-bit Serial I/O	8 bits LSB first/MSB first selectable One clock selectable from four operation clocks (one external shift clock, three internal shift clocks : 0.8 μs, 6.4 μs, 25.6 μs)				
12-bit PPG timer	Output f	requency: Pulse width and cy	/cle selectable		
External interrupt 1 (wake-up function)	3 channels (Interrupt vector, request flag, request output enabled) Edge selectable (Rising edge, falling edge, or both edges) Also available for resetting stop/sleep mode (Edge detectable even in stop mode)				
External interrupt 2 (wake-up function)		nputs (Independent L-level inte ting stop/sleep mode (Level de			

(Continued)

Part number MB89202 MB89202Y		MB89F202 MB89F202Y	MB89V201			
10-bit A/D converter		10-bit precision × 8 channels A/D conversion function (Conversion time : 12.16 μs/12.5 MHz) ontinuous activation by 8/16-bit timer/counter output or time-base timer counter				
Wild Register		8 -bit \times 2				
Standby mode		Sleep mode, and Stop mod	е			
Overhead time from reset to the first instruction execution	Power-on reset: Oscillation stabilization wait*1 External reset: a few μs Software reset: a few μs	Power-on reset: Voltage regulator and oscillation stabilization wait (31.5 ms/12.5 MHz) External reset: Oscillation stabilization wait (21.0 ms/12.5 MHz) Software reset: a few µs	Power-on reset: Oscillation stabilization wait (21.0 ms / 12.5 MHz) External reset: Oscillation stabilization wait (21.0 ms / 12.5 MHz) Software reset: a few μs			
Power supply voltage*2	2.2 V to 5.5 V	3.5 V to 5.5 V	2.7 V to 5.5 V			

^{*1:} Refer to "■ MASK OPTIONS"

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	Package MB89202		MB89202Y MB89F202		MB89V201
DIP-32P-M06	0	×	0	×	×
FPT-34P-M03	×	0	×	0	×
FPT-64P-M24	×	×	×	×	0

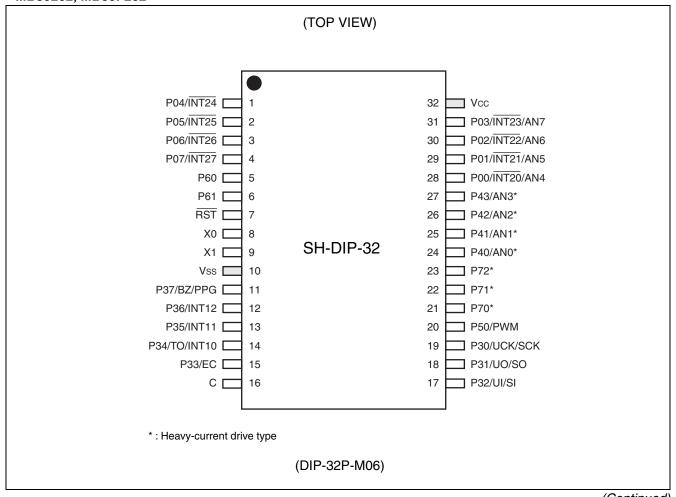
^{○ :} Available ×: Not available

■ DIFFERENCES AMONG PRODUCTS

• Memory Size

Before evaluating using the evaluation product, verify its differences from the product that will actually be used.

Mask Options


Functions that can be selected as options and how to designate these options vary by the product. Before using options refer to "

MASK OPTIONS".

^{*2:} The minimum operating voltage varies with the operating frequency, the function, and the connected ICE. (The operating voltage of the A/D converter is assured separately. Refer to "■ ELECTRICAL CHARACTERISTICS.")


■ PIN ASSIGNMENTS

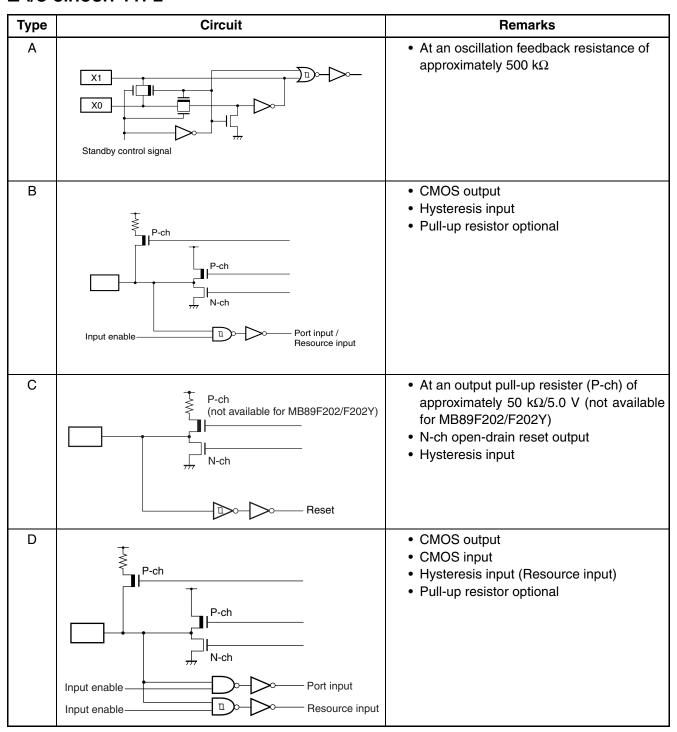
• MB89202, MB89F202

(Continued)

• MB89202Y, MB89F202Y

■ PIN DESCRIPTION

Pin	No.		.I/O		
SH-DIP32*1	SSOP34*2	Pin name	circuit type*3	Function	
8	8	X0 X1	Α	Pins for connecting the crystal for the main clock. To use an external clock, input the signal to X0 and leave X1 open.	
5, 6	5, 6	P60, P61	H/E	General-purpose CMOS input port for MB89F202/F202Y. General-purpose CMOS I/O port for MB89202/202Y, MB89V201.	
7	7	RST	С	Reset I/O pin. This pin serves as an N-channel open-drain reset output with pull-up resistor (not available for MB89F202/F202Y) and a reset input as well. The reset is a hysteresis input. It outputs the "L" signal in response to an internal reset request. Also, it initializes the internal circuit upon input of the "L" signal.	
28 to 31	30 to 33	P00/INT20/ AN4 to P03/ INT23/AN7	G	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2 or as an 10-bit A/D converter analog input. The input of external interrupt 2 is a hysteresis input.	
1 to 4	1 to 4	P04/INT24 to P07/INT27	D	General-purpose CMOS I/O ports. These pins also serve as an input (wake-up input) of external interrupt 2. The input of external interrupt 2 is a hysteresis input.	
19	20	P30/UCK/ SCK	В	General-purpose CMOS I/O port. This pin also serves as the clock I/O pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.	
18	19	P31/UO/SO	E	General-purpose CMOS I/O port. This pin also serves as the data output pin for the UART or 8-bit serial I/O.	
17	18	P32/UI/SI	В	General-purpose CMOS I/O port. This pin also serves as the data input pin for the UART or 8-bit serial I/O. The resource is a hysteresis input.	
15	15	P33/EC	В	General-purpose CMOS I/O port. This pin also serves as the external clock input pin for the 8/16-bit capture timer/counter. The resource is a hysteresis input.	
14	14	P34/TO/ INT10	В	General-purpose CMOS I/O port. This pin also serves as the output pin for the 8/16-bit capture timer/counter or as the input pin for external interrupt 1. The resource is a hysteresis input.	
13, 12	13, 12	P35/INT11, P36/INT12	В	General-purpose CMOS I/O ports. These pins also serve as the input pin for external interrupt 1. The resource is a hysteresis input.	
11	11	P37/BZ/ PPG	Е	General-purpose CMOS I/O port. This pin also serves as the buzzer output pin or the 12-bit PPG output.	
20	21	P50/PWM	E	General-purpose CMOS I/O port. This pin also serves as the 8-bit PWM timer output pin.	


(Continued)

Pin	No.		I/O		
SH-DIP32*1	SSOP34*2	Pin name	circuit type*3	Function	
24 to 27	26 to 29	P40/AN0 to P43/AN3	F	General-purpose CMOS I/O ports. These pins can also be used as N-channel open-drain ports. These pins also serve as 10-bit A/D converter analog input pins.	
21 to 23	23 to 25	P70 to P72	E	General-purpose CMOS I/O ports.	
32	34	Vcc	_	Power supply pin	
10	10	Vss	_	Power (GND) pin	
16	17	С	_	MB89F202/F202Y: Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about 0.1μF. MB89202/202Y: This pin is not internally connected. It is unnecessary to connect a capacitor.	
	16, 22	NC	_	Internally connected pins Be sure to leave it open.	

*1 : DIP-32P-M06 *2 : FPT-34P-M03

*3 : Refer to "■ I/O CIRCUIT TYPE" for I/O circuit type.

■ I/O CIRCUIT TYPE

Type	Circuit	Remarks
E	P-ch N-ch Input enable Port input	 CMOS output CMOS input Pull-up resistor optional P70-P72 are large-current drive type
F	P-ch Open-drain control N-ch Analog input A/D enable	 CMOS output CMOS input Analog input N-ch open-drain output available P40-P43 are large-current drive type
G	P-ch Input enable Input enable A/D enable P-ch P-ch Port input Resource input Analog input	CMOS output CMOS input Hysteresis input (Resource input) Analog input
Н	Input enable———Port input	CMOS input

■ HANDLING DEVICES

Preventing Latch-up

Latch-up may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ ELECTRICAL CHARACTERISTICS" is applied between V_{cc} and V_{ss}.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Treatment of Unused Input Pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latch-up; pull up or pull down the terminals through the resistors of 2 $k\Omega$ or more.

Make the unused I/O terminal in a state of output and leave it open or if it is in an input state, handle it with the same procedure as the input terminals.

Treatment of NC Pins

Be sure to leave (internally connected) NC pins open.

Power Supply Voltage Fluctuations

Although $V_{\rm CC}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that $V_{\rm CC}$ ripple fluctuations (P-P value) will be less than 10% of the standard $V_{\rm CC}$ value at the commercial frequency (50 Hz/60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

About the Wild Register Function

No wild register can be debugged on the MB89V201. For the operation check, test the MB89F202/F202Y installed on a target system.

Program Execution in RAM

When the MB89V201 is used, no program can be executed in RAM.

• Note to Noise in the External Reset Pin (RST)

If the reset pulse applied to the external reset pin (\overline{RST}) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (\overline{RST}) .

• External pull-up for the External Reset Pin (RST) of MB89F202

Internal pull-up control for \overline{RST} pin is not available for MB89F202/F202Y. To ensure proper external reset control in MB89F202/F202Y, an external pull-up (recommend 100 k Ω) for \overline{RST} pin must be required.

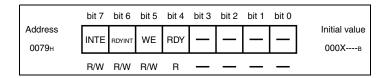
Notes on selecting mask option

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.

■ PROGRAMMING AND ERASE FLASH MEMORY

1. Flash Memory

The flash memory is located between C000_H and FFFF_H in the CPU memory map and incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as Mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.


2. Flash Memory Features

- 16 Kbytes × 8-bit configuration
- Automatic programming algorithm (Embedded Algorithm)
- Data polling and toggle bit for detection of program/erase completion
- · Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- No. of program / erase cycles: Minimum 10,000

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory.

4. Flash Memory Control Status Register (FMCS)

5. Memory Space

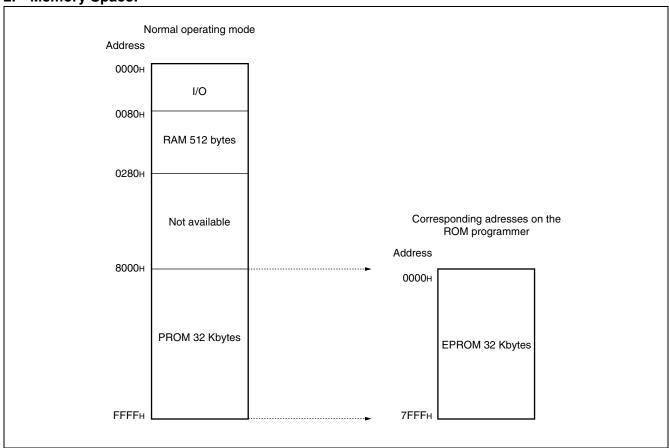
The memory space for the CPU access and for the flash programmer access is listed below.

Ī	Part number	Memory size	CPU address	Programmer address	
	MB89F202 MB89F202Y	16 K bytes	FFFFH to C000H	FFFFH to C000H	

6. Flash Content Protection

Flash content can be read using parallel / serial programmer if the flash content protection mechanism is not activated.

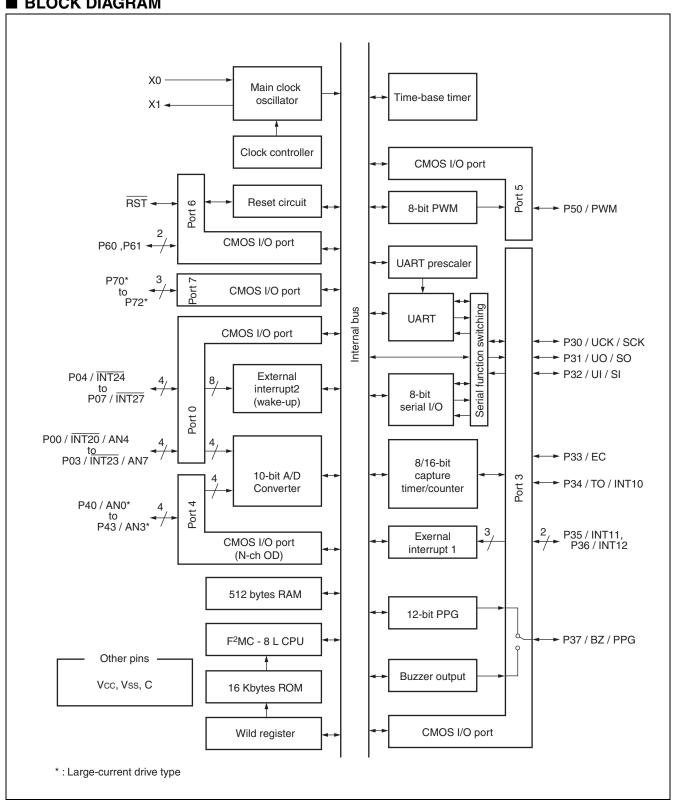
One predefined area of the flash (FFFC_H) is assigned to be used for preventing the read access of flash content. If the protection code "01_H" is written in this address (FFFC_H), the flash content cannot be read by any parallel/serial programmer.


Note: The program written into the flash cannot be verified once the flash protection code is written ("01H" in FFFCH). It is advised to write the flash protection code at last.

■ PROGRAMMING TO THE EPROM WITH EVALUATION PRODUCT DEVICE

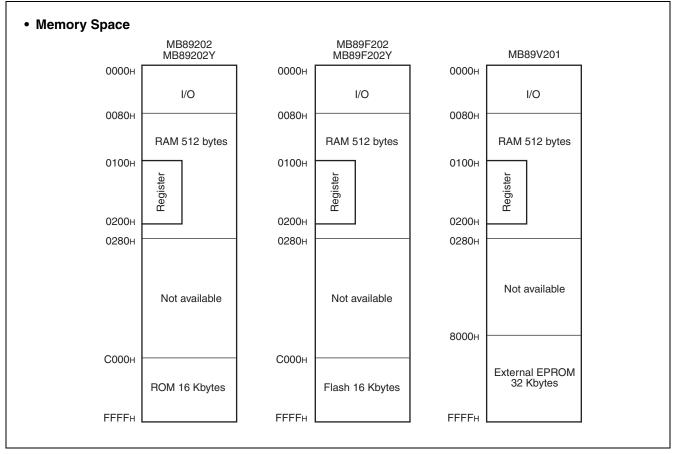
1. EPROM for Use

MBM27C256A (DIP-28)


2. Memory Space.

3. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0000H to 7FFFH.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.


■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89202 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89202 series is structured as illustrated below.

2. Registers

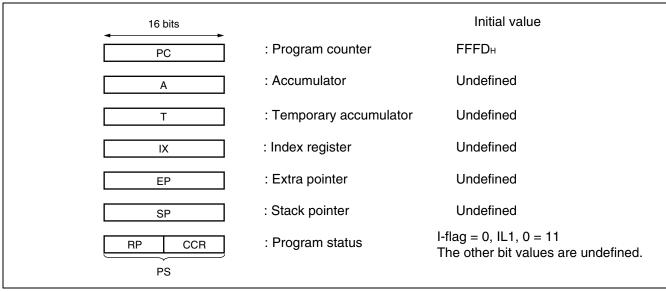
The MB89202 series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

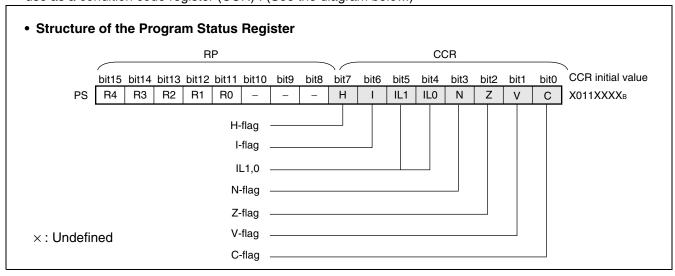
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

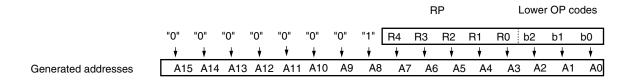

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification


Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code



The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.

Cleared to "0" otherwise. This flag is for decimal adjustment instructions.

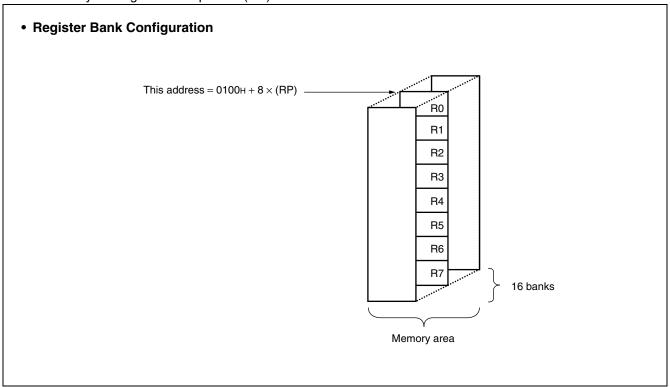
I-flag: Interrupt is enabled when this flag is set to "1". Interrupt is disabled when the flag is cleared to "0". Cleared to "0" at the reset.

IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	I	†
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set to "1" if the MSB becomes to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is cleared to "0".

Z-flag: Set to "1" when an arithmetic operation results in 0. Cleared to "0" otherwise.


V-flag: Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" if the overflow does not occur.

C-flag: Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89202 series. The bank currently in use is indicated by the register bank pointer (RP) .

■ I/O MAP

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	XXXXXXX
0001н	DDR0	Port 0 data direction register	W	0 0 0 0 0 0 0 0
0002н to 00006н		Reserved		
0007н	SYCC	System clock control register	R/W	1 MM1 0 0
0008н	STBC	Standby control register	R/W	00010
0009н	WDTC	Watchdog timer control register	R/W	0 X X X X
000Ан	TBTC	Time-base timer control register	R/W	0 0 0 0 0
000Вн		Reserved		
000Сн	PDR3	Port 3 data register	R/W	XXXXXXX
000Дн	DDR3	Port 3 data direction register	W	0 0 0 0 0 0 0 0
000Ен	RSFR	Reset flag register	R	X X X X
000Fн	PDR4	Port 4 data register	R/W	X X X X
0010н	DDR4	Port 4 data direction register	R/W	0 0 0 0
0011н	OUT4	Port 4 output format register	R/W	0 0 0 0
0012н	PDR5	Port 5 data register	R/W	X
0013н	DDR5	Port 5 data direction register	R/W	0
0014н	RCR21	12-bit PPG control register 1	R/W	0 0 0 0 0 0 0 0
0015н	RCR22	12-bit PPG control register 2	R/W	0 0 0 0 0 0
0016н	RCR23	12-bit PPG control register 3	R/W	0 - 0 0 0 0 0 0
0017н	RCR24	12-bit PPG control register 4	R/W	0 0 0 0 0 0
0018н	BZCR	Buzzer register	R/W	0 0 0
0019н	TCCR	Capture control register	R/W	0 0 0 0 0 0 0 0
001Ан	TCR1	Timer 1 control register	R/W	0 0 0 - 0 0 0 0
001Вн	TCR0	Timer 0 control register	R/W	0 0 0 0 0 0 0 0
001Сн	TDR1	Timer 1 data register	R/W	XXXXXXX
001Dн	TDR0	Timer 0 data register	R/W	XXXXXXX
001Ен	TCPH	Capture data register H	R	X X X X X X X X
001Fн	TCPL	Capture data register L	R	XXXXXXX
0020н	TCR2	Timer output control register	R/W	0 0
0021н		Reserved		
0022н	CNTR	PWM control register	R/W	0 - 0 0 0 0 0 0
0023н	COMR	PWM compare register	W	XXXXXXX
0024н	EIC1	External interrupt 1 Control register 1	R/W	0 0 0 0 0 0 0 0

Address	Register name	Register description	Read/write	Initial value			
0025н	EIC2	External interrupt 1 Control register 2	R/W	0 0 0 0			
0026н	Decembed						
0027н	1	Reserved					
0028н	SMC	Serial mode control register	R/W	0 0 0 0 0 - 0 0			
0029н	SRC	Serial rate control register	R/W	0 1 1 0 0 0			
002Ан	SSD	Serial status and data register	R/W	0 0 1 0 0 - 1 X			
002Вн	SIDR	Serial input data register	R	XXXXXXX			
UUZDH	SODR	Serial output data register	W	XXXXXXX			
002Сн	UPC	Clock division selection register	R/W	0 0 1 0			
002Dн to 002Fн		Reserved					
0030н	ADC1	A/D converter control register 1	R/W	- 0 0 0 0 0 0 0			
0031н	ADC2	A/D converter control register 2	R/W	- 0000001			
0032н	ADDH	A/D converter data register H	R	X X			
0033н	ADDL	A/D converter data register L	R	XXXXXXX			
0034н	ADEN	A/D enable register	R/W	0 0 0 0 0 0 0 0			
0035н		Reserved					
0036н	EIE2	External interrupt 2 control register1	R/W	0 0 0 0 0 0 0 0			
0037н	EIF2	External interrupt 2 control register2	R/W	0			
0038н		Reserved					
0039н	SMR	Serial mode register	R/W	0 0 0 0 0 0 0 0			
003Ан	SDR	Serial data register	R/W	XXXXXXX			
003Вн	SSEL	Serial function switching register	R/W	0			
003Сн to 003Гн		Reserved					
0040н	WRARH0	Upper-address setting register	R/W	XXXXXXX			
0041н	WRARL0	Lower-address setting register	R/W	XXXXXXX			
0042н	WRDR0	Data setting register 0	R/W	XXXXXXX			
0043н	WRARH1	Upper-address setting register	R/W	XXXXXXX			
0044н	WRARL1	Lower-address setting register	R/W	XXXXXXX			
0045н	WRDR1	Data setting register 1	R/W	XXXXXXX			
0046н	WREN	Address comparison EN register	R/W	X X X X X X O O			
0047н	WROR	Wild-register data test register R/W 0 (
0048н to 005Fн		Reserved	<u> </u>	1			

(Continued)

Address	Register name	Register description	Read/write	Initial value
0060н	PDR6	Port 6 data register	R/W	X X
0061н	DDR6	Port 6 data direction register*	R/W	0 0
0062н	PUL6	Port 6 pull-up setting register	R/W	0 0
0063н	PDR7	Port 7 data register	R/W	X X X
0064н	DDR7	Port 7 data direction register	R/W	0 0 0
0065н	PUL7	Port 7 pull-up setting register	R/W	0 0 0
0066н to 006Fн		Reserved		
0070н	PUL0	Port 0 pull-up setting register	R/W	0 0 0 0 0 0 0
0071н	PUL3	Port 3 pull-up setting register	R/W	0 0 0 0 0 0 0
0072н	PUL5	Port 5 pull-up setting register	R/W	0
0073н to 0078н		Reserved		
0079н	FMCS	Flash memory control status register	R/W	0 0 0 X
007Ан		Reserved		
007Вн	ILR1	Interrupt level setting register1	W	11111111
007Сн	ILR2	Interrupt level setting register2	W	11111111
007Dн	ILR3	Interrupt level setting register3	W	11111111
007Ен	ILR4	Interrupt level setting register4	W	11111111
007Fн	ITR	Interrupt test register	Not available	0 0

- : Unused, X: Undefined, M: Set using the mask option

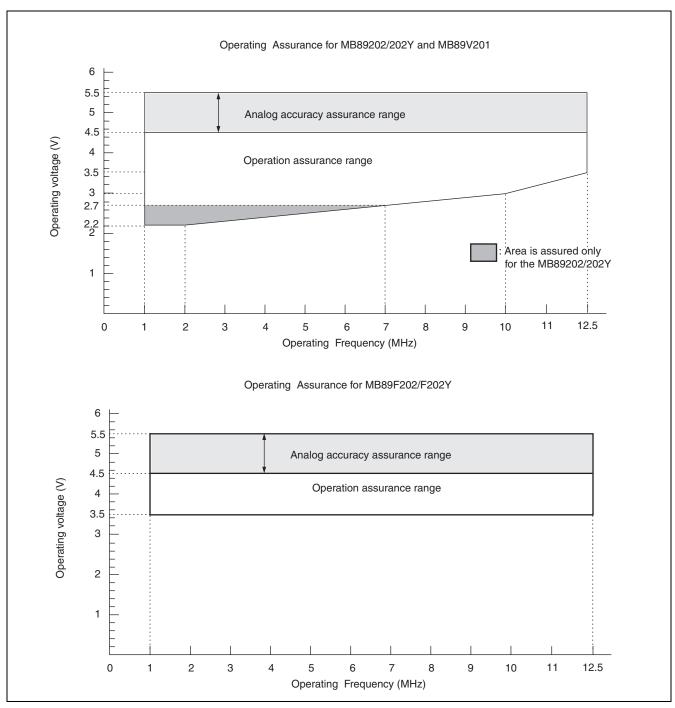
* : No used in MB89F202/F202Y

Note: Do not use prohibited areas.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Downston	Cumbal	Ra	ting	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	nemarks
Power supply voltage*	Vcc	Vss - 0.3	Vss + 6.0	V	
Input voltage*	Vı	Vss - 0.3	Vcc + 0.3	V	
Output voltage*	Vo	Vss - 0.3	Vcc + 6.0	V	
"L" level maximum output current	lol	_	15	mA	
"L" level average output current	lolav1	_	4	mA	Average value (operating current × operating rate) Pins excluding P40 to P43, P70 to P72
	lolav2	_	12	mA	Average value (operating current × operating rate) Pins P40 to P43, P70 to P72
"L" level total maximum output current	Σ loL	_	100	mA	
"H" level maximum output current	Іон	_	-10	mA	Pins excluding P60, P61
"H" level average output current	Іонач		-4	mA	Average value (operating current × operating rate)
"H" level total maximum output current	Σ loн	_	-50	mA	
Power consumption	Pd	_	200	mW	
Operating temperature	Ta	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	


 $^{^*}$: This parameter is based on Vss = 0.0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Va	alue	Unit	Remarks
Parameter	Syllibol	Min	Max	Oiiii	nemarks
		2.2	5.5	V	MB89202/202Y
Power aupply voltage	Vcc	3.5	5.5	V	MB89F202/F202Y
Power supply voltage	VCC	2.7	5.5	V	MB89V201
		1.5	5.5	V	Retains the RAM state in stop mode
"H" lovel input veltage	Vıн	0.7 Vcc	Vcc + 0.3	V	P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72
"H" level input voltage	VIHS	0.8 Vcc	Vcc + 0.3	V	RST, EC, INT20 to INT27, UCK/SCK, INT10 to INT12, P30, P32 to P36, UI/SI
"L" level input voltage	VıL	Vss - 0.3	0.3 Vcc	V	P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72
L level iliput voltage	VILS	Vss - 0.3	0.2 Vcc	V	RST, EC, INT20 to INT27, UCK/SCK, INT10 to INT12, P30, P32 to P36, UI/SI
Open-drain output pin application voltage	V D	Vss - 0.3	Vcc + 0.3	V	P40 to P43, RST
Operating temperature	Та	-40	+85	°C	Room temperature is recommended for programming the flash memory on MB89F202/F202Y

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

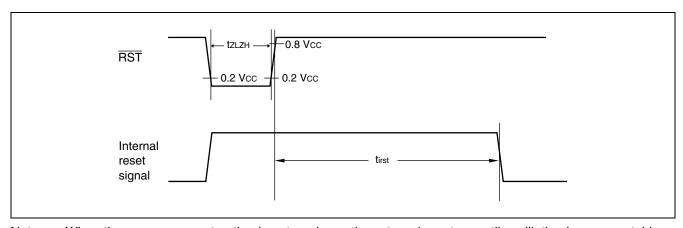
(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, FcH = 12.5 MHz (External clock) , Ta = -40 °C to +85 °C)

Parameter	Sym-	Pin name	Condition		Value	.	Unit	Remarks
Parameter	bol	Pin name	Condition	Min	Тур	Max	Unit	nemarks
"H" level input	VıH	P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72	_	0.7 Vcc		Vcc + 0.3	V	
voltage	V _{IHS}	P30, P32 to P36, RST UCK/SCK, UI/SI, EC, INT20 to INT27, INT10 to INT12		0.8 Vcc		Vcc + 0.3	V	
"L" level input	VIL	P00 to P07, P31, P37, P40 to P43, P50, P60, P61, P70 to P72	_	Vss - 0.3		0.3 Vcc	V	
voltage	VILS	P30, P32 to P36, RST, UCK/SCK, UI/SI, EC, INT20 to INT27, INT10 to INT12		V _{SS} – 0.3		0.2 Vcc	٧	
Open-drain output pin application voltage	V D	P40 to P43, RST		V _{SS} - 0.3		Vcc + 0.3	V	
"H" level output voltage	Vон	P00 to P07, P30 to P37, P40 to P43, P50, P70 to P72	Iон = -4.0 mA	4.0		_	V	
"L" level output voltage	V _{OL1}	P00 to P07, P30 to P37, P50, RST	loL = 4.0 mA			0.4	٧	
output voitage	V _{OL2}	P40 to P43, P70 to P72	loL = 12.0 mA		_	0.4	V	
Input leakage current	lu	P00 to P07, P30 to P37, P40 to P43, P50, P60, P61, RST, P70 to P72	0.45 V < V _I < V _{CC}	_		±5	μΑ	Without pull-up resistor
Pull-up	Rpull	P00 to P07, P30 to P37, P50, RST, P70 to P72	V _I = 0.0 V	25	50	100	kΩ	MB89202/ 202Y
resistance	I IFULL	P00 to P07, P30 to P37, P50, P70 to P72	V1 — 0.0 V	25	30	100	1/22	MB89F202/ F202Y

(Continued)

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, FcH = 12.5 MHz (External clock) , Ta = -40 $^{\circ}C$ to +85 $^{\circ}C$)

Parameter	Sym-		Pin name	Condition		Value)	Unit	Remarks
raiametei	bol		riii iiaiiie	Condition	Min	Тур	Max	Oiiit	nemarks
				When A/D	_	8	12	mA	MB89202/ 202Y
	Icc		Normal operation mode	converter stops	_	6	9	mA	MB89F202/ F202Y
	icc		(External clock, highest gear speed)		_	10	15	mA	MB89202/ 202Y
Power supply		Vcc			_	8	12	mA	MB89F202/ F202Y
current	Iccs	VCC	Sleep mode (External clock,	When A/D	_	4	6	mA	MB89202/ 202Y
	ICCS		highest gear speed)	converter stops	_	3	5	mA	MB89F202/ F202Y
	Іссн		Stop mode Ta = +25 °C	When A/D	_		1	μА	MB89202/ 202Y
	ICCH		(External clock)	converter stops	_	_	10	μА	MB89F202/ F202Y
Input capacitance	Cin	Othe	er than C, Vcc, Vss	_	_	10		pF	

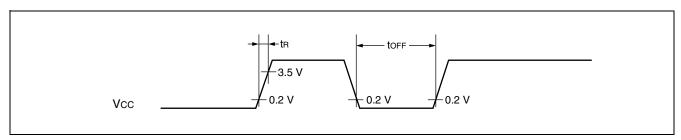

4. AC Characteristics

(1) Reset Timing

$$(Vss = 0.0 V, Ta = -40 °C to +85 °C)$$

Parameter	Symbol	Condition	Valu	ıe	Unit	Remarks	
Farameter	Syllibol	Condition	Min	Max	Ollit	nemarks	
RST "L" pulse width	tzızн	_	45	_	ns		
Internal reset pulse extension	tirst	_	48 thcyl*	_	ns		

^{*:} they 1 oscillating clock cycle time

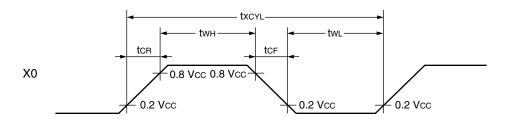

Notes: • When the power-on reset option is not on, leave the external reset on until oscillation becomes stable.

• If the reset pulse applied to the external reset pin (RST) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (RST).

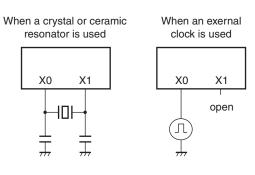
(2) Power-on Reset

$$(V_{SS} = 0.0 \text{ V}, Ta = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$$

Parameter	Symbol	Condition	Val	ue	Unit	Remarks	
Farameter	Syllibol	Condition	Min Max		Oilit	nemarks	
Power supply rising time	t⊓		_	50	ms		
Power supply cut-off time	toff		1	_	ms	Due to repeated operations	


Note: The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation settling time.

(3) Clock Timing

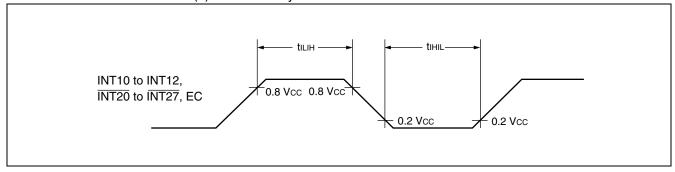

$$(Vss = 0.0 V, Ta = -40^{\circ}C to +85^{\circ}C)$$

Dougmatou	Cumbal	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol	Condition	Min	Max	Offic		
Clock frequency	Fсн		1	12.5	MHz		
Clock cycle time	txcyL		80	1000	ns		
Input clock pulse width	twn twL	_	20	_	ns		
Input clock rising/falling time	tcr tcr		_	10	ns		

• X0 and X1 Timing and Conditions

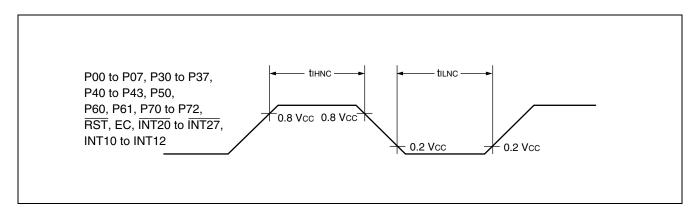
• Main Clock Conditions

(4) Instruction Cycle


Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	116	$t_{\text{INST}} = 0.32~\mu \text{s}$ when operating at FcH = 12.5 MHz (4/FcH)

(5) Peripheral Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, Ta = -40 °C to +85 °C)$

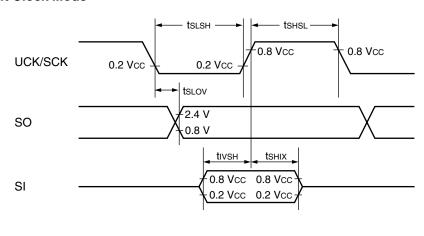

Parameter	Symbol Pin name		Val	lue	Unit	Remarks
raidilletei	Syllibol	Fill Hame	Min		Oilit	nemarks
Peripheral input "H" pulse width	tılıн	INT10 to INT12,	2 tinst*	_	μs	
Peripheral input "L" pulse width	tıнıL	INT20 to INT27, EC	2 tinst*	_	μs	

*: For information on t_{INST} see " (4) Instruction Cycle".

 $(Vcc = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, \text{ Ta} = -40 ^{\circ}\text{C to} +85 ^{\circ}\text{C})$

Parameter	Symbol	mbol Pin name		Value	Unit	Remarks	
Farameter	Symbol	riii iiaiiie	Min	Тур	Max	Oilit	nemarks
Peripheral input "H" noise limit	tihnc	P00 to P07, P30 to		45	_	ns	
Peripheral input "L" noise limit	tilnc	P37, P40 to P43, P50,P60,P61, P70 to P72, RST, EC, INT20 to INT27, INT10 to INT12	_	45	_	ns	

(6) UART, Serial I/O Timing


 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, Ta = -40 °C to +85 °C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	Pili liaille	Condition	Min	Max	Oilit	I ICIIIai KS
Serial clock cycle time	tscyc	UCK/SCK		2 tinst*	_	μs	
$UCK/SCK \downarrow \to SO time$	t sLov	UCK/SCK, SO	Internal shift	-200	+ 200	ns	
Valid SI → UCK/SCK↑	tıvsн	UCK/SCK, SI	clock mode	1/2 tinst*	_	μs	
$UCK/SCK \uparrow \to Valid \; SI \; hold \; time$	t shix	UCK/SCK, SI		1/2 tinst*		μs	
Serial clock "H" pulse width	t shsl	UCK/SCK		tinst*	_	μs	
Serial clock "L" pulse width	t slsh	UCK/SCK	External	tinst*	_	μs	
$UCK/SCK \downarrow \to SO time$	t sLov	UCK/SCK, SO	shift clock	0	200	ns	
Valid SI → UCK/SCK	tıvsн	UCK/SCK, SI	mode	1/2 tinst*		μs	
$UCK/SCK \uparrow \to Valid \; SI \; hold \; time$	tsнıx	UCK/SCK, SI		1/2 tinst*		μs	

*: For information on tinst, see "(4) Instruction Cycle".

• Internal Shift Clock Mode UCK/SCK SO 10.8 V 10.8

• External Shift Clock Mode

5. A/D Converter

(1) A/D Converter Electrical Characteristics

(Vss = 0.0 V, Ta = -40 °C to +85 °C)

Parameter	Symbol		Value		Unit	Remarks	
Farameter	Syllibol	Min	Тур	Max	Ollit	Ticiliaiks	
Resolution		_	_	10	bit		
Total error		-5.0	_	+5.0	LSB		
Linearity error		-3.0	_	+3.0	LSB		
Differential linearity error		-2.5	-2.5 —		LSB		
Zero transition voltage	Vот	Vss – 3.5 LSB	Vss + 0.5 LSB	Vss + 4.5 LSB	٧		
Full-scale transition voltage	V _{FST}	Vcc – 6.5 LSB	Vcc – 1.5 LSB	Vcc + 2.0 LSB	V		
A/D mode conversion time		_	_	38 tinst*	μs		
Analog port input current	Iain	_	_	10	μΑ		
Analog input voltage range		0	_	Vcc	V		
Power supply voltage for A/D accuracy assurance	Vcc	4.5	_	5.5	V		

^{*:} For information on t_{inst}, see " (4) Instruction Cycle" in "4. AC Characteristics."

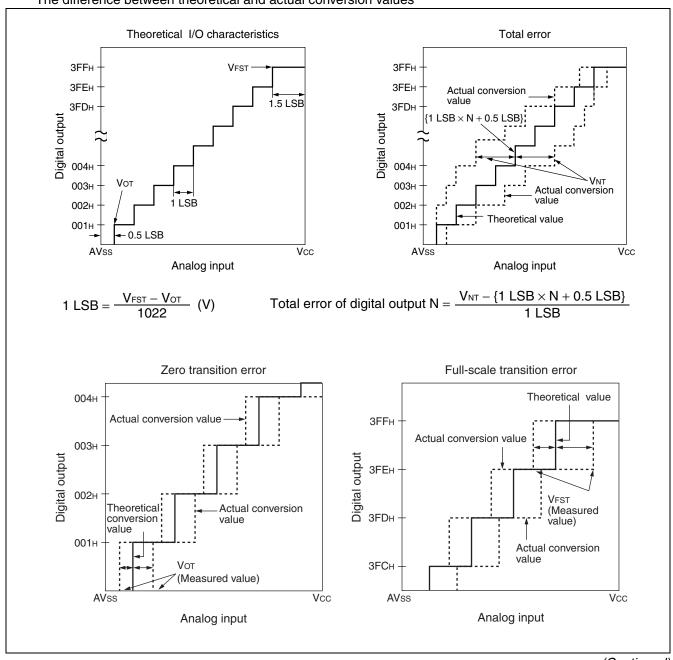
(2) A/D Converter Glossary

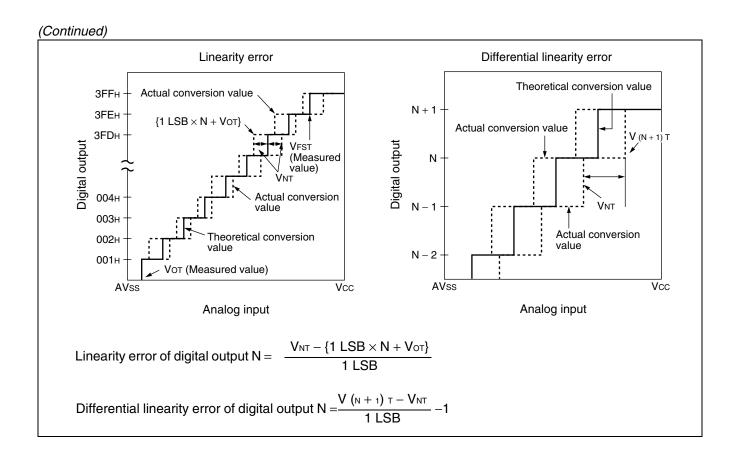
Resolution

Analog changes that are identifiable with the A/D converter

When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

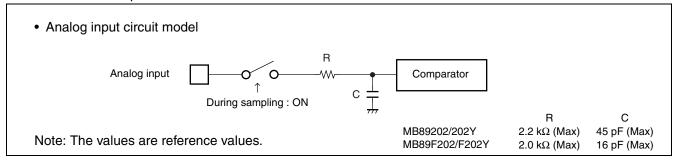
• Linearity error (unit : LSB)

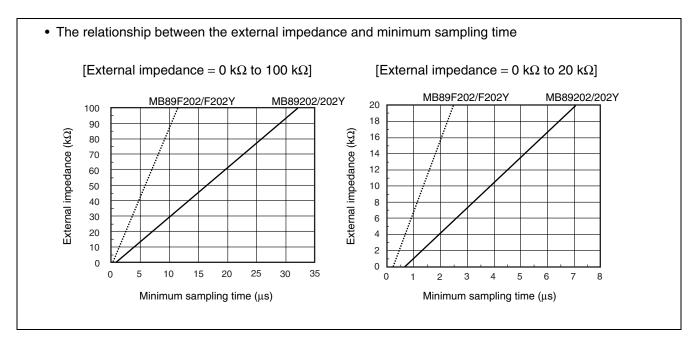

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics


• Differential linearity error (unit : LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

• Total error (unit : LSB)


The difference between theoretical and actual conversion values



(3) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

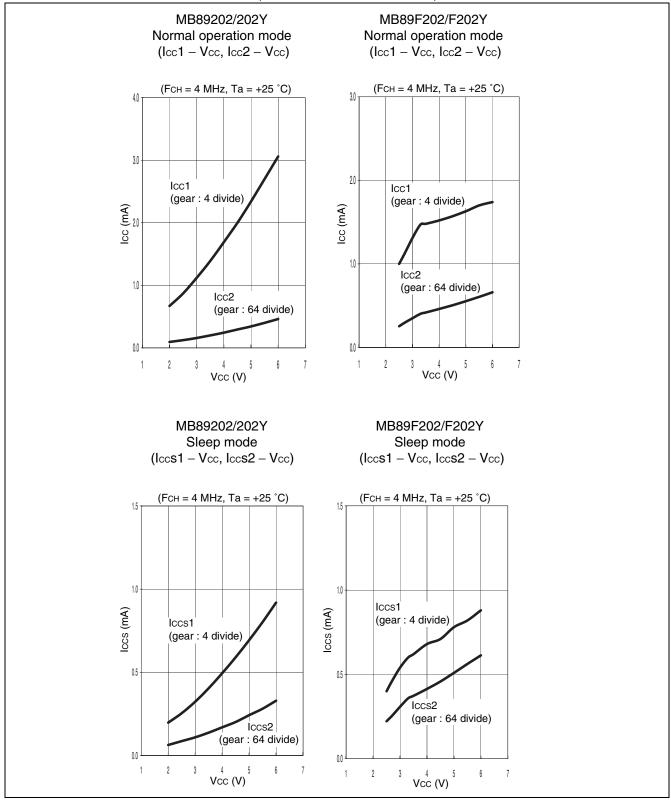
• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

About errors

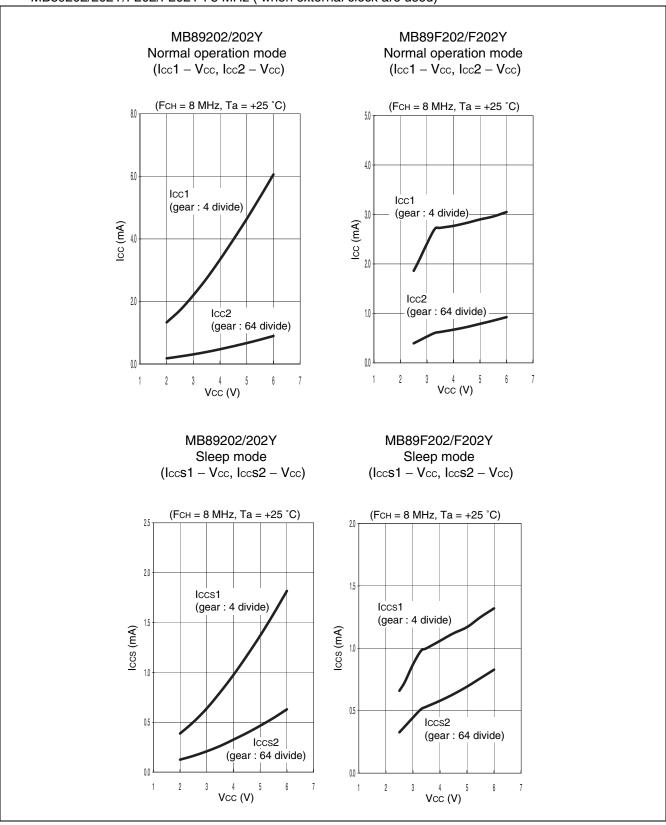
As IVcc – AVssl becomes smaller, values of relative errors grow larger.

6. Flash Memory Program / Erase Characteristics

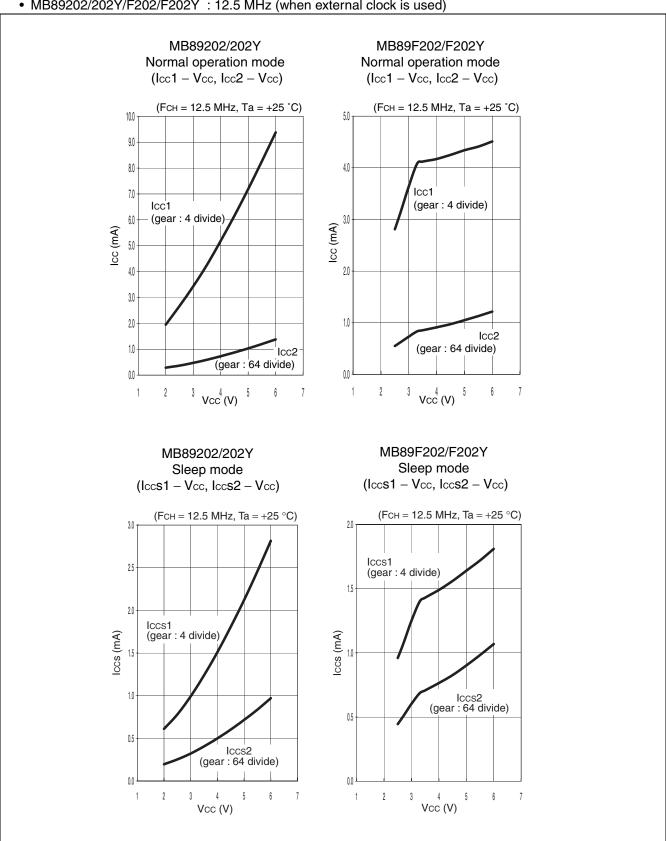
Parameter		Value		Unit	Remarks
Parameter	Min	Тур	Max	Oilit	nemarks
Chip erase time (16 KB)	_	0.5*1	7.5* ²	S	Excludes programming prior to erasure
Byte programming time	_	32	3600	μs	Excludes system-level overhead
Program / Erase cycle	10,000	_	_	cycle	

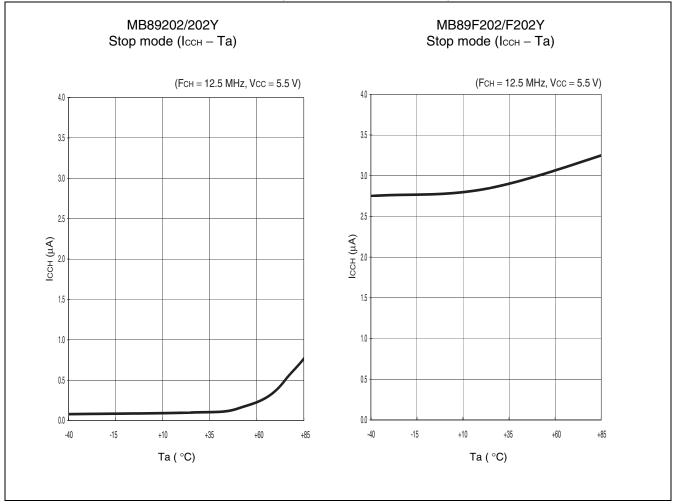

^{*1:} Ta = +25 °C, Vcc = 3.0 V, 10,000 cycles

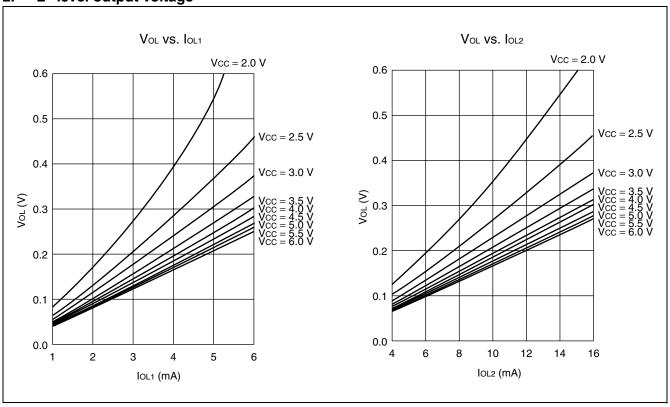
^{*2:} Ta = +85 °C, Vcc = 2.7 V, 10,000 cycles

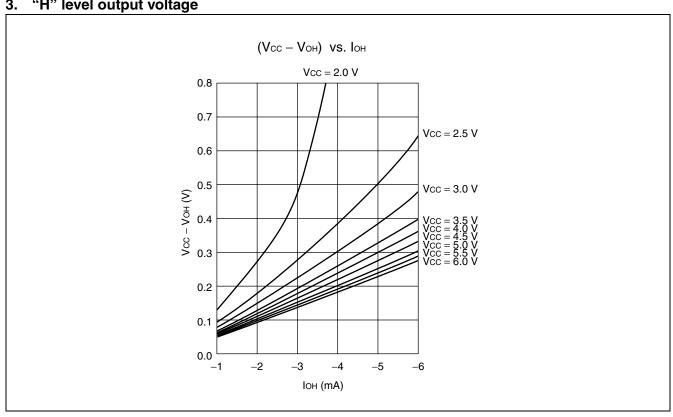

■ EXAMPLE CHARACTERISTICS

1. Power supply current


• MB89202/202Y/F202/F202Y: 4 MHz (when external clock are used)


• MB89202/202Y/F202/F202Y: 8 MHz (when external clock are used)


MB89202/202Y/F202/F202Y : 12.5 MHz (when external clock is used)


• MB89202/202Y/F202/F202Y : 12.5 MHz (when external clock is used)

2. "L" level output voltage

3. "H" level output voltage

■ MASK OPTIONS

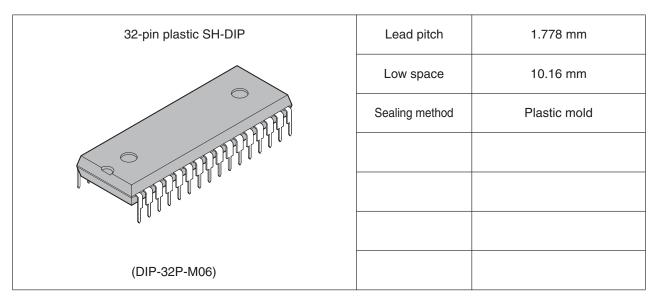
No.	Part number	MB89202 MB89202Y	MB89F202 MB89F202Y	MB89V201
	Specifying procedure	Specify when ordering masking	Setting disabled	
1	Selection of initial value of main clock oscillation settling time* (with FcH = 12.5 MHz) 01: 2 ¹⁴ /FcH (Approx.1.31 ms) 10: 2 ¹⁷ /FcH (Approx.10.5 ms) 11: 2 ¹⁸ /FcH (Approx.21.0 ms)	Selectable	Fixed to 2 ¹⁸ /Fcн	Fixed to 2 ¹⁸ /Fcн
2	Reset pin output With reset output Without reset output	Selectable	With reset output	With reset output
3	Power on reset selection With power on reset Without power on reset	Selectable	With power on reset	With power on reset

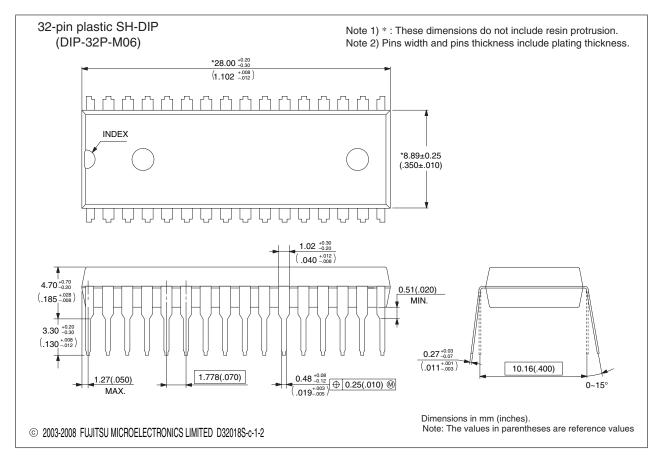
Fch: Main clock oscillation frequency

Notes on selecting mask option

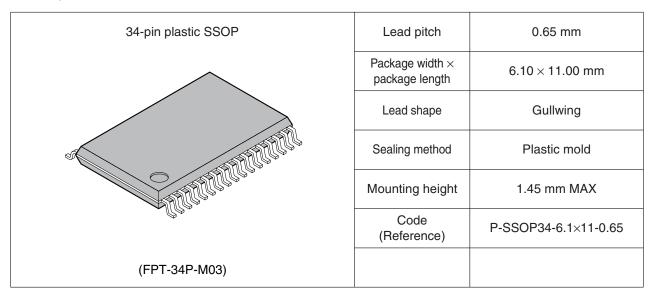
Places as lead "With great as the start" but the great selection.

Please select "With reset output" by the mask option when power-on reset is generated at the power supply ON, and the device is used without inputting external reset.


■ ORDERING INFORMATION


Part number	Package	Remarks
MB89202P-SH	32-pin plastic SH-DIP (DIP-32P-M06)	
MB89F202P-SH	32-piii piasiic 311-dir (dir-32r-ivioo)	
MB89202YPFV	24 pin plastic SSOR (ERT 24R M02)	
MB89F202YPFV	34-pin plastic SSOP (FPT-34P-M03)	
MB89V201PMC1*	64-pin plastic LQFP (FPT-64P-M24)	

^{*:} For evaluation chip, it will be available on the development support tool MB2144-230 only.


^{*:} Initial value to which the oscillation settling time bit (SYCC: WT1, WT0) in the system clock control register is set Note:


■ PACKAGE DIMENSIONS

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
_	_	Added the part numbers as follows; MB89202Y, MB89F202Y
_	_	Changed the package. FPT-64P-M03 → FPT-64P-M24
3	■ PACKAGE AND CORRESPONDING PRODUCTS	Changed the products corresponding to the package "FPT-34P-M03" MB89202, MB89F202 → MB89202Y, MB89F202Y
11	■ PROGRAMMING AND ERASE FLASH MEMORY	Deleted the item of "6. Flash Programmer Adapter and Recommended Flash Programmers".
40	■ ORDERING INFORMATION	Changed the part numbers. MB89202PFV → MB89202YPFV MB89F202PFV → MB89F202YPFV MB89V201PFV → MB89V201PMC1

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3347 Fax: +81-3-5322-3387

http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999

http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong

Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department