8-bit Proprietary Microcontrollers

CMOS

F2 MC-8L MB89210 Series

MB89215/F217/P215/PV210

■ DESCRIPTION

The MB89210 series is a one-chip microcontroller that features a compact instruction set and contains a range of peripheral functions including timers, a serial interface, A/D converters and external interrupts.

- FEATURES
- F^{2} MC-8L CPU core
- Maximum memory spaces : 64 Kbytes
- Minimum instruction execution time : $0.32 \mu \mathrm{~s}$ to $5.12 \mu \mathrm{~s}$ (at 12.5 MHz)
- Interrupt processing time $: 2.88 \mu \mathrm{~s}$ to $46.08 \mu \mathrm{~s}$ (at 12.5 MHz)
- I/O port
: Max 22
- 21-bit time base timer
-8-bit PWM timer
- 8-/16-bit capture timer/counter : 2 ch
- Watchdog timer
- 12-bit PPG timer
- PACKAGE
30-pin Plastic SSOP
(FPT-30P-M02)
(FPT-48P-M13)
(MQP-48C-P02)

MB89210 Series

(Continued)

- 10-bit A/D converter : 8 ch
- LIN-UART
- 8-bit serial I/O
- External Interrupt : 3 ch
- External or CR (built-in) oscillation clock, switchable
- Low power consumption modes (stop modes, sleep modes)
- Package : SSOP-30,QFP-48, MQFP-48
- CMOS technology

MB89210 Series

PRODUCT LINEUP

	Part number meter	MB89215	MB89F217	MB89P215	MB89PV210
Type		For mass products (Mask ROM product)	Flash products (Flash ROM product)	One-time product (for small-scale production)	Piggy back/ Evaluation product (for development)
ROM capacity		16 Kbyte (Built-in ROM)	32 Kbyte (Built-in Flash memory)	16 Kbyte (Built-in PROM)	32 Kbyte (External EPROM)
RAM capacity		512 byte	1 Kbyte	512 byte	2 Kbyte
CPU functions		Number of basic instructions $: 136$ Instruction bit length $: 8$ bits Instruction length $: 1$ to 3 bytes Data bit length $: 1,8$, and 16 bits Minimum instruction execution time $: 0.32 \mu \mathrm{~s}$ to $5.12 \mu \mathrm{~s}$ (at 12.5 MHz) Interruption processing time $: 2.88 \mu \mathrm{~s}$ to $46.08 \mu \mathrm{~s}$ (at 12.5 MHz)			
	Ports	General purpose I/O port $\times 21$ (also usable as resources) General purpose input port $\times 1$			
	21-bit time base timer	21 bits Interrupt cycle : at $10 \mathrm{MHz}(0.82 \mathrm{~ms}, 3.3 \mathrm{~ms}, 26.2 \mathrm{~ms}, 419.4 \mathrm{~ms})$			
	Watchdog timer	Reset generation cycle : at 10 MHz (Min 419.4 ms)			
	8-bit PWM timer	8-bit interval timer operation (supports square wave output, operating clock period : $0.4 \mu \mathrm{~s}$ to $25.6 \mu \mathrm{~s}$) 8-bit resolution PWM operation (conversion period : 102.4μ s to $26.84 \mu \mathrm{~s}$)			
	8/16-bit capture timer counter	8-bit capture timer/counter $\times 1$ channel +8 -bit timer or 16 -bit capture timer/counter $\times 1$ channel Capable of event count operation and square wave output using external clock input with 8-bit timer 0 or 16-bit counter			
	LIN-UART	Full duplex, Synchronous/asynchronous transfer (with start/stop bit), Capable of setting over 30,000 different baud rates using a 15 -bit reload counter Support for the LIN protocol, slave nodes, and LIN synch break/sync field detection			
	8-bit serial I/O	8-bit length, Selectable LSB first or MSB first Transfer clock ($0.8 \mu \mathrm{~s}$ external, $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$ internal)			
	12-bit PPG timer	Output requency : Selectable pulth width and cycle (Cycle : $1.6 \mu \mathrm{~s}$ to 419.3 ms)			
	External interrupt circuit	3-channel (interrupt vector, request flag, requesr output acceptance) Edge selectable (selectable rising, falling or both edge) Can be use for recovery from stop or sleep mode (edge detection also available in stop mode).			
	A/D converter	10-bit accurasy $\times 8$-channel A/D conversion function (conversion time : $15.2 \mu \mathrm{~s} / 10 \mathrm{MHz}$) Continuous activation by an 8-/16-bit timer/counter output or time base timer output capable.			
Standby mode		Sleep mode and Stop mode			
Operating voltage *		3.5 V to 5.5 V			
CR(built-in) oscillator		Yes	Yes	Yes	No

* : The minimum operating voltage varies with the operating frequency, the function and the connected ICE.

Note : Unless otherwise stated, clock periods and conversion times are for 10 MHz operation with the internal clock operating at maximum speed.

MB89210 Series

PACKAGES AND CORRESPONDING PRODUCTS

Package	MB89215	MB89F217	MB89P215	MB89PV210
FPT-30P-M02	O	\times	O	$\times{ }^{* 1}$
FPT-48P-M13	O	O	\times	$\times{ }^{* 2}$
MQP-48C-P02	\times	\times	\times	O
Power supply pins	Vcc,Vss $\times 2$	Vcc, Vss $\times 3$, AVcc, AVss	Vcc,Vss $\times 2$	Vcc, Vss $\times 2$, AVcc, AVss

O :Yes \times :No
*1 : Adapter for 48-pin to 30-pin conversion (manufactured by Sunhayato Corp.)
Part number : 48QF-30SOP-8L
Inquiry : Sunhayato Corp. TEL : (81)-3-3984-7791
FAX : (81)-3-3971-0535
E-mail : adapter@sunhayato.co.jp
*2 : Adapter for 48-pin (EVA) to 48-pin (MASK/FLASH) conversion.
Part number : 48QF2-48QF2-8L-FJ
Inquiry: Sunhayato Corp. TEL : (81)-3-3984-7791
FAX : (81)-3-3971-0535
E-mail : adapter@sunhayato.co.jp

DIFFERENCES AMONG PRODUCTS

1. Memory space

When this product is used in a piggy-back or other evaluation configuration, it is necessary to carefully confirm the differences between the model being used and the product it is evaluating.

2. Current Consumption

- On the MB89PV210, the additional current consumed by the EPROM is added at the connecting socket on the back side.
- When operating at low speed, the current consumption in the one-time PROM or EPROM models is greater than on the mask ROM models. However, current consumption in sleep or stop modes is identical. However, in sleep/stop mode the current consumption is the same.

MB89210 Series

PIN ASSIGNMENT

(Continued)

MB89210 Series

(Continued)

P13/TO0
P14/UCK/EC1

(MQP-48C-P02)

Pin no.	Pin						
49	Vpp	57	N.C.	65	O4	73	OE
50	A12	58	A2	66	O5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	O7	76	A9
53	A5	61	O1	69	O8	77	A8
54	A4	62	O2	70	CE	78	A13
55	A3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

N.C. : Internal connection only. Not for use.

PIN DESCRIPTIONS

| Pin no. | | Circuit
 type | Function |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |

(Continued)

MB89210 Series

(Continued)

Pin no.			Pin name	Circuit type	Function
SSOP*1	QFP* ${ }^{\text {2 }}$	MQFP*3			
19	23	16	P16/UI	H	General purpose I/O port. This pin also functions as the data input pin of LIN-UART. General port input is hysteresis and resource input is CMOS.
20	25	17	P17/PPG	F	General purpose I/O port. This pin also functions as 12-bit PPG timer output. Hysteresis input.
23 to 26	32 to 35	21 to 24	$\begin{gathered} \text { P20/ANO } \\ \text { to } \\ \text { P23/AN3 } \end{gathered}$	G	General purpose I/O port. Shared for A/D converter analog input pin. Hysteresis input.
11	11	8	$\begin{aligned} & \text { P30/PWM/ } \\ & \text { TO1 } \end{aligned}$	F	General purpose I/O port. This pin also functions as the output pin of 8 -bit PWM and 8-/ 16-bit capture timer/counter 1. Hysteresis input.
12	15	9	P31	B	General purpose I/O port of CMOS type.
21	42	7	Vcc	-	Power supply pin.
8,22	8, 19, 43	6,43	Vss	-	Power supply pin (GND). Use the both pins at the same voltage level.
-	27	20	AVcc	-	A/D converter power supply pin. Apply potential under $\mathrm{V}_{\text {cc }}$ to this pin.
-	28	19	AVss	-	A/D converter power supply pin (GND). Use at the same voltage level as the Vss supply.
7	7	-	C	-	This is the power supply stabilization capacitor pin for MB89F217 and MB89P215. Connect an external capacitor of $0.1 \mu \mathrm{~F}$. MB89215 is not internally connected. It is unnecessary to connect a capacitor.
-	3 to 6, 12 to 14 , 24, 26, 29 to 31, 48	$\begin{gathered} 18, \\ 29 \text { to } \\ 42, \\ 44,45 \end{gathered}$	N.C.	-	Internal connect pin. Be sure this pin is left open.

*1 : FPT-30P-M02
*2 : FPT-48P-M13
*3 : MQP-48C-P02
*4 : MB89F217 is C.
*5 : MB89F217 and MB89P215 are C.

■ EXTERNAL EPROM PIN DESCRIPTION (MB89PV210 only)

Pin no.	Pin name	l/O	Function
49	Vpp	O	"H" level output pin.
50	A12		
51	A7		
52	A6		
53	A5		
54	A4	O	Address output pin.
55	A3		
58	A2		
59	A1		
60	A0		
61	O1		Data input pin.
62	O2	I	
63	O3		Power supply pin (GND).
64	Vss	O	
65	O4		Data input pin.
66	O5	I	
67	O6	O7	
68	O8		
69	O8		
70	CE	O	Chip acceptance pin for ROM.
71	A10	O	Address output pin.
73	OE	O	Output acceptance pin for ROM.
75	A11		
76	A9	Output "L" usually.	
77	A8	O	Address output pin.
78	A13		
79	A14		Power supply pin for EPROM.
80	Vcc	O	
56			Internal connect pin.
72	N.C.	-	Must be left open.
74			

MB89210 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillator feedback resistance : approx. $1 \mathrm{M} \Omega$
B	Do	- CMOS input
C	$\rightarrow 0$	- Hysteresis input
D_{1}	\bigcirc	- Open
D2		- With pull-down resistance : approx. $50 \mathrm{k} \Omega(5 \mathrm{~V})$ - Hysteresis input
E		- Output pull-up resistance (Pch) approx. $50 \mathrm{k} \Omega(5 \mathrm{~V})$ - Hysteresis input
F		- CMOS output - Hysteresis input - Selectable by pull-up resistor register

(Continued)

MB89210 Series

(Continued)

Type	Circuit	Remarks
G		- CMOS output - Hysteresis input - Analog input - Selectable by pull-up resistor register
H		- CMOS output - Hysteresis input - CMOS input - Selectable by pull-up resistor register

MB89210 Series

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input or output pins other than the medium-and high-voltage pins or if voltage higher than the rating is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog input from exceeding the digital power supply $\left(\mathrm{V}_{c c}\right)$ when the analog system power supply is turned on and off.

To supply power, turn on the digital power supply $\left(\mathrm{V}_{\mathrm{cc}}\right)$ and then the analog power supply ($\mathrm{A} \mathrm{V}_{\mathrm{cc}}$).

2. Treatment of Unused Input Pins

Leaving unused input teminals open may lead to permanent damage due to malfunction and latchup; pull up or pull down the terminals through the resistors of $2 \mathrm{k} \Omega$ or more.
Make the unused I/O terminal in a state of output and leave it open and if it is in an input state, handle it with the same procedure as the input terminals.

3. Treatment of N.C. Pins

Any pins marked " NC " (not connected) must be left open.

4. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important.As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$.

5. Treatment of power supply pin

All Vss power suppluy pin must be use at the same voltage level.
Connect to be AV cc $=\mathrm{V}_{\mathrm{cc}}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}$ even if the A / D converters are not in use in MB89PV210.

6. Notes on Using External Clock

When an external clock is used, oscillation stabilization time is required for even power-on reset and release from stop mode.

7. Notes on using the CR (internal) oscillator

To use the CR (internal) oscillator as the operating clock for the MB89215, MB89F217 or MB89P215, adjust the timer value and baud rate setting.

8. Program Execution in RAM

When the MB89PV210 is used with an emulation pod other than the MB2144-508, no program can be executed in RAM.

9. Operation check for evaluating the LIN-UART

When the MB89215, MB89F217 or MB89P215 uses the CR (internal) oscillator as the clock for the LIN-UART, the evaluation program (MB89PV210 [customized for external oscillation]) requires an operation check within a range of oscillation frequencies from 8.5 MHz to 11.5 MHz .

MB89210 Series

10. Handling reset pin

Reset pin must be inputted external reset.

11. Up/down conversion circuit stabilization waiting time

MB89210 series contains the following products and the operating characteristics vary with whether they contain the internal stepdown circuit.

Product name	Operating voltage *	Down conversion
MB89215	3.5 V to 5.5 V	not built-in
MB89F217	3.5 V to 5.5 V	built-in
MB89P215	3.5 V to 5.5 V	built-in
MB89PV210	3.5 V to 5.5 V	not built-in

*: The minimum operating voltage varies with the operating frequency, the function and the connected ICE.
The same built-in resources are used for the above product types; operating sequences after the power-on reset are different depending on whether they have the internal voltages step-down circuit.
The operating sequences after the power-on reset with the different models will be described below.

As described above, CPU starts at delayed time with the product having the internal voltage step-down circuit compared with the product not having the internal voltage step-down circuit. This is because the time should be allowed for the stabilization time for voltage step-down circuit for normal operation.
Note : As the period of the oscillation is unstable immediately after oscillation starts, the listed oscillation stabilization delay times are guides only.

12. Treatment of analog input

The analog input also serves as a general-purpose input/output port. The A/D enable register is initialized at a reset. When the intermediate-level signal is input in port input mode (ADEN:ADEx =0), an input leakage current flows to the gate. Set the corresponding pin to an analog input.

MB89210 Series

PROGRAMMING AND ERASING FLASH MEMORY ON THE MB89F217

1. Flash Memory

The flash memory is located between 8000 н and FFFFH in the CPU memory map and incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.

2. Flash Memory Features

- 32 K byte $\times 8$-bit configuration : ($16 \mathrm{~K}+8 \mathrm{~K}+8 \mathrm{~K}$ sectors)
- Automatic programming algorithm (Embedded algorithm* : Equivalent to MBM29LV200)
- Includes an erase pause and restart function
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- Sector Erasing (sectors can be combined in any combination)
- No. of program/erase cycles : 10,000 (Min)
* : Embedded Algorithm is a trademark of Advanced Micro Devices.

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory.

4. Flash Memory Register

- Control status register (FMCS)

Address 007Ан	bit7 bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial value$000 \times 00-0 \mathrm{~B}$
	INTE RDYINT	WE	RDY	Reserved	Reserved		Reserved	
	R/W R/W	R/W	R	R/W	R/W	-	R/W	

5. Sector Configuration

The table below shows the sector configuration of flash memory and lists the address of each sector for both during CPU access a flash memory programming.

- Sector configuration of flash memory

FLASH Memory	CPU Address	Programming Address*
16 K bytes	FFFFH to COOOH	1FFFFF to 1-000н
8 K bytes	$\mathrm{BFFF}_{\text {H }}$ to $\mathrm{A000}{ }_{\text {н }}$	1BFFFF to 1A000н
8 K bytes	9FFF\% to 8000н	19FFFF to 18000 ${ }_{\text {H }}$

*: The programmer address is the address to be used instead of the CPU address when programming data from a parallel flash memory programmer. Use the programmer address on programming or erasing using a generalpurpose parallel programmer.

MB89210 Series

6. ROM Writer Adapters and Recommended ROM Writers

Part number	Package name	Applicable adapter model		Recommended writer	
		Sunhayato Corp.	Ando Electric Co., Ltd.	MINATO ELECTRONICS INC.	
MB89F217PFM	FPT-48P-M13	FLASH-48QF2-32DP-8LF	AF9708*1 AF9709/09B*1	MODEL-1890A*2 Ver2.8 or more	

*1: For the writer version and type code, please check the device list in homepage of the Flash Support Group, Inc as follow ; http://www.j-fsg.co.jp/
*2 : In addition to this adaptor, the conversion basis is required
Conversion basis : H910-1148
Inquiries: Sunhayato Corp.
TEL : (81) -3-3984-7791
FAX : (81) -3-3971-0535
E-mail : adapter@sunhayato.co.jp
Flash Support Group, Inc FAX : (81) -53-428-8377
MINATO ELECTRONICS INC. TEL : (81) -45-591-5611
FAX : (81) -45-592-2854

MB89210 Series

■ PROGRAMMING TO OTPROM ON THE MB89P215

1. Memory space

2. Programming to the OTPROM

To program to the OTPROM using an EPROM programmer AF220/AF210/AF120/AF110 (manufacturer : Yokogawa Digital Computer Corp.).
Inquiry : Yokogawa Digital Computer Corp. : TEL(81)-42-333-6224
Note : Programming to the OTPROM with MB89P215 is serial programming mode only.

3. Programming Adaptor for OTPROM

To program to the OTPROM using an EPROM programmer AF220/AF210/AF120/AF110, use the programming adapter (manufacturer : Sunhayato Corp.) listed below.
Adaptor socket : ROM3-FPT30M02-8L3
Inquiry : Sunhayato Corp.: TEL : (81)-3-3984-7791
FAX : (81)-3-3971-0535
E-mail : adapter@sunhayato.co.jp

4. Programming yields

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.

MB89210 Series

EPROM WRITING TO PIGGY-BACK/EVALUATION CHIPS

1. EPROM model

MBM27C256A-20TVM
2. Writer adapter

For writing to EPROM using a ROM writer, use one of the writer adapters shown below (manufactured by Sunhayato).

Package	Adapter socket model
LCC-32	ROM-32LC-28DP-S

Inquiries should be addressed to Sunhayato Corp. : TEL : (81)-3-3984-7791
FAX : (81)-3-3971-0535
E-mail : adapter@sunhayato.co.jp

3. Memory space

Shown below the memory space in each mode.
\square

4. Writing to EPROM

(1) Set up the EPROM writer for the MBM27C256A.
(2) Load program data on to the EPROM programmer at 0000н to 7FFFн.
(3) Program 0000 to 7 7FFF with the EPROM programmer.

MB89210 Series

BLOCK DIAGRAM

MB89210 Series

- CPU CORE

1. Memory space

The MB89210 series has 64 KB of memory space, containing all I/O, data areas, and program areas. The I/O area is located at the lowest addresses, with the data area placed immediately above. The data area can be partitioned into register areas, stack areas, or direct access areas depending on the application. The program area is located at the opposite end of memory, closest to the highest addresses, and the highest part of this area is assigned to the tables of interrupt and reset vectors and vector call instructions. The following diagram shows the structure of memory space in the MB89210 series.

MB89210 Series

2. Register

The MB89210 series has two types of registers; the registers dedicated to specific purposes in the CPU and the general-purpose registers. The dedicated registers are as follows:

Program counter (PC) : 16-bit length, shows the locations where instructions are stored.
Accumulator (A) : 16-bit length, a temporary memory register for calculation operations. In the case of an 8 -bit data processing instruction, the lower one byte is used.
Temporary accumulator (T) : 16-bit length, performs calculations with the accumulator. In the case of an 8 -bit data processing instruction, the lower one byte is used.
Index register (IX) : 16-bit length, a register for index modification.
Extra pointer (EP) : 16-bit length, apointer indicating memory addresses.
Stack pointer (SP) : 16-bit length, indicates stack areas.
Program status (PS) : 16-bit length, contains register pointer and condition code.

16 bits		: Program counter	Initial value FFFD
PC			
A		: Accumulator	Indeterminate
T		: Temporary accumulator	Indeterminate
IX		: Index register	Indeterminate
EP		: Extra pointer	Indeterminate
SP		: Stack pointer	Indeterminate
RP	CCR	: Program status	I-flag $=0, \mathrm{LL} 1,0=11$
PS			Initial values for other bits are indeterminate.

MB89210 Series

The PS register can further be divided into the register bank pointer in the higher 8 bits (RP) and the condition code register in the lower 8 bits (CCR). (See the diagram below.)

X: Undefined

MB89210 Series

The RP points to the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule shown next.

Rule for Conversion of Actual Addresses in the General-purpose Register Area

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at the time of an interrupt.

H flag : Set to 1 if calculations result in carry operations from bit 3 to bit 4 or borrow operations from bit 4 to bit 3, otherwise set to 0 .
The flag is for decimal adjustment instructions; do not use for other than additions and subtractions. . This flag is set to 1 if interrupts are enabled, and 0 if interrupts are prohibited. The default value at
I flag: reset is 0 .
IL1, 0 : Indicates the level of the interrupt currently enabled.
An interrupt is processed only if its level is higher than the value this bit indicates.

IL1	ILO	Interrupt level	High-low
0	0	1	Higher
0	1		
1	0		
1	1	3	

N flag : Set to 1 if the highest bit is 1 after a calculation, otherwise cleared to 0 .
Z flag : Set to 1 if a calculation result is 0 , otherwise cleared to 0 .
V flag : Set to 1 if a 2's complement overflow results during a calculation, otherwise cleared to 0 .
C flag : Set to 1 if a calculation results in a carry or borrow operation from bit 7 , otherwise cleared to 0 . This is also the shift-out value in a shift instruction.

MB89210 Series

The following general-purpose registers are provided:

General-purpose registers: 8-bit length, data storage registers

The general-purpose registers are 8 bits in length and located in the register banks in the memory. One bank contains eight registers and the MB89210 series allow a total of 16 banks to be used at maximum.

The bank currently in use is indicated by the register bank pointer (RP).

MB89210 Series

- I/O MAP

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	XXXXXXXX
0001н	DDR0	Port 0 direction register	R/W	00000000
$\begin{gathered} \text { 0002н to } \\ 0006 \mathrm{H} \end{gathered}$	Access prohibited			
0007н	SYCC	System clock control register	R/W	1--11100
0008н	STBC	Standby control register	R/W	$00010--$
0009н	WDTC	Watchdog timer control register	W	$0---X X X X$
000Ан	TBTC	Time base timer control register	R/W	00---000
000Вн	Access prohibited			
$000 \mathrm{CH}^{\text {¢ }}$	PDR1	Port 1 data register	R/W	XXXXXXXX
000D	DDR1	Port 1 direction register	R/W	00000000
000Ен	RSFR	Reset flag register	R	XXXX----
000Fн	PDR2	Port 2 data register	R/W	----XXXX
0010н	DDR2	Port 2 direction register	R/W	----0000
0011н	Access prohibited			
0012н	PDR3	Port 3 data register	R/W	------XX
0013н	DDR3	Port 3 direction register	R/W	-------0
0014н	RCR21	12-bit PPG control register 1	R/W	0000000
0015 ${ }^{\text {H }}$	RCR22	12-bit PPG control register 2	R/W	$--000000$
0016н	RCR23	12-bit PPG control register 3	R/W	0-000000
0017н	RCR24	12-bit PPG control register 4	R/W	--000000
0018н	Access prohibited			
0019н	TCCR0	Capture control register 0	R/W	00000000
001Ан	TCR10	Timer 1 control register 0	R/W	000-0000
001B	TCR00	Timer 0 control register 0	R/W	00000000
001 CH	TDR10	Timer 1 Data 0	R/W	XXXXXXXX
001D	TDR00	Timer 0 Data 0	R/W	XXXXXXXX
001Ен	TCPH0	Capture data register H 0	R	XXXXXXXX
001F	TCPL0	Capture data register L 0	R	XXXXXXXX
0020н	TCR20	Timer output control 0	R/W	------00
0021н	Access prohibited			
0022н	CNTR	PWM control register	R/W	$0-000000$
0023н	COMR	PWM Compare register	W	XXXXXXXX
0024н	EIC1	External interrupt control register 1 (edge)	R/W	00000000
0025н	EIC2	External interrupt control register 2 (edge)	R/W	00000000

(Continued)

MB89210 Series

Address	Register name	Register description	Read/write	Initial value
0026н	Access prohibited			
0027				
0028н	SCR	Serial control register	R/W	00000000
0029н	USMR	LIN-UART serial mode register	R/W	00000000
002Ан	SSR	Serial status register	R/W	00001000
002Вн	RDR	Recieving data register	R	0000000
	TDR	Sending data register	W	11111111
002C ${ }_{\text {H }}$	ESCR	Extended status control register	R/W	00000×00
002D	ECCR	Extended communication control register	R/W	00000-11
002Ен	BGRH	Baud rate generator register H	R/W	-0000000
002Fн	BGRL	Baud rate generator register L	R/W	00000000
0030н	ADC1	A/D control register 1	R/W	00000000
0031н	ADC2	A/D control register 2	R/W	00000001
0032н	ADDH	A/D data register H	R/W	000000 XX
0033н	ADDL	A/D data register L	R/W	XXXXXXXX
0034н	ADEN	A/D enable register	R/W	00000000
$\begin{aligned} & \hline 0035 \mathrm{H} \text { to } \\ & 0038 \mathrm{H} \end{aligned}$	Access prohibited			
0039н	SMR	Serial mode register	R/W	00000000
003Ан	SDR	Serial Data register	R/W	XXXXXXXX
$\begin{gathered} \hline 003 \mathrm{Bн} \text { to } \\ 0040 \mathrm{H} \end{gathered}$	Access prohibited			
0041н	TCCR1	Capture control register 1	R/W	00000000
0042н	TCR11	Timer 1 control register 1	R/W	000-0000
0043н	TCR01	Timer 0 control register 1	R/W	00000000
0044н	TDR11	Timer 1 Data register 1	R/W	XXXXXXXX
0045н	TDR01	Timer 0 Data register 1	R/W	XXXXXXXX
0046н	TCPH1	Capture status register H1	R	XXXXXXXX
0047н	TCPL1	Capture status register L1	R	XXXXXXXX
0048н	TCR21	Timer output control register 1	R/W	------00
0049н	TCSL	Capture input select register	R/W	-------0
$\begin{aligned} & 004 \mathrm{AH}_{\mathrm{H}} \text { to } \\ & 005 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Access prohibited			
0060н	XCRS*	External/CR(built-in)oscillation clock control register	R/W	00-00010
$\begin{aligned} & \text { 0061н to } \\ & 006 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Access prohibited			

(Continued)

MB89210 Series

(Continued)

Address	Register name	Register description	Read/write	Initial value
0070н	PULO	Port 0 pull-up setting register	R/W	00000000
0071н	PUL1	Port 1 pull-up setting register	R/W	00000000
0072н	PUL2	Port 2 pull-up setting register	R/W	----0000
0073н	PUL3	Port 3 pull-up setting register	R/W	-------0
$\begin{gathered} \hline 0074 \mathrm{H} \text { to } \\ 0079 \mathrm{H} \end{gathered}$	Access prohibited			
007Ан	FMCS	Flash memory control status register	R/W	000000-0
007Вн	ILR1	Interrupt level setting register 1	W	11111111
$007 \mathrm{CH}_{\mathrm{H}}$	ILR2	Interrupt level setting register 2	W	11111111
007D	ILR3	Interrupt level setting register 3	W	11111111
007Ен	ILR4	Interrupt level setting register 3	W	11111111
007F	Access prohibited			

* : Only for MB89215, MB89F217, MB89P215

Description of write/read symbols :
R/W : Read/write enabled
R : Read only
W : Write only
Description of initial values
0 : This bit initialized to "0".
1 : This bit initialized to " 1 ".
X : The initial value of this bit is undefined.

- : This bit is not defined.

Note : If a bit manipulation instruction accesses the serial mode register (SMR), a write-only register, or a register containing a write-only bit, the bit focused on by the instruction is set to a prescribed value but a malfunction occurs when the other bits contains a write-only bit. Do not use bit manipulation instructions to access such registers.

MB89210 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	Vss - 0.3	Vss +6.0	V	
Input voltage	V_{1}	Vss -0.3	$\mathrm{Vcc}+0.3$	V	*2
Output voltage	Vo	Vss -0.3	V ss +6.0	V	
Maximum clamp current	Iclamp	-0.4	+ 0.4	mA	*1
Maximum clamp total current	$\Sigma \mid$ Iclamp \|	-	10	mA	*1
"L" level output current	loL	-	10	mA	
"L" level average current	lolav	-	4	mA	Average value (operating current \times operating duty)
"L" level total output current	Elo	-	50	mA	
"H" level output current	Іон	-	- 10	mA	
"H" level average current	lohav	-	-4	mA	Average value (operating current \times operating duty)
"H" level total output current	Гloн	-	- 50	mA	
Power consumption	Pd	-	200	mW	MB89215, MB89P215
		-	300	mW	MB89F217
Storage temperature	Tstg	- 55	+ 150	${ }^{\circ} \mathrm{C}$	

*1 : • Applicable to pins: P00 to P07, P10 to P17, P20 to P23, P30 to P31

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a $+B$ signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
(Continued)

MB89210 Series

(Continued)

- Sample recommended circuits :
- Input/Output Equivalent circuits

*2 : If the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V I rating.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89210 Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	3.5	5.5	V	Normal Operation Assurance Range
		3.0	5.5	V	RAM status in stop mode
Input "H" voltage	V_{H}	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	P31,UI
	Viнs	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	MODA, MOD0, MOD1, $\overline{R S T}$, P00 to P07, P10 to P17, P20 to P23, P30, INT0 to INT2, EC0, EC1, SCK, SI, UCK
Input "L" voltage	VIL	Vss - 0.3	0.3 Vcc	V	P31,UI
	Vıss	Vss - 0.3	0.2 Vcc	V	MODA, MOD0, MOD1, $\overline{R S T}$, P00 to P07, P10 to P17, P20 to P23, P30, INT0 to INT2, EC0, EC1, SCK, SI, UCK
Operating temperature	Ta	-40	+ 105	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89210 Series

3. DC Characteristics

(Vcc =5.0 V $\pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{ch}}=10 \mathrm{MHz}$ (external clock), $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name		Condition	Value			Unit	Remarks	
				Min	Typ	Max				
"H" level input voltage	V ${ }_{\text {H }}$	P31,UI			-	0.7 Vcc	-	V cc +0.3	V	
	Vıнs	MODA, MOD0, MOD1, RST, P00 to P07, P10 to P17,P20 to P23, P30, INT0 to INT2, EC0, EC1, SCK, SI, UCK		-	0.8 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V		
	VIL	P31,UI		-	Vss -0.3	-	0.3 Vcc	V		
"L" level input voltage	Vıs	MODA, MOD0, MOD1, RST, P00 to P07, P10 to P17,P20 to P23, P30, INT0 to INT2, EC0, EC1, SCK, SI, UCK		-	Vss-0.3	-	0.2 Vcc	V		
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 to P07, P10 to P17, } \\ & \text { P20 to P23, P30 } \end{aligned}$		$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V		
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P23, P30, RST		$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V		
Input leak current	l L	P00 to P07, P10 to P17, P20 to P23, P30, P31, MODA, MOD0, MOD1		$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{c c}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistance specified	
Pullup resistance	Rpull	P00 to P07,P10 to P17, P20 to P23, P30, RST		$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$		
Power supply current	Icc	Vcc	At normal operating (External clock, Max gear speed)	When A/D convereter stops	-	8	12	mA	MB89215	
					-	6	10	mA	MB89F217	
					-	6	9	mA	MB89P215	
				When A/D convereter starts	-	11	15	mA	MB89215	
					-	8	13	mA	MB89F217	
					-	8	12	mA	MB89P215	
	Iccs		at sleep mode (External clock, Max gear speed)	When A/D convereter stops	-	4	6	mA	MB89215	
					-	3	5	mA	$\begin{aligned} & \text { MB89F217, } \\ & \text { MB89P215 } \end{aligned}$	
	Ic ch		At stop mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$ (External clock)	When A/D convereter stops	-	-	1	$\mu \mathrm{A}$	MB89215	
					-	-	10	$\mu \mathrm{A}$	MB89F217, MB89P215	
Input capacitance	Cin	Other than Vcc and Vss		-	-	5	15	pF	$\begin{array}{\|l\|} \hline \text { MB89F217, } \\ \text { MB89P215 } \end{array}$	

MB89210 Series

4. AC Characteristics

(1) Reset Timing

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
$\overline{\text { RST "L" level pulse width }}$	tzzzH	-	48 thcy̌		-	ns

*: thcyl : Oscillation clock one cycle time

(2) Power-on reset

(Vss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+105^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Condition	Value		Remarks			
			Min	Max				
Power on time	tr	-	-	50	ms			
Power shutoff time	toff	-	1	-	ms	For repeated operation		

Note : The supply voltage must be set to minimum value required for operation within the prescribed default oscillation setting time.

MB89210 Series

(3) Clock Timing

$$
\left(\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Clock frequency	Fch-1	Crystal or ceramic oscillation	1	12.5	MHz	
Clock cycle time	txcyL		80	1000	ns	
Input clock pulse width	$\begin{aligned} & \text { twh } \\ & \text { twL } \end{aligned}$		20	-	ns	
Input clock rise, fall time	$\begin{aligned} & \hline \text { tcR } \\ & \text { tcF } \end{aligned}$		-	10	ns	
Oscillation frequency	Fch-2	CR(built-in) oscillator	8.5	11.5	MHz	

- X0 and X1 Timing and application Conditions

X0

- Clock application Conditions

Using crystal oscillator
or
ceramic oscillator

(4) Instruction Cycle

$$
\left(\mathrm{V} \text { ss }=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (instruction execution time)	tinst	$4 / \mathrm{F}_{\mathrm{CH}}, 8 / \mathrm{F}_{\mathrm{CH}}$, $16 / \mathrm{F}_{\mathrm{CH}}, 64 / \mathrm{F}_{\mathrm{CH}}$	$\mu \mathrm{s}$	When operating at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$ tinst $=0.4 \mu \mathrm{~s}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$

$\mathrm{F}_{\text {сн }}$: Oscillation frequency (Operating clock frequency after switching between external and CR (internal) oscillator clocks)

MB89210 Series

(5) Recommended Resonator Manufactures

- Sample application of ceramic resonator

Resonator manufacture	Resonator	Frequency (MHz)	\mathbf{C}_{1}	\mathbf{C}_{2}	\mathbf{R}
Murata Mfg. Co., Ltd.	CSTLS4M00G56-B0	4.00	built-in	built-in	680Ω
	CSTCR4M00G55-R0	4.00	built-in	built-in	680Ω
	CSTLS8M00G53-B0	8.00	built-in	built-in	-
	CSTCC8M00G53-R0	8.00	built-in	built-in	-
	CSTLS10M0G53-B0	10.00	built-in	built-in	-
	CSTCC10M00G53-R0	10.00	built-in	built-in	-

Inquiry: • Murata Electronics North America Inc : TEL +1-404-436-1300

- Murata Europe Management GmbH : TEL +49-911-66870
- Murata Electronics Singapore (p/e) : TEL +65-758-4233

MB89210 Series

(6) Peripheral Input Timing

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min	Max		
Peripheral input "H" pulse width	tııн	INTO to INT2, EC0, EC1	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width	tiHL		2 tinst*	-	$\mu \mathrm{s}$	

*: For tinst see " (4) Instruction Cycle".

INTO to INT2, EC0 to EC1

MB89210 Series

(7) Serial I/O Timing

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	SCK	Internal clock operation	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivs	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	SCK	External clock operation	tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tslsh	SCK		tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	SCK, SI		0.5 tinst*	-	$\mu \mathrm{s}$	

*: For tinst see " (4) Instruction Cycle".

- Internal shift clock mode

- External shift clock mode

MB89210 Series

(8) LIN-UART timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	UCK	Internal clock operation	2 tinst*	-	$\mu \mathrm{s}$	
UCK $\downarrow \rightarrow$ U time	tslov	UCK, UO		-200	200	ns	
Valid UI \rightarrow UCK \uparrow	tivsh	UCK, UI		0.5 tinst*	-	$\mu \mathrm{s}$	
UCK $\uparrow \rightarrow$ Valid UI hold time	tshix	UCK, UI		0	-	$\mu \mathrm{S}$	
UCK $\downarrow \rightarrow$ UO time	tstov	UCK, UO		-200	200	ns	SCDE $=1$
UCK (delay) $\downarrow \rightarrow$ UO time	tsclk	UCK (delay), UO		-0.5 tinst*	-	$\mu \mathrm{s}$	SCDE $=1$
UCK $\downarrow \rightarrow$ UCK (delay) \downarrow	tsdel	$\begin{aligned} & \text { UCK, UCK (de- } \\ & \text { lay) } \end{aligned}$		0.5 tinst*	-	$\mu \mathrm{S}$	SCDE $=1$
Serial clock "H" pulse width	tshsL	UCK	External clock operation	1.5 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh	UCK		1.5 tinst*	-	$\mu \mathrm{s}$	
UCK $\downarrow \rightarrow$ U ${ }^{\text {dime }}$	tslov	UCK, UO		tinst*	-	$\mu \mathrm{s}$	
Valid UI \rightarrow UCK \uparrow	tivs	UCK, UI		0	-	$\mu \mathrm{s}$	
UCK $\uparrow \rightarrow$ Valid UI hold time	tshix	UCK, UI		0.5 tinst*	-	$\mu \mathrm{s}$	

*: For tinst see " (4) Instruction Cycle".

- Internal shift clock mode

- External shift clock mode

MB89210 Series

5. A/D Converter

(1) A / D converter electrical characteristics

$$
\left(\mathrm{V} \text { cc }=5.0 \mathrm{~V}+10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	-	-	-	10	bit	
Total error		- 5.0	-	+ 5.0	LSB	
Linearity error		-3.0	-	+ 3.0	LSB	
Differential linear error		-2.5	-	+ 2.5	LSB	
Zero transition voltage	Vot	Vss - 3.5 LSB	Vss +0.5 LSB	Vss +4.5 LSB	V	
Full-scale transition voltage	Vfst	Vcc - 6.5 LSB	Vcc-1.5 LSB	Vcc + 2.0 LSB	V	
A/D mode conversion time	-	-	-	38 tinst*	$\mu \mathrm{s}$	
Analog input current	IAIN	-	-	10	$\mu \mathrm{A}$	
Analog input voltage range	-	0	-	Vcc	V	

*: For tinst see " (4) Instruction Cycle" in "4. AC Characteristics".

MB89210 Series

(2) Definition of A/D Converter Terms

- Resolution

The level of analog variation that can be distinguished by the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linear error (Unit : LSB)

The deviation between the value along a straight line connecting the zero transition point("00 0000 0000 " \longleftrightarrow "00 00000001 ") of a device and the full-scale transition point ("11 11111111 " \leftarrow " 1111111110 "), compared with the actual conversion values obtained.

- Differential linear error (Unit : LSB)

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

- Total error (Unit : LSB)

The difference between theoretical conversion value and actual conversion value.

(Continued)

MB89210 Series

(Continued)

MB89210 Series

(3) Precautionary Information of A/D conversion

- Input Impedance of Analog Input Pins

The A/D converter has a sample \& hold circuit as shown below, which uses a sample-and-hold capacitor to obtain the voltage at the analog input pin for 16 instruction cycles following the start of A / D conversion. For this reason if the external circuits providing the analog input signal have high output impedance, the analog input voltage may not stabilize within the analog input sampling time. It is therefore recommended that the output impedance of external circuits be reduced to $4 \mathrm{k} \Omega$ or less.

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

Analog input equivalent circuit

MB89215 $\quad \mathrm{R}=$ approx. $2.2 \mathrm{k} \Omega, \quad \mathrm{C}=$ approx. 45 pF
MB89F217, MB89P215 R = approx. $2.6 \mathrm{k} \Omega, \mathrm{C}=$ approx. 28 pF

- About errors

The smaller the absolute value $\mid \mathrm{V}$ cc $-\mathrm{Vss} \mid$ is, the greater the relative error becomes.

MB89210 Series

6. Electrical Characteristics of Flash Memory

- Programming and erasing characteristics

Parameter			Symbol	Pin Name	Condition	Value			Unit	Remarks	
			Min			Typ	Max				
Power supply current *1				Ifwe	Vcc	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}$	-	-	40	mA	
Sector erase time	Per 1 sector, constant value independent with sector capacitance	Successful completion time	-	-	-	-	1	15	s		
		Unsuccessful completion time	-	-	-	-	-	*2	-		
Programming time	Per 1 byte	Successful completion time	-	-	-	-	8	3600	$\mu \mathrm{s}$		
		Unsuccessful completion time	-	-	-	-	650	3600	$\mu \mathrm{s}$		

*1: Embedded Algorithm executing.
*2 : If a fault occurs during sector erasing, detection via DQ_{5} may not be available ($\mathrm{DQ}_{5}=1$ may not occur). Accordingly, a fault must be assumed after 15 s , even if DQ5 does not go to " 1 ".

MB89210 Series

EXAMPLE CHARACTERISTICS

(1) Power Supply Current

MB89215
External clock
At sleep (gear 4-frequency division)

MB89215
CR (internal) oscillator
At normal operation (gear 4-frequency division)

MB89215 External clock
At normal operation (gear 64-frequency division)

MB89215
External clock
At sleep (gear 64-frequency division)

MB89215
At stop (Icch - Vcc)

(Continued)

MB89210 Series

(Continued)

MB89215
CR (internal) oscillator
At normal operation (gear 64-frequency division)

MB89215
CR (internal) oscillator At sleep (gear 4-frequency division)

MB89F217
At stop (Icch - Vcc)

MB89P215
At stop (Іcch - Vcc)

(2) Frequency Characteristics

MB89215
CR (internal) oscillator

MB89P215
CR (internal) oscillator

(3) AD Converter Characteristics Example

MB89215
Nonlinearity error

MB89215
Differential linearity error
$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{CH}}=10 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$

MB89215
Total error
$\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{CH}}=10 \mathrm{MHz}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$

MB89210 Series

MASK OPTIONS

No	Part number	MB89215	MB89F217	MB89P215	MB89PV210
	Specifying procedure	Setting disallowed			
1	Initial value* selection of internal clock oscillation stabilization wait time (at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}$) - 01 : $2^{14 /} / \mathrm{F}_{\text {сн }}$ (Approx. 1.63 ms) - $10: 2^{17} / \mathrm{Fcн}$ (Approx. 13.1 ms) - 11 : $2^{18} / \mathrm{Fch}_{\text {с }}$ (Approx. 26.2 ms)	218/Fch (Approx. 26.2 ms)			
2	Power-on reset - Power-on reset ON - Power-on reset OFF	Yes			
3	Reset pin output - Reset output ON - Reset output OFF	Yes			

Fch : Base oscillator

* : Initial value to which the oscillation setting time bit (sync : WT1, WT0) in the system clock control register is set.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89215PFV	30-pin Plastic SSOP (FPT-30P-M02)	
MB89P215PFV	48-pin Plastic QFP (FPT-48P-M13)	
MB89215PFM	MB89F217PFM	48-pin Ceramic MQFP (MQP-48C-P02)
MB89PV210CF		

MB89210 Series

PACKAGE DIMENSIONS

30-pin Plastic SSOP (FPT-30P-M02)

Note 1) *1: Resin protrusion. (Each side +0.15 (.006) Max) .
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness.
Note 4) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMTED F30003S.C-3•4
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

MB89210 Series

48-pin plastic QFP
 (FPT-48P-M13)

Note 1) *: These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMTED F48023S-C-3.4
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

MB89210 Series

(Continued)
48-pin Ceramic MQFP (MQP-48C-P02)

© 2003 FUJTSU LIMTED M48002SC-1-1
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

MB89210 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

