8-bit Proprietary Microcontroller CMOS
 F²MC-8L MB89490 Series

MB89498/F499/PV490

- DESCRIPTION

The MB89490 series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{\star}-8 \mathrm{~L}$ family consisting of proprietary 8 -bit single-chip microcontrollers.
In addition to a compact instruction set, the general-purpose, single-chip microcontroller contains a variety of peripheral functions such as 21 -bit timebase timer, watch prescaler, PWM timer, 8/16-bit timer/counter, remote receiver circuit, LCD controller/driver, external interrupt 0 (edge) , external interrupt 1 (level), 10-bit A/D converter, UART/SIO, SIO, $I^{2} \mathrm{C}$ and watchdog timer reset.
The MB89490 series is designed suitable for compact disc/radio receiver controller as well as in a wide range of applications for consumer product.

* : $F^{2} M C$ is the abbreviation for Fujitsu Flexible Microcontroller.

FEATURES

- Package

QFP, LQFP package for MB89F499, MB89498
MQFP package for MB89PV490
(Continued)

For the information for microcontroller supports, see the following web site.
http://edevice.fujitsu.com/micom/en-support/

MB89490 Series

(Continued)

- High speed operating capability at low voltage
- Minimum execution time : $0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$
- $\mathrm{F}^{2} \mathrm{MC}$-8L family CPU core

- PLL circuit for sub-clock
- Embedded for PLL clock multiplication circuit for sub-clock
- Operating clock (PLL for sub-clock) can be selected from no multiplication or 4 times of the sub-clock oscillation frequency.
- 6 timers

PWM timer $\times 2$
8/16-bit timer/counter $\times 2$
21-bit timebase timer
Watch prescaler

- External interrupt

Edge detection (selectable edge) : 8 channels
Low level interrupt (wake-up function) : 8 channels

- 10-bit A/D converter (8 channels)

10-bit successive approximation type

- UART/SIO

Synchronous/asynchronous data transfer capability

- SIO

Switching of synchronous data transfer capability

- LCD controller/driver

Max 32 segments output $\times 4$ commons

- ${ }^{2} \mathrm{C}$ interface circuit
- Remote receiver circuit
- Low-power consumption mode

Stop mode (oscillation stops so as to minimize the current consumption.)
Sleep mode (CPU stops so as to reduce the current consumption to approx. $1 / 3$ of normal.)
Watch mode (operation except the watch prescaler stops so as to reduce the power comsumption to an extremely low level.)
Sub-clock mode

- Watchdog timer reset
- I/O ports : Max 66 channels

MB89490 Series

PRODUCT LINEUP

Part number Parameter	MB89498	MB89F499	MB89PV490
Classification	Mass production products (mask ROM product)	FLASH	Piggy-back (For evaluation or development)
ROM size	$48 \mathrm{~K} \times 8 \text {-bit }$ (internal ROM)	$\begin{gathered} 60 \mathrm{~K} \times 8 \text {-bit } \\ \text { (internal FLASH) } \end{gathered}$	$\begin{gathered} 60 \mathrm{~K} \times 8 \text {-bit } \\ \text { (external ROM) * } \end{gathered}$
RAM size	$2 \mathrm{~K} \times 8$-bit	$2 \mathrm{~K} \times 8$-bit	$2 \mathrm{~K} \times 8$-bit
CPU functions	Number of instructions Instruction bit length Instruction length Data bit length Minimum instruction execution time Minimum interrupt processing time	: 136 8-bit 1 to 3 bytes 1-bit, 8-bit, 16-bit $0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$: $2.88 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$	
Ports	General-purpose I/O ports (CMOS) Input ports (CMOS) N -channel open drain I/O ports Total	: 56 pins : 2 pins : 8 pins 66 pins	
21-bit timebase timer	Interrupt generation cycle ($0.66 \mathrm{~ms}, 2.6 \mathrm{~ms}, 21.0 \mathrm{~ms}, 335.5 \mathrm{~ms}$) at 12.5 MHz		
Watchdog timer	Reset generation cycle (167.8 ms to 335.5 ms) at 12.5 MHz		
PWM timer 0, 1	8 -bit reload timer operation (supports square wave output and operating clock period 1 tinst, 8 tinst, 16 tinst, 64 tinst) 8-bit accuracy PWM operation		
8/16-bit timer/counter 00, 01	Can be operated either as a 2-channel 8-bit timer/counter (timer 00 and timer 01, each with its own independent operating clock), or as one 16-bit timer/counter. In timer 00 or 16-bit timer/counter operation, event counter operation by external clock input and square wave output capability		
8/16-bit timer/counter 10, 11	Can be operated either as a 2-channel 8-bit timer/counter (timer 10 and timer 11, each with its own independent operating clock) , or as one 16-bit timer/counter. In timer 10-bit or 16-bit timer/counter operation, event counter operation by external clock input and square wave output capability		
External interrupt 0 (edge)	8 independent channels (selectable edge, interrupt vector, request flag)		
External interrupt 1 (level)	8 channels (low level interrupt)		
A/D converter	10-bit accuracy $\times 8$ channels A/D conversion function (conversion time : 30 tinst) Supports repeated activation by internal clock		
LCD controller/driver	Common output $: 4(\mathrm{Max})$ Segment output $: 32(\mathrm{Max})$ LCD driving power (bias) pins $: 3$ LCD display RAM size $: 32 \times 4$ bits		

(Continued)

MB89490 Series

(Continued)

Part number Parameter	MB89498	MB89F499	MB89PV490
UART/SIO	Synchronous/asynchronous data transfer capability (Max baud rate : 97.656 Kbps at 12.5 MHz) (7-bit and 8 -bit with parity bit; 8 -bit and 9 -bit without parity bit)		
SIO	8 -bit serial I/O with LSB first/MSB first selectability 1 clock selectable from 4 operation clock (1 external shift clock and 3 internal shift clock : $0.64 \mu \mathrm{~s}, 2.56 \mu \mathrm{~s}, 10.24 \mu \mathrm{~s}$ at 12.5 MHz)		
${ }^{12} \mathrm{C}$	1 channel (Use a 2-wire protocol to communicate with other device)		
Remote receiver circuit	Selectable maximum noise width removal Reversible input polarity		
Standby mode	Sleep mode, stop mode, watch mode and sub-clock mode		
Process	CMOS		
Operating voltage	2.2 V to 3.6 V	2.7 V to 3.6 V	2.7 V to 3.6 V

*: Use MBM27C512 as the external ROM.

MB89490 Series

PACKAGE AND CORRESPONDING PRODUCTS

Parameter	MB89498	MB89F499	MB89PV490
FPT-100P-M06	O	O	\times
FPT-100P-M20	O	O	\times
MQP-100C-P01	\times	\times	O

O : Availabe
x : Not available

- DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggy-back product, verify its differences from the product that will be actually used. Take particular care on the following point : The stack area is set at the upper limit of the RAM.

2. Current Consumption

- For the MB89PV490, add the current consumed by the EPROM mounted in the piggy-back socket.
- When operating at low speed, the current consumed by the FLASH product is greater than that for the mask ROM product. However, the current consumption is roughly the same in sleep and stop mode.
- For more information, see "■ ELECTRICAL CHARACTERISTICS".

3. Oscillation Stabilization Wait Time after Power-on Reset

- For MB89PV490 and MB89F499, the power-on stabilization wait time cannot be selected after power-on reset.
- For MB89498, the power-on stabilization wait time can be selected after power-on reset.
- For more information, please refer to "■ MASK OPTIONS".

MB89490 Series

PIN ASSIGNMENTS

(FPT-100P-M06)

* : High current pins
(Continued)

MB89490 Series

(TOP VIEW)

(FPT-100P-M20)

* : High current pins

MB89490 Series

(Continued)

* : High current pins
(MQP-100C-P01)
Pin assignment on package top (MB89PV490 only)

Pin no.	Pin name								
101	N.C.	108	A3	115	O3	122	O8	129	A8
102	A15	109	A2	116	Vss	123	$\overline{\mathrm{CE}}$	130	A13
103	A12	110	A1	117	N.C.	124	A10	131	A14
104	A7	111	A0	118	O4	125	$\overline{\text { OE }}$	132	Vcc
105	A6	112	N.C.	119	O5	126	N.C.		
106	A5	113	O1	120	O6	127	A11		
107	A4	114	O2	121	O7	128	A9		

N.C. : As connected internally, do not use.

MB89490 Series

- PIN DESCRIPTION

Pin number		Pin name	I/O circuit type	Function
$\begin{gathered} \text { MQFP }^{* 1} \\ \text { QFP }^{* 2} \end{gathered}$	LQFP*3			
99	96	X0	A	Connection pins for a crystal or other oscillator circuit. An external clock can be connected to X0. In this case, leave X1 open.
98	95	X1		
49	46	X0A	A	Connection pins for a crystal or other oscillator circuit. An external clock can be connected to XOA. In this case, leave X1A open.
48	45	X1A		
97	94	MODO	B	Input pin for setting the memory access mode. Connect directly to Vss.
95, 94	92, 91	P84, P83	J	General-purpose CMOS input port.
96	93	$\overline{\mathrm{RST}}$	C	Reset I/O pin. The pin is an N-ch open-drain type with pull-up resistor and hysteresis input. The pin outputs an "L" level when an internal reset request is present. Inputting an " L " level initializes internal circuits.
2 to 9	99 to 6	P00 to P07	D	General-purpose CMOS I/O port.
10 to 17	7 to 14	P10/INT00 to P17/INT07	E	General-purpose CMOS I/O port. The pin is shared with external interrupt 0 input.
18	15	P20/TO0	F	General-purpose CMOS I/O port. The pin is shared with 8/16-bit timer/counter 00 and 01 output.
19	16	P21/RMC	E	General-purpose CMOS I/O port. The pin is shared with remote receiver input.
20	17	P22/EC0	E	General-purpose CMOS I/O port. The pin is shared with $8 / 16$-bit timer/counter 00 and 01 input.
21	18	P23	F	General-purpose CMOS I/O port.
22	19	P24/TO1	F	General-purpose CMOS I/O port. The pin is shared with 8/16-bit timer/counter 10 and 11 output.
23	20	P25/EC1	E	General-purpose CMOS I/O port. The pin is shared with 8/16-bit timer/counter 10 and 11 input.
24	21	P26/PWM0	F	General-purpose CMOS I/O port. The pin is shared with PWM0 output.
25	22	P27/PWM1	F	General-purpose CMOS I/O port. The pin is shared with PWM1 output.
32 to 39	29 to 36	P30/ANO/INT10 to P37/AN7/INT17	G	General-purpose CMOS I/O port. The pin is shared with external interrupt 1 input and A/D converter input.
40 to 45	37 to 42	P40 to P45	H	General-purpose N-ch open-drain I/O port.
46	43	P46/SCL	H	General-purpose N-ch open-drain I/O port. The pin is shared with $I^{2} \mathrm{C}$ clock I / O.

(Continued)

MB89490 Series

(Continued)

Pin number		Pin name	I/O circuit type	Function
$\begin{gathered} \text { MQFP }^{\star 1} \\ \text { QFP }^{* 2} \end{gathered}$	LQFP*3			
47	44	P47/SDA	H	General-purpose N-ch open-drain I/O port. The pin is shared with I2 C data I / O.
26	23	P50/SIO	E	General-purpose CMOS I/O port. The pin is shared with SIO data input.
27	24	P51/SO0	F	General-purpose CMOS I/O port. The pin is shared with SIO data output.
28	25	P52/SCK0	E	General-purpose CMOS I/O port. The pin is shared with SIO clock I/O.
57	54	P53/COM2	F/I	General-purpose CMOS I/O port. The pin is shared with the LCD common output.
58	55	P54/COM3	F/I	General-purpose CMOS I/O port. The pin is shared with the LCD common output.
75 to 82	72 to 79	P60/SEG16 to P67/SEG23	F/I	General-purpose CMOS I/O port. The pin is shared with LCD segment output.
83 to 90	80 to 87	$\begin{gathered} \text { P70/SEG24 } \\ \text { to } \\ \text { P77/SEG31 } \end{gathered}$	F/I	General-purpose CMOS I/O port. The pin is shared with LCD segment output.
91	88	P80/SI1	E	General-purpose CMOS I/O port. The pin is shared with UART/SIO data input.
92	89	P81/SO1	F	General-purpose CMOS I/O port. The pin is shared with UART/SIO data output.
93	90	P82/SCK1	E	General-purpose CMOS I/O port. The pin is shared with UART/SIO clock I/O.
59 to 74	56 to 71	$\begin{aligned} & \hline \text { SEG0 to } \\ & \text { SEG15 } \end{aligned}$	1	LCD segment output-only pin.
55, 56	52,53	$\begin{aligned} & \text { COM0, } \\ & \text { COM1 } \end{aligned}$	1	LCD common output-only pin.
$\begin{gathered} 54,53, \\ 52 \end{gathered}$	$\begin{gathered} 51,50, \\ 49 \end{gathered}$	V1 to V3	-	LCD driving power supply pin.
1,51	98, 48	Vcc	-	Power supply pin.
50, 100	47, 97	Vss	-	Power supply pin (GND) .
30	27	AVcc	-	A/D converter power supply pin.
29	26	AVR	-	A/D converter reference voltage input pin.
31	28	AVss	-	A/D converter power supply pin. Use at the same voltage level as Vss.

*1 : MQP-100C-P01
*2 : FPT-100P-M06
*3 : FPT-100P-M20

MB89490 Series

- External EPROM Socket (MB89PV490 only)

Pin number	Pin name	I/O	Function
MQFP*			
102	A15	O	Address output pins.
131	A14		
130	A13		
103	A12		
127	A11		
124	A10		
128	A9		
129	A8		
104	A7		
105	A6		
106	A5		
107	A4		
108	A3		
109	A2		
110	A1		
111	A0		
122	O8	1	Data input pins.
121	07		
120	06		
119	O5		
118	O4		
115	O3		
114	O2		
113	01		
101			
112			
117	N.C.	-	Internally connected pins. Always leave open.
126			
116	Vss	0	Power supply pin (GND) .
123	$\overline{\mathrm{CE}}$	0	Chip enable pin for the EPROM. Outputs "H" in standby mode.
125	$\overline{\mathrm{OE}}$	0	Output enable pin for the EPROM. Always outputs "L".
132	Vcc	O	Power supply pin for the EPROM.

*:MQP-100C-P01

MB89490 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Main/Sub-clock circuit
B		- Hysteresis input (CMOS input in MB89F499) - The pull-down resistor (not available in MB89F499) Approx. $50 \mathrm{k} \Omega$
C		- The pull-up resistor (P-channel) Approx. $50 \mathrm{k} \Omega$ - Hysteresis input
D		- CMOS output - Іон $=-4 \mathrm{~mA}$, loL $=12 \mathrm{~mA}$ - CMOS input - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$
E		- CMOS output - Іон $=-2 \mathrm{~mA}, \mathrm{loL}=4 \mathrm{~mA}$ - CMOS port input - Hysteresis resource input - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$

MB89490 Series

(Continued)

Type	Circuit	Remarks
F		- CMOS output - loн $=-2 \mathrm{~mA}$, lol $=4 \mathrm{~mA}$ - CMOS input - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$
G		- CMOS output - Іон $=-2 \mathrm{~mA}$, lot $=4 \mathrm{~mA}$ - CMOS port input - $\mathrm{V}_{\mathrm{H}}=0.85 \mathrm{~V}$ cc, $\mathrm{V}_{\mathrm{L}}=0.5 \mathrm{~V}$ cc resource input - Analog input - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$
H		- N-ch open-drain output - lol $=15 \mathrm{~mA}$ - CMOS port input - CMOS resource input - 5 V tolerance
1		- LCD segment output
J	$\square \infty_{0}$	- CMOS input

MB89490 Series

■ HANDLING DEVICES

1. Preventing Latch-up

Latch-up may occur on CMOS IC if voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the maximum ratings.
Also, take care to prevent the analog power supply ($\mathrm{A} V \mathrm{cc}$ and AVR) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D

Connect to be AV cc $=\mathrm{V}$ cc and $\mathrm{AVss}=\mathrm{AVR}=\mathrm{V} s \mathrm{sev}$ if the A / D is not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Stabilization

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. As stabilization guidelines, it is recommended to control voltage fluctuation so that Vcc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard Vcc value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.

7. Treatment of Unused dedicated LCD pins

When dedicated LCD pins are not in use, keep them open.

MB89490 Series

■ PROGRAMMING AND ERASING FLASH MEMORY ON THE MB89F499

1. Flash Memory

The flash memory is located between 1000н and FFFFн in the CPU memory map and incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the internal CPU, providing an efficient method of updating program and data.

2. Flash Memory Features

- 60 K bytes $\times 8$-bit configuration ($16 \mathrm{~K}+8 \mathrm{~K}+8 \mathrm{~K}+28 \mathrm{~K}$ sectors)
- Automatic algorithm (Embedded algorithm : Equivalent to MBM29LV200)
- Includes an erase pause and erase restart function
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- Sector Protection (sectors can be combined in any combination)
- No. of program/erase cycles : 10,000 (Min)

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase data to the flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory.

4. Flash Memory Register

- Flash memory control status register (FMCS)

MB89490 Series

5. Sector Configuration

The table below shows the sector configuration of flash memory and lists the addresses of each sector during CPU access and a flash memory programming.

- Sector configuration of flash memory

Flash Memory	CPU Address	Programmer Address*
16 K bytes	FFFF\% to COOOH	1FFFFF to 1-000
8 K bytes	BFFF\% to $\mathrm{AOOOH}^{\text {¢ }}$	1BFFFF to 1A000
8 K bytes	9FFF\% to 8000н	19FFFF to 18000 H
28 K bytes	7FFF to 1000н	17FFFF to 11000 н

* : The programmer address is the address to be used instead of the CPU address when programming data from a parallel flash memory programmer. Use the programmer address on programming or erasing using a generalpurpose programmer.

MB89490 Series

PROGRAMMING TO THE EPROM WITH PIGGY-BACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV
2. Memory Space

Memory space corresponding to EPROM writer is shown in the diagram below.

3. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 1000н to FFFFн.
(3) Program to 1000н to FFFFн with the EPROM programmer.

MB89490 Series

BLOCK DIAGRAM

[^0]
MB89490 Series

- CPU CORE

1. Memory Space

The microcontrollers of the MB89490 series offer a memory space of 64 K bytes for storing all of I/O, data, and program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt/reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89490 series is structured as illustrated below.

Memory Space

Vector table (reset, interrupt, vector call instruction)

MB89490 Series

2. Registers

The F²MC-8L family has 2 types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following registers are provided :
Program counter (PC) : A 16-bit register for indicating instruction storage positions.
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T) : A 16-bit register for performing arithmetic operations with the accumulator. When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification.
Extra pointer (EP) : A 16-bit pointer for indicating a memory address.
Stack pointer (SP) : A 16-bit register for indicating a stack area.
Program status (PS) : A 16-bit register for storing a register pointer and condition code.

The PS can further be divided into higher 8-bit for use as a register bank pointer (RP) and the lower 8-bit for use as a condition code register (CCR) . (See the diagram below.)

Structure of the Program Status Register

MB89490 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Conversion rule for Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for controlling the CPU operations at the time of an interrupt.

H-flag: Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Clear to "0" otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to " 1 ". Interrupt is prohibited when the flag is set to " 0 ". Clear to " 0 " at reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	Low
1	1	3	

N-flag: Set to " 1 " if the MSB is set to " 1 " as the result of an arithmetic operation. Clear to " 0 " otherwise.
Z-flag: Set to "1" when an arithmetic operation results in "0". Clear to "0" otherwise.
V-flag: Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Clear to " 0 " if the overflow does not occur.
C-flag: Set to " 1 " when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Clear to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

MB89490 Series

The following general-purpose registers are provided :
General-purpose registers : An 8-bit register for storing data
The general-purpose registers are 8 -bit and located in the register banks of the memory.
1 bank contains 8 registers. Up to a total of 32 banks can be used on the MB89490 series. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

Memory area

MB89490 Series

- I/O MAP

Address	Register name	Register description	Read/Write	Initial value
00\%	PDR0	Port 0 data register	R/W	XXXXXXXX
01н	DDR0	Port 0 direction register	W*	00000000 в
02н	PDR1	Port 1 data register	R/W	ХХХХХХХХв
03н	DDR1	Port 1 direction register	W*	00000000в
04	PDR2	Port 2 data register	R/W	00000000в
05	(Reserved)			
06н	DDR2	Port 2 direction register	R/W	00000000в
07н	SYCC	System clock control register	R/W	X-1MM100в
08н	STBC	Standby control register	R/W	00010XXXв
09н	WDTC	Watchdog timer control register	W*	0---XXXX
ОАн	TBTC	Timebase timer control register	R/W	00---000в
ОВн	WPCR	Watch prescaler control register	R/W	00--0000в
$0 \mathrm{CH}_{\mathrm{H}}$	PDR3	Port 3 data register	R/W	XXXXXXXX ${ }_{\text {в }}$
ODH	DDR3	Port 3 direction register	R/W	
ОЕн	RSFR	Reset flag register	R	XXXX---в
ОFн	PDR4	Port 4 data register	R/W	11111111в
10н	PDR5	Port 5 data register	R/W	---XXXXX
11н	DDR5	Port 5 direction register	R/W	---00000в
12н	PDR6	Port 6 data register	R/W	ХХХХХХХХв
13н	DDR6	Port 6 direction register	R/W	00000000в
14 H	PDR7	Port 7 data register	R/W	ХХХХХХХХв
15 н	DDR7	Port 7 direction register	R/W	00000000в
16н	PDR8	Port 8 data register	R/W	---XXXXX
17\%	DDR8	Port 8 direction register	R/W	---00000в
18н	EIC0	External interrupt 0 control register 0	R/W	00000000в
19н	EIC1	External interrupt 0 control register 1	R/W	00000000в
1 Ан	EIC2	External interrupt 0 control register 2	R/W	00000000в
$1 \mathrm{Bн}$	EIC3	External interrupt 0 control register 3	R/W	00000000в
1 CH	EIE1	External interrupt 1 enable register	R/W	00000000в
1Dн	EIF1	External interrupt 1 flag register	R/W	--------0в
$1 \mathrm{E}^{\text {¢ }}$	SMR	Serial mode register	R/W	00000000 в
$1 \mathrm{~F}_{\mathrm{H}}$	SDR	Serial data register	R/W	XXXXXXXX
20н	T01CR	Timer 01 control register	R/W	000000X0в
21,	T00CR	Timer 00 control register	R/W	000000X0в
22н	T01DR	Timer 01 data register	R/W	XXXXXXXX

(Continued)

MB89490 Series

Address	Register name	Register description	Read/Write	Initial value
23н	T00DR	Timer 00 data register	R/W	ХХХХХХХХХв
24 +	T11CR	Timer 11 control register	R/W	000000X0в
25 н	T10CR	Timer 10 control register	R/W	000000X0в
26	T11DR	Timer 11 data register	R/W	XXXXXXXX
27 H	T10DR	Timer 10 data register	R/W	XXXXXXXX ${ }_{\text {¢ }}$
28н	ADER	A/D input enable register	R/W	11111111в
29н	ADC0	A/D control register 0	R/W	-00000X0в
2 Ан $^{\text {仡 }}$	ADC1	A/D control register 1	R/W	-0000001в
2 BH	ADDH	A/D data register (Upper byte)	R	------ХХв
2 CH	ADDL	A/D data register (Lower byte)	R	XXXXXXXX
2D	CNTR0	PWM 0 timer control register	R/W	$0-000000$ в
2Ен	COMR0	PWM 0 timer compare register	W*	XXXXXXXX
2 F	SMC0	UART/SIO serial mode control register	R/W	00000000в
30	SMC1	UART/SIO serial mode control register	R/W	00000000 в
31H	SSD	UART/SIO serial status/data register	R/W	00001---в
32н	SIDR/SODR	UART/SIO serial data register	R/W	XXXXXXXX
33	SRC	UART/SIO serial rate control register	R/W	XXXXXXXX
34	CNTR1	PWM 1 timer control register	R/W	$0-000000$ в
35	COMR1	PWM 1 timer compare register	W*	ХХХХХХХХХв
36	IBSR	${ }^{2} \mathrm{C}$ bus status register	R	00000000в
37	IBCR	$1^{2} \mathrm{C}$ bus control register	R/W	00000000в
38н	ICCR	${ }^{12} \mathrm{C}$ clock control register	R/W	000XXXXX ${ }_{\text {в }}$
39н	IADR	${ }^{1} \mathrm{C}$ C address register	R/W	-XXXXXXX ${ }_{\text {¢ }}$
ЗАн	IDAR	${ }^{12} \mathrm{C}$ data register	R/W	XXXXXXXX
3BH	PLLCR	Sub PLL control register	R/W	----0000в
$3 \mathrm{C}_{\text {н }}$ to 3 FH	(Reserved)			
40н	RMN	Remote control counter register	R	XXXXXXXX ${ }_{\text {в }}$
41 H	RMC	Remote control control register	R/W	00000000в
42н	RMS	Remote control status register	R/W	0X000001в
43н	RMD	Remote control FIFO data register	R	X----ХХХв
44	RMCD0	Remote control compare register 0	R/W	11111111в
45 H	RMCD1	Remote control compare register 1	R/W	1111111建
46-	RMCD2	Remote control compare register 2	R/W	1111111 ${ }_{\text {в }}$
47	RMCD3	Remote control compare register 3	R/W	11111111в
48н	RMCD4	Remote control compare register 4	R/W	11111111 ${ }_{\text {B }}$

(Continued)

MB89490 Series

(Continued)

Address	Register name	Register description	Read/Write	Initial value
49н	RMCD5	Remote control compare register 5	R/W	11111111в
4Ан	RMCI	Remote interrupt register	R/W	0000-000в
4Вн to 5Dн	(Reserved)			
5 Ен	LOCR	LCD controller output control register	R/W	-0000000в
5F\%	LCR	LCD controller control register	R/W	00010000в
60н to 6Fн	VRAM	LCD data RAM	R/W	XXXXXXXX ${ }_{\text {¢ }}$
70	PUCR0	Port 0 pull up resistor control register	R/W	11111111в
71н	PUCR1	Port 1 pull up resistor control register	R/W	11111111в
72н	PUCR2	Port 2 pull up resistor control register	R/W	11111111в
73н	PUCR3	Port 3 pull up resistor control register	R/W	11111111в
74	PUCR5	Port 5 pull up resistor control register	R/W	---11111 ${ }_{\text {b }}$
75	PUCR6	Port 6 pull up resistor control register	R/W	11111111в
76	PUCR7	Port 7 pull up resistor control register	R/W	11111111в
77	PUCR8	Port 8 pull up resistor control register	R/W	-----111в
78н to 79н	(Reserved)			
	FMCS	Flash memory control status registger	R/W	000X00-0в
7Вн	ILR1	Interrupt level setting register 1	W*	11111111в
7 CH	ILR2	Interrupt level setting register 2	W*	11111111в
7D	ILR3	Interrupt level setting register 3	W*	11111111в
7Ен	ILR4	Interrupt level setting register 4	W*	11111111в
7F	(Reserved)			

* : Bit manipulation instruction cannot be used.

- Read/write access symbols

R/W: Readable and writable
R: Read-only
W: Write-only

- Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.

- : Unused bit.

M : The initial value of this bit is determined by mask option.

MB89490 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc AVcc	Vss - 0.3	Vss +4.0	V	AVcc must be equal to $\mathrm{V}_{\text {cc }}$
	AVR	Vss - 0.3	Vss +4.0	V	
LCD power supply voltage	V1 to V3	Vss - 0.3	Vcc	V	
Input voltage *1	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	Except P40 to P47
		Vss - 0.3	Vss +6.0	V	P40 to P47 in MB89PV490 and MB89498
		Vss - 0.3	Vss +5.5	V	P40 to P47 in MB89F499
Output voltage*1	Vo	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Maximum clamp current	ICLAMP	-2.0	+ 2.0	mA	*2
Total maximum clamp current	$\Sigma\|I c l a m p\|$	-	20	mA	*2
"L" level maximum output current	loL	-	15	mA	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	40	mA	Average value (operating current \times operating rate)
"H" level maximum output current	Іон	-	- 15	mA	
"H" level average output current	Іонav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	Σ Іон	-	- 50	mA	
"H" level total average output current	Elohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	Pd	-	300	mW	
Operating temperature	T_{A}	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+ 150	${ }^{\circ} \mathrm{C}$	

*1 : The parameter is based on $\mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}$.
*2 : • Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P52, P80 to P82

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
(Continued)

MB89490 Series

(Continued)

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :
- Input/Output Equivalent circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89490 Series

2. Recommended Operating Conditions

$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s=0.0 \mathrm{~V})$

*: These values depend on the operating conditions and the analog assurance range. See Figure 1, 2 and " 5 . A/D Converter Electrical Characteristics".

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Figure1 Operating Voltage vs. Main Clock Operating Frequency (MB89F499/498)

MB89490 Series

Figure2 Operating Voltage vs. Main Clock Operating Frequency (MB89PV490)

Figure 1 and 2 indicate the operating frequency of the external oscillator at an instruction cycle of $4 /$ Fсн.
Since the operating voltage range is dependent on the instruction cycle, see figure 1 and 2 if the operating speed is switched using a gear.

MB89490 Series

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	$\mathrm{V}_{\text {IH }}$	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P54, P60 to P67, P70 to P77, P80 to P84, SCL, SDA,	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
		P40 to P47	-	0.7 Vcc	-	Vss +6.0	V	MB89498
			-	0.7 Vcc	-	Vss +5.5	V	MB89F499
	V ${ }_{\text {нs }}$	RST, MODO, EC0, EC1, SCK0, SIO, SCK1, SI1, RMC, INT00 to INT07	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIHA	$\overline{\text { INT10 to } \overline{\text { INT17 }} \text {] }}$	-	0.85 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, P60 to P67, P70 to P77, P80 to P84, SCL, SDA,	-	Vss-0.3	-	0.3 Vcc	V	
	Vils	$\overline{\text { RST, MODO, EC0, }}$ EC1, SCK0, SIO, SCK1, SI1, RMC, INT00 to INT07	-	Vss-0.3	-	0.2 Vcc	V	
	VILA	$\overline{\text { INT10 }}$ to INT17	-	Vss-0.3	-	0.5 Vcc	V	
Open-drain output pin application voltage	V	P40 to P47	-	Vss-0.3	-	Vss +6.0	V	MB89498
			-	Vss-0.3	-	Vss +5.5	V	MB89F499

(Continued)

MB89490 Series

$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
" H " level output voltage	Vон	P10 to P17, P20 to P27, P30 to P37, P50 to P54, P60 to P67, P70 to P77, P80 to P82	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.2	-	-	V	
		P00 to P07	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.2	-	-	V	
"L" level output voltage	Vol	$\begin{aligned} & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P30 to P37, } \\ & \text { P50 to P54, } \\ & \text { P60 to P67, } \\ & \text { P70 to P77, } \\ & \text { P80 to P82, RST } \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
		P00 to P07	$\mathrm{loL}=12.0 \mathrm{~mA}$	-	-	0.4	V	
		P40 to P47	$\mathrm{loL}=15.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current	IL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P54, P60 to P67, P70 to P77, P80 to P84	$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-5	-	+5	$\mu \mathrm{A}$	Without pull-up resistor
Open-drain output leakage current	Ilod	P40 to P47	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-5	-	+5	$\mu \mathrm{A}$	
Pull-down resistance	Roown	MODO	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}}$	25	50	100	k Ω	Except MB89F499
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P54, P60 to P67, P70 to P77, P80 to P82, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	When pull-up resistor is selected (except $\overline{\mathrm{RST}}$)
Common output impedance	Rvcom	COM0 to COM3	V 1 to $\mathrm{V} 3=+3.0 \mathrm{~V}$	-	-	2.5	k Ω	

(Continued)

MB89490 Series

$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Segment output impedance	Ruseg	SEG0 to SEG31	V 1 to $\mathrm{V} 3=+3.0 \mathrm{~V}$	-	-	15	$\mathrm{k} \Omega$	
LCD divided resistance	Rlcd	-	Between Vcc and V_{ss}	300	500	750	k Ω	
LCD controller/ driver leakage current	ILcoL	V1 to V3, COM0 to COM3, SEG0 to SEG31	-	-1	-	+1	$\mu \mathrm{A}$	
Power supply current	Iccı	V cc	$\begin{array}{\|l} \hline \text { FcH }=12.5 \mathrm{MHz} \\ \text { tinst }=0.33 \mu \mathrm{~s} \\ \text { Main clock run mode } \end{array}$	-	8.0	12	mA	MB89F499
				-	7.0	12.0	mA	MB89498
	Icc2		$\begin{aligned} & \text { F } \mathrm{cH}=12.5 \mathrm{MHz} \\ & \text { tinst }=5.33 \mu \mathrm{~s} \\ & \text { Main clock run mode } \end{aligned}$	-	1.0	3.0	mA	MB89F499 MB89498
	Iccs 1		$\begin{aligned} & \mathrm{Fch}=12.5 \mathrm{MHz} \\ & \text { tinst }=0.33 \mu \mathrm{~s} \\ & \text { Main clock sleep } \\ & \text { mode } \end{aligned}$	-	3.0	5.0	mA	MB89F499 MB89498
	Iccs2		$\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=12.5 \mathrm{MHz} \\ & \text { tinst }=5.33 \mu \mathrm{~s} \\ & \text { Main clock sleep } \\ & \text { mode } \end{aligned}$	-	0.6	2.0	mA	MB89F499 MB89498
	Iccl		$\begin{aligned} & \text { FcL }=32.768 \mathrm{kHz} \\ & \text { Sub-clock mode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	40.0	60.0	$\mu \mathrm{A}$	MB89F499 MB89498
	Icclpll		$\begin{aligned} & \hline \text { FcL }=32.768 \mathrm{kHz} \\ & \text { Sub-clock mode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { sub PLL } \times 4 \end{aligned}$	-	180.0	250.0	$\mu \mathrm{A}$	MB89F499 MB89498
	Iccls		$\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$ Sub-clock sleep mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	14.0	30.0	$\mu \mathrm{A}$	MB89F499 MB89498
	Icct		$\mathrm{F}_{\mathrm{cL}}=32.768 \mathrm{kHz}$ Watch mode Main clock stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1.5	13.0	$\mu \mathrm{A}$	MB89F499 MB89498

(Continued)

MB89490 Series

(Continued)

$$
\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	Icch	Vcc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Sub-clock stop mode	-	0.8	4.0	$\mu \mathrm{A}$	MB89F499 MB89498
	IA	AV ${ }_{\text {cc }}$	$\begin{aligned} & \mathrm{AV} \mathrm{VC}=3.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	1.2	4.4	mA	A/D converting
	Іан		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.8	4.0	$\mu \mathrm{A}$	A/D stop
Input capacitance	Cin	Except Vcc, Vss, AVcc, AVss, AVR	$\mathrm{f}=1 \mathrm{MHz}$	-	10.0	-	pF	

MB89490 Series

4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
$\overline{\text { RST "L" pulse width }}$	tzzZH	-	48 thcyl	-	ns	

Note : thcyl is the oscillation cycle ($1 / \mathrm{Fch}$) to input to the X0 pin.
The MCU operation is not guaranteed when the "L" pulse width is shorter than tzızH.

(2) Power-on Reset
$\left(\mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min			
Power supply rising time	tr		-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note : Make sure that power supply rises within the selected oscillation stabilization time.
Rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.
\square

MB89490 Series

(3) Clock Timing
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	Fch	X0, X1	1	-	12.5	MHz	
	Fcı	X0A, X1A	-	32.768	75	kHz	
Clock cycle time	thcyL	X0, X1	80	-	1000	ns	
	tıcyl	X0A, X1A	13.3	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	20	-	-	ns	External clock
	Pwh Pwll	X0A	-	15.2	-	$\mu \mathrm{s}$	
Input clock rising/falling time	$\begin{aligned} & \hline \begin{array}{l} \mathrm{tcR} \\ \mathrm{tcF} \end{array} \end{aligned}$	X0, X0A	-	-	10	ns	

X0 and X1 Timing and Conditions

Main Clock Conditions

MB89490 Series

Sub-clock Timing and Conditions

Sub-clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	$\mu \mathrm{s}$	$\left(4 / F_{\text {ch }}\right)$ tinst $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=12.5 \mathrm{MHz}$
		2/Fcı, 1/2Fcı	$\mu \mathrm{s}$	(2/FcL) tinst $=61.036 \mu \mathrm{~s}$ when operating at $\mathrm{FcL}=32.768 \mathrm{kHz}$

MB89490 Series

- PLL operation guarantee range (sub PLL $\times 4$)

Relationship between internal operating clock frequency and power supply voltage

Relationship between sub-clock oscillating frequency and instruction cycle when sub PLL is enabled

MB89490 Series

(5) Serial I/O Timing
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK0, SCK1	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$
SCK $\downarrow \rightarrow$ SO time	tstov	SCK0, SCK1, SO0, SO1		-200	200	ns
Valid SI \rightarrow SCK \uparrow	tivsh	SIO, SI1, SCK0, SCK1		1/2 tinst*	-	$\mu \mathrm{s}$
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK0, SCK1, SIO, SI1		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$
Serial clock "H" pulse width	tshsL	SCK0, SCK1	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$
Serial clock "L" pulse width	tsısH			1 tinst*	-	$\mu \mathrm{s}$
SCK $\downarrow \rightarrow$ SO time	tstov	SCK0, SCK1, SO0, SO1		0	200	ns
Valid SI \rightarrow SCK \uparrow	tivsh	SIO, SI1, SCK0, SCK1		1/2 tinst*	-	$\mu \mathrm{s}$
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK0, SCK1, SIO, SI1		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$

*: For information on tinst, see " (4) Instruction Cycle".

Internal Clock Operation

External Clock Operation

MB89490 Series

(6) $I^{2} C$ Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{AV} \text { ss }=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Max			

*1: For information in tinst, see " (4) Instruction Cycle".
*2: M is defined in the $I^{2} C$ clock control register ICCR bit 4 and bit 3 (CS4 and CS3). For details, please refer to the H/W manual register explanation.
*3: N is defined in the $I^{2} \mathrm{C}$ clock control register ICCR bit 2 to bit 0 (CS2 to CSO).
*4: When the interrupt period is greater than SCL "L" width, SDA and SCL output (Standard) value is based on hypothesis when rising time is 0 ns .

MB89490 Series

Data transmit (master/slave)

Data receive (master/slave)

MB89490 Series

(7) Peripheral Input Timing
$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
Peripheral input "H" pulse width 1	tııн1	EC0, EC1, INT00 to INT07, $\overline{\text { INT10 }}$ to $\overline{\text { INT17 }}$	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thill		2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst, see " (4) Instruction Cycle".

MB89490 Series

5. A/D Converter Electrical Characteristics

(1) A/D Converter Electrical Characteristics
$\left(\mathrm{AVcc}=\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	10	-	bit	
Total error			-	-	± 3.0	LSB	
Linearity error			-	-	± 2.5	LSB	
Differential linearity error			-	-	± 1.9	LSB	
Zero transition voltage	Vot		$\begin{aligned} & \mathrm{AV} \mathrm{ss}- \\ & 1.5 \mathrm{LSB} \end{aligned}$	$\begin{gathered} \mathrm{AVss}+ \\ 0.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \mathrm{AV} \text { ss + } \\ \text { 2.5 LSB } \end{gathered}$	V	
Full-scale transition voltage	$V_{\text {fSt }}$		$\begin{gathered} \text { AVR - } \\ \text { 3.5 LSB } \end{gathered}$	$\begin{aligned} & \hline \text { AVR - } \\ & \text { 1.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVR - } \\ & 0.5 \mathrm{LSB} \end{aligned}$	V	
A/D mode conversion time	-		30 tinst *	-	-	$\mu \mathrm{s}$	
Analog port input current	lain	ANO to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	V AIN		AVss	-	AVR	V	
Reference voltage	-	AVR	AVss + 2.7	-	AVcc	V	
Reference voltage supply current	In		-	95.0	170.0	$\mu \mathrm{A}$	A / D is activated
	Іrн		-	-	4.0	$\mu \mathrm{A}$	A / D is stopped

* : For information on tinst, see " (4) Instruction Cycle" in "4. AC Characteristics".

MB89490 Series

(2) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") from actual conversion characteristics.

- Differential linearity error (unit : LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value.

- Total error (unit : LSB)

The difference between theoretical and actual conversion values.

(Continued)

MB89490 Series

(Continued)

MB89490 Series

(3) Notes on Using A/D Converter

- About the external impedance of the analog input and its sampling time
- A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.
- Analog input circuit model

Analog input

MB89498 $2.4 \mathrm{k} \Omega$ (Max) $\quad 44.0 \mathrm{pF}$ (Max)
MB89F499 $2.4 \mathrm{k} \Omega$ (Max) $\quad 28.6 \mathrm{pF}$ (Max)
Note : The values are reference values.

- To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
- The relationship between external impedance and minimum sampling time

- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- About errors

As |AVRH - AVss| becomes smaller, values of relative errors grow larger.

MB89490 Series

EXAMPLE CHARACTERISTICS

(1) "L" level output voltage

(Continued)

DS07-12560-2E

MB89490 Series

(2) "H" level output voltage

(Continued)

MB89490 Series

(3) Power supply current (External clock)

(Continued)

MB89490 Series

(Continued)

MB89490 Series

(Continued)

MB89490 Series

(Continued)

MB89490 Series

(Continued)

(4) Pull-up resistance

MB89490 Series

MASK OPTIONS

Part number	MB89498	MB89F499	MB89PV490		
Specifying procedure	Specify when ordering mask	Setting not possible			
Main clock oscillation stabilizationtime selection	Selectable	Fixed to oscillation stabilization wait time of $2^{18} / \mathrm{F}_{\mathrm{CH}}$			
$2^{14 / \mathrm{F}_{\mathrm{CH}}}$					
$2^{18 / \mathrm{FCH}}$				\quad	
:---					

- ORDERING INFORMATION

Part number	Package	Remarks
MB89498PF	100-pin Plastic QFP	
MB89F499PF	(FPT-100P-M06)	
MB89498PMC	100-pin Plastic LQFP	
MB89F499PMC	(FPT-100P-M20)	
MB89PV490CF	100-pin Ceramic MQFP (MQP-100C-P01)	

MB89490 Series

PACKAGE DIMENSIONS

100-pin ceramic MQFP	Lead pitch	0.65 mm
	Lead shape	Straight
	Motherboard material	Ceramic
	Mounted package material	Plastic

100-pin ceramic MQFP
(MQP-100C-P01)

© 1994-2008 FUJTSU MICROELECTRONICS LIMITED M100001SC-1-3

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/package/en-search/

MB89490 Series

100-pin plastic QFP	Lead pitch	0.65 mm
	Package width \times package length	$14.00 \times 20.00 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	3.35 mm MAX
	Code (Reference)	P-QFP100-14×20-0.65
(FPT-100P-M06)		

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

MB89490 Series

(Continued)

100-pin plastic LQFP	Lead pitch	0.50 mm
Package width \times package length	$14.0 \mathrm{~mm} \times 14.0 \mathrm{~mm}$	
	Lead shape	Gullwing
	Sealing method	Plastic mold
Mounting height	1.70 mm Max	

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

MB89490 Series

MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	The package code is changed. FPT-100P-M05 \rightarrow FPT-100P-M20
16	- PROGRAMMING AND ERASING FLASH MEMORY ON THE MB89F499	Deleted the "6. ROM Programmer Adaptor and Recommended ROM Programmers"
17	- PROGRAMMING TO THE EPROM WITH PIGGY-BACK/EVALUATION DEVICE	Deleted the "2. Programming Socket Adapter"
	- ICE PROBE POD ADAPTOR OF PIGGYBACK/EVA CHIP	Deleted the "■ ICE PROBE POD ADAPTOR OF PIG-GY-BACK/EVA CHIP"
42	ELECTRICAL CHARACTERISTICS 5. A/D Converter Electrical Characteristics	Changed the items of "Zero transition voltage" and "Full-scale transition voltage". $\begin{aligned} & \mathrm{mV} \rightarrow \mathrm{~V} \\ & \mathrm{AVCc} \rightarrow \mathrm{AVR} \end{aligned}$
53	■ ORDERING INFORMATION	Order informations are changed. MB89498PFV \rightarrow MB89498PMC MB89F499PFV \rightarrow MB89F499PMC
56	■ PACKAGE DIMENSIONS	The package code is changed. FPT-100P-M05 \rightarrow FPT-100P-M20

The vertical lines marked in the left side of the page show the changes.

MB89490 Series

MB89490 Series

MEMO

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome,
Shinjuku-ku, Tokyo 163-0722, Japan
Tel: +81-3-5322-3347 Fax: +81-3-5322-3387
http://jp.fujitsu.com/fml/en/
For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD.
151 Lorong Chuan,
\#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Edited: Business \& Media Promotion Dept.

[^0]: *: High current I/O port.

