# 

## Single 16-Bit DAC with Current and Voltage Outputs for Industrial Analog Output Modules

### **General Description**

The MAX5661 single 16-bit DAC with precision highvoltage amplifiers provides a complete solution for programmable current and voltage-output applications. The output amplifiers swing to industry-standard levels of ±10V (voltage output) or source from 0mA (or from 4mA) to 20mA (current output). The voltage output (OUTV) drives resistive loads greater than  $2k\Omega$  and capacitive loads of up to  $1.2\mu$ F. Voltage-output forcesense connections compensate for series protection resistors and field-wiring resistance. Short-circuit protection on the voltage output limits output current to 10mA (typ) sourcing or -11.5mA (typ) sinking. The current output (OUTI) drives resistive loads up to 37.5V (max) and inductive loads up to 1H.

The MAX5661 provides either a current output or a voltage output. Only one output is active at any given time, regardless of the configuration. The MAX5661 voltage output operates with  $\pm 13.48V$  to  $\pm 15.75V$  supplies (V<sub>DDV</sub>, V<sub>SSV</sub>) and the current output operates with a single +13.48V to +40V supply (V<sub>DDI</sub>). A +4.75V to +5.25V digital supply (V<sub>CC</sub>) powers the rest of the internal circuitry. A buffered reference input accepts an external +4.096V reference voltage.

Update the DAC outputs using software commands or the asynchronous LDAC input. An asynchronous CLR input sets the DAC outputs to the value stored in the clear register or to zero. The FAULT output asserts when the DAC's current output is an open circuit, the DAC's voltage output is a short circuit, or when the CLR input is low.

The MAX5661 communicates through a 4-wire 10MHz SPI<sup>™</sup>-/QSPI<sup>™</sup>-/MICROWIRE<sup>™</sup>-compatible serial interface. The DOUT output allows daisy chaining of multiple devices. The MAX5661 is available in a 10mm x 10mm, 64-pin, LQFP package and operates over the -40°C to +105°C temperature range.

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.

### **Applications**

Industrial Analog Output Modules Industrial Instrumentation Programmable Logic Controls/Distributed Control Systems Process Control

### Features

- ♦ 10-Bit Programmable Full-Scale Output Adjustment for Up to ±25% Over Range
- Programmable Voltage Output Unipolar Range: 0 to +10.24V ±25% Bipolar Range: ±10.24V ±25%
- Programmable Current Output Unipolar Low Range: 0 to 20.45mA Unipolar High Range: 3.97mA to 20.45mA
- Flexible Analog Supplies (See Table 16) ±13.48V to ±15.75V for Voltage Output +13.48V to +40V for Current Output
- Force-Sense Connections (Voltage Output) for Differential Voltage-Output Remote Sensing
- Voltage-Output Current Limit
- Dropout Detector Senses Out-of-Regulation Current Output
- ♦ CLR and LDAC Inputs for Asynchronous DAC Updates
- ♦ CLR Input Resets Output to Programmed Value or Zero Code
- FAULT Output Indicates Open-Circuited Current Output, Short-Circuited Voltage Output, or Clear State
- Temperature Drift Voltage Output: ±0.4ppm FSR/°C Current Output: ±7.9ppm FSR/°C
- Small 64-Pin LQFP Package (10mm x 10mm)

### **Ordering Information**

| PART        | TEMP RANGE      | PIN-PACKAGE |  |  |  |  |  |
|-------------|-----------------|-------------|--|--|--|--|--|
| MAX5661GCB+ | -40°C to +105°C | 64 LQFP     |  |  |  |  |  |

+Denotes a lead-free/RoHS-compliant package.

Pin Configuration and Typical Operating Circuit appear at end of data sheet.

### 

Maxim Integrated Products 1

For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

### **ABSOLUTE MAXIMUM RATINGS**

| VDDCORE to VSSV                           |                                 | OUT   |
|-------------------------------------------|---------------------------------|-------|
| V <sub>DDI</sub> to AGND                  | 0.3V to +42V                    | OUT   |
| V <sub>DDV</sub> to AGND                  | 0.3V to +17V                    | Maxi  |
| VSSV to AGND                              | 17V to +0.3V                    | Cont  |
| V <sub>DDI</sub> to V <sub>SSV</sub>      | 0.3V to +59V                    | 64    |
| V <sub>CC</sub> to DGND                   | 0.3V to +6V                     | ab    |
| DGND, DUTGND, DUTGNDS, DACGND,            |                                 | Junc  |
| DACGNDS to AGND                           | 0.3V to +6V                     | in    |
| Digital Inputs (CS, DIN, SCLK, CLR, LDAC, |                                 | Junc  |
| CNF_) to DGND                             |                                 | Oper  |
| Digital Outputs (DOUT, FAULT) to DGND     |                                 | Junc  |
| -0.3V to the lesser of                    | (V <sub>CC</sub> + 0.3V) or +6V | Stora |
| REF to AGND                               |                                 | Leac  |
|                                           |                                 |       |

| )<br>) |
|--------|
| Á      |
|        |
|        |
| /      |
|        |
| /      |
| V      |
| )      |
| )      |
| )      |
| )      |
|        |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **ELECTRICAL CHARACTERISTICS**

| PARAMETER                  | SYMBOL           | CONI                                                | DITIONS                      | MIN   | ТҮР   | MAX   | UNITS  |  |
|----------------------------|------------------|-----------------------------------------------------|------------------------------|-------|-------|-------|--------|--|
| STATIC PERFORMANCE         | ·                |                                                     |                              |       |       |       |        |  |
| Resolution                 |                  |                                                     |                              | 16    |       |       | Bits   |  |
|                            |                  | Vout                                                |                              |       | ±0.2  | ±4    |        |  |
|                            |                  | $I_{OUT}, V_{DDI} = 40V,$                           | 4–20mA                       |       | ±6    |       |        |  |
| Integral Nonlinearity      | INL              | V <sub>SSV</sub> = V <sub>DDV</sub> = 0<br>(Note 2) | 0 to 20mA                    |       |       | ±10   | LSB    |  |
|                            |                  | $I_{OUT}, V_{DDI} = V_{DDV}$                        | 4–20mA                       |       | ±2    |       |        |  |
|                            |                  | = +15V, V <sub>SSV</sub> = -15V<br>(Note 2)         | 0 to 20mA                    |       | ±6    |       |        |  |
| Differential Nonlinearity  | DNL              | Guaranteed monotor                                  | nic (Note 3)                 | -1.0  |       | +1.0  | LSB    |  |
| Zero-Scale Voltage Error   | Vace             | OUTV                                                | Unipolar                     |       | ±0.01 | ±3    | mV     |  |
| Zero-Scale voltage Error   | V <sub>ZSE</sub> | 0010                                                | Bipolar                      |       | ±2.0  | ±10   | 1110   |  |
|                            |                  | 0 to 20mA mode                                      | $T_A = +25^{\circ}C$         | -45   | -30   | -15   | μΑ     |  |
| Zero-Scale Current         |                  | 0 to 20mA mode                                      | $T_A = T_{MIN}$ to $T_{MAX}$ | -60   | -30   | 0     |        |  |
| (Note 4)                   |                  | 4–20mA mode                                         | $T_A = +25^{\circ}C$         | 3.955 | 3.97  | 3.985 |        |  |
|                            |                  | 4-20MA Mode                                         | $T_A = T_{MIN}$ to $T_{MAX}$ | 3.94  | 3.97  | 4.00  | mA     |  |
|                            |                  |                                                     | $T_A = +25^{\circ}C$         | -15   | ±2.0  | +15   |        |  |
| Zero-Scale Current Error   |                  | 0 to 20mA mode                                      | $T_A = T_{MIN}$ to $T_{MAX}$ | -30   | ±2.0  | +30   |        |  |
| (Note 4)                   | IZSE             |                                                     | $T_A = +25^{\circ}C$         | -15   | ±3.0  | +15   | μA     |  |
|                            |                  | 4–20mA mode                                         | $T_A = T_{MIN}$ to $T_{MAX}$ | -30   | ±7.0  | +30   | ]      |  |
|                            | TOV              |                                                     | Unipolar                     |       | ±0.5  |       | ppm of |  |
| Voltage-Offset Error Drift | TCVOS            | OUTV                                                | Bipolar                      |       | ±0.2  |       | FSR/°C |  |

### **ELECTRICAL CHARACTERISTICS (continued)**

| PARAMETER                       | SYMBOL           | CO                                                                   | NDITIONS                                                                | MIN | ТҮР    | MAX  | UNITS     |  |
|---------------------------------|------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|-----|--------|------|-----------|--|
| Current Offert Free Drift       | TOLES            |                                                                      | 0 to 20mA                                                               |     | ±4     |      | ppm of    |  |
| Current-Offset Error Drift      | TCIOS            | OUTI                                                                 | 4–20mA                                                                  |     | ±4     |      | FSR/°C    |  |
|                                 |                  |                                                                      | Unipolar                                                                |     | ±2.5   | ±10  | m)/       |  |
|                                 |                  | OUTV                                                                 | Bipolar                                                                 |     | ±4.5   | ±20  | mV        |  |
| Gain Error                      | GE               | Ουτι                                                                 | $T_A = +25^{\circ}C$                                                    |     | ±8.0   | ±70  |           |  |
|                                 |                  | 0011                                                                 | $T_A = T_{MIN}$ to $T_{MAX}$                                            |     | ±40    | ±130 | μA        |  |
|                                 |                  | OUTV                                                                 | Unipolar                                                                |     | ±0.4   |      |           |  |
| Gain-Error Drift                | TCGE             | 0010                                                                 | Bipolar                                                                 |     | ±0.4   |      | ppm of    |  |
| Gain-Error Drift                | TUGE             | Ουτι                                                                 | 0 to 20mA                                                               |     | -7.9   |      | FSR/°C    |  |
|                                 |                  | 0011                                                                 | 4–20mA                                                                  |     | -8.6   |      |           |  |
|                                 |                  | OUTV, unipolar out<br>V <sub>DDV</sub> from +13.48V                  | put, full-scale code,<br>/ to +15.75V                                   |     | 20     | 200  |           |  |
|                                 | <b>D000</b>      | OUTV, bipolar outp<br>V <sub>SSV</sub> from -13.48V                  | ut, zero-scale code,<br>to -15.75V                                      |     | 20     | 200  | μV/V<br>0 |  |
| Power-Supply Rejection Ratio    | PSRR             |                                                                      | de, V <sub>DDI</sub> from +13.48V to<br>'5V, V <sub>DDV</sub> = +15.75V |     | 0.013  | 5    |           |  |
|                                 |                  |                                                                      | de, V <sub>DDI</sub> from +13.48V to                                    |     | 0.017  | 5    | μA/V      |  |
| REFERENCE INPUT                 |                  |                                                                      |                                                                         |     |        |      |           |  |
| Reference Input Current         | I <sub>REF</sub> |                                                                      |                                                                         |     | 0.050  | 1    | μA        |  |
| Reference Input Voltage Range   | V <sub>REF</sub> |                                                                      |                                                                         | 4.0 | 4.096  | 4.2  | V         |  |
| DYNAMIC PERFORMANCE             |                  |                                                                      |                                                                         |     |        |      |           |  |
| Output Valtage Naise at 104     |                  | Unipolar output, Vo                                                  | )UTV = +10.48V                                                          |     | nV/√Hz |      |           |  |
| Output-Voltage Noise at 10kHz   | en               | Bipolar output, Vol                                                  | $JTV = \pm 10.48V$                                                      |     |        |      |           |  |
| Output Outport Noise at 1014 In | :                | 0 to 20mA range                                                      |                                                                         |     |        |      |           |  |
| Output-Current Noise at 10kHz   | İn               | 4–20mA range                                                         |                                                                         |     | 120    |      | pA/√Hz    |  |
| Voltage-Output Slew Rate        |                  | $C_{OUTV} = 100 \text{pF}, \text{Result}$<br>step = 20V, $C_{EXT} =$ |                                                                         |     | 0.1    |      | V/µs      |  |
| Current-Output Slew Rate        |                  | Louti = 0, Routi =                                                   | 500Ω, step = 20mA                                                       |     | 0.15   |      | mA/µs     |  |
| · · · ·                         |                  |                                                                      | OUTV                                                                    |     | 1      |      | µV∙s      |  |
| Major Code Transition Glitch    |                  | From code 7FFh                                                       | 0 to 20mA                                                               |     | 2.0    |      |           |  |
|                                 |                  | to code 8000h                                                        | OUTI 4–20mA                                                             |     | 2.0    |      | nA∙s      |  |
| Digital Foodthrough             |                  | Outputs set to<br>zero scale, all                                    | OUTV                                                                    |     | 0.1    |      | nV∙s      |  |
| Digital Feedthrough             |                  | digital inputs from<br>0V to V <sub>CC</sub> and<br>back to 0V       | OUTI, R <sub>L</sub> = 500 $\Omega$                                     |     | 0.2    |      | pA∙s      |  |

### **ELECTRICAL CHARACTERISTICS (continued)**

| PARAMETER                    | SYMBOL | CO                                                         | NDITIONS                                           | MIN | ТҮР  | MAX | UNITS |  |
|------------------------------|--------|------------------------------------------------------------|----------------------------------------------------|-----|------|-----|-------|--|
| SETTLING TIME                |        |                                                            |                                                    |     |      |     |       |  |
|                              |        | Bipolar output,                                            | $C_{OUTV} = 1nF,$<br>$R_{OUTV} = 2k\Omega$         |     | 3    |     |       |  |
|                              |        | C <sub>COMPV</sub> = 3.3nF,<br>to 0.1%                     | $C_{OUTV} = 1.2 \mu F,$<br>$R_{OUTV} = 2 k \Omega$ |     | 5.44 |     | ms    |  |
| Voltage-Output Settling Time |        | Bipolar output,<br>C <sub>COMPV</sub> = 0nF,<br>to 0.1%    | $C_{OUTV} = 100 pF,$<br>$R_{OUTV} = 2 k \Omega$    |     | 244  |     | μs    |  |
|                              |        | Unipolar output,<br>C <sub>COMPV</sub> = 3.3nF,<br>to 0.1% | $C_{OUTV} = 1nF,$<br>$R_{OUTV} = 2k\Omega$         |     | 1.8  |     | ms    |  |
|                              |        |                                                            | $C_{OUTV} = 1.2 \mu F,$<br>$R_{OUTV} = 2 k \Omega$ |     | 3.64 |     | 1115  |  |
|                              |        | Unipolar output,<br>C <sub>COMPV</sub> = 0nF,<br>to 0.1%   | $C_{OUTV} = 100 pF,$<br>$R_{OUTV} = 2 k \Omega$    |     | 130  |     | μs    |  |
|                              |        |                                                            | $R_{OUTI} = 500\Omega$                             | 1.5 |      |     |       |  |
|                              |        | 0 to 20.45mA                                               | L <sub>OUTI</sub> = 1mH                            |     | 1.66 |     |       |  |
|                              |        | range to 0.1%                                              | $L_{OUTI} = 10 \text{mH}$                          |     | 1.66 |     |       |  |
| Current Output Sottling Time |        |                                                            | L <sub>OUTI</sub> = 1H                             |     | 1.97 |     | mo    |  |
| Current-Output Settling Time |        |                                                            | $R_{OUTI} = 500\Omega$                             |     | 1.43 |     | ms    |  |
|                              |        | 3.97mA to<br>20.45mA range                                 | L <sub>OUTI</sub> = 1mH                            |     | 1.58 |     |       |  |
|                              |        | to 0.1%                                                    | L <sub>OUTI</sub> = 10mH                           |     | 1.58 |     |       |  |
|                              |        |                                                            | $L_{OUTI} = 1H$                                    |     | 1.73 |     |       |  |

### **ELECTRICAL CHARACTERISTICS (continued)**

| PARAMETER                           | SYMBOL           | CONDITIONS                                                         | MIN                       | TYP   | MAX                       | UNITS |
|-------------------------------------|------------------|--------------------------------------------------------------------|---------------------------|-------|---------------------------|-------|
| OUTV OUTPUT                         | •                |                                                                    |                           |       |                           |       |
| OUTV Linear Output Voltage<br>Range |                  |                                                                    | V <sub>SSV</sub> + 3.0    |       | V <sub>DDV</sub> -<br>3.0 | V     |
| Default OUTV Output Voltage         |                  | Unipolar, V <sub>DDV</sub> = +13.48V, V <sub>SSV</sub> = -13.48V   | 0                         |       | +10.48                    |       |
| Ranges (0V to Full Scale)           | Vout             | Bipolar, V <sub>DDV</sub> = +13.48V, V <sub>SSV</sub> = -13.48V    | -10.48                    |       | +10.48                    | V     |
| Minimum OUTV Output Voltage         | Vour             | Unipolar                                                           |                           | +7.68 |                           | V     |
| Range (FS to ADJ)                   | V <sub>OUT</sub> | Bipolar                                                            |                           | ±7.68 |                           | v     |
| Maximum OUTV Output Voltage         | Vour             | Unipolar                                                           |                           | +12.8 |                           | V     |
| Range (FS to ADJ)                   | Vout             | Bipolar                                                            |                           | ±12.8 |                           | v     |
| DC Output Impedance                 |                  |                                                                    |                           | 0.1   |                           | Ω     |
| OUTV Off-State Leakage Current      |                  | OUTV off or disabled,<br>output leakage current from OUTV to AGNE  |                           | 2.5   | 10                        | μA    |
| OUTV Short-Circuit Output           |                  | Sourcing                                                           | 7                         | 10    | 13                        | 0     |
| Current                             | Isc              | Sinking                                                            | -18.0                     | -11.5 | -9.0                      | mA    |
| Minimum OUTV Resistive Load         | Routv            | Full-scale code                                                    |                           | 2     |                           | kΩ    |
| Maximum OLITY Canaditive Load       | Court            | $C_{COMPV} = 3.3 nF$                                               |                           | 1.2   |                           | μF    |
| Maximum OUTV Capacitive Load        | Coutv            | $C_{COMPV} = 0nF$                                                  |                           | 1     |                           | nF    |
| ΟυΤΙ ΟυΤΡυΤ                         |                  |                                                                    |                           |       |                           |       |
| OUTI Voltage Compliance             |                  | Full-scale output, $R_{OUTI} = 1500\Omega$ (Note 5)                |                           | ١     | / <sub>DDI</sub> - 2.5    | V     |
| OUTI Output Current Range           |                  | 0 to 20mA mode includes FS calibration (Note 4)                    | 0                         |       | 20.45                     | mA    |
|                                     |                  | 4–20mA mode includes FS calibration                                | 3.97                      |       | 20.45                     |       |
| DC Output Impedance                 |                  | OUTI = full scale                                                  |                           | 45    |                           | MΩ    |
| OUTI Off-State Leakage Current      |                  | OUTI off or disabled,<br>0V < V <sub>OUTI</sub> < V <sub>DDI</sub> |                           | 0.1   | 10                        | μA    |
| Current-Mode Dropout Detection      |                  | V <sub>DDI</sub> - V <sub>OUTI</sub> , FAULT does not assert       |                           | 1.3   |                           | V     |
| FEEDBACK SENSE BUFFER INF           | UTS              | •                                                                  | •                         |       |                           |       |
| Input Current                       |                  | V <sub>SSV</sub> + 1.7V < SVP, SVN < V <sub>DDV</sub> - 1.7V       |                           | 0.05  | 1                         | μA    |
| Input Voltage Range                 |                  | SVP, SVN                                                           | V <sub>SSV</sub><br>+ 1.7 |       | V <sub>DDV</sub><br>- 1.7 | V     |
| DIGITAL INPUTS                      |                  | •                                                                  | •                         |       |                           |       |
| Input High Voltage                  | VIH              | V <sub>CC</sub> = 4.75V to 5.25V                                   | 2.4                       |       |                           | V     |
| Input Low Voltage                   | VIL              | V <sub>CC</sub> = 4.75V to 5.25V                                   |                           |       | 0.8                       | V     |
| Input Capacitance                   | CIN              |                                                                    |                           | 10    |                           | pF    |
| Input Leakage Current               | l <sub>IN</sub>  | $V_{IN} = 0V \text{ or } V_{CC}$                                   | -1                        |       | +1                        | μA    |
| DIGITAL OUTPUTS                     |                  |                                                                    |                           |       |                           |       |
| Output High Voltage                 | V <sub>OH</sub>  | I <sub>SOURCE</sub> = 400µA, except FAULT                          | V <sub>CC</sub> - 0.      | 5     |                           | V     |
| Output Low Voltage                  | V <sub>OL</sub>  | $V_{CC} = 4.75V$ ISINK = 1.6mA                                     |                           |       | 0.4                       | V     |
|                                     | ·OL              | Isink = 10mA                                                       |                           |       | 1                         |       |



### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{CC} = +5V, C_{COMPI} = 22nF, V_{DDV} = V_{DDCORE} = +15V, V_{SSV} = -15V, V_{DDI} = +24V, V_{REF} = +4.096V, V_{AGND} = V_{DGND} = V_{DUTGND} = V_{DACGND} = 0V, R_{SERIES} = 47\Omega, OUTV loaded with 2k\Omega II 100pF to AGND, OUTI loaded with 500\Omega to AGND, T_A = -40°C to +105°C, unless otherwise noted. Typical values are at T_A = +25°C. See the$ *Typical Operating Circuit*.) (Note 1)

| PARAMETER                                          | SYMBOL                                                             | CONDITIONS                                                                                             | MIN              | ТҮР              | MAX    | UNITS |  |  |
|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|------------------|--------|-------|--|--|
| Output High Leakage Current                        |                                                                    | FAULT only                                                                                             |                  | 0.1              | 2      | μA    |  |  |
| Three-State Output Leakage Current                 |                                                                    | DOUT only                                                                                              |                  | ±0.1             | ±2     | μA    |  |  |
| POWER SUPPLIES (see Table 16                       | )                                                                  |                                                                                                        |                  |                  |        |       |  |  |
| V <sub>CC</sub> Supply Range                       | Vcc                                                                |                                                                                                        | +4.75            |                  | +5.25  | V     |  |  |
|                                                    |                                                                    | Only OUTV powered                                                                                      | +13.48           |                  | +15.75 |       |  |  |
| V <sub>DDV</sub> Supply Range                      | Vddv                                                               | Only OUTI powered                                                                                      |                  | AGND             |        | V     |  |  |
|                                                    |                                                                    | Both OUTV and OUTI powered                                                                             | +13.48           |                  | +15.75 |       |  |  |
|                                                    |                                                                    | Only OUTV powered                                                                                      | -15.75           |                  | -13.48 |       |  |  |
| V <sub>SSV</sub> Supply Range                      | VSSV                                                               | Only OUTI powered                                                                                      |                  | AGND             |        | V     |  |  |
|                                                    |                                                                    | Both OUTV and OUTI powered                                                                             | -15.75           |                  | -13.48 |       |  |  |
|                                                    |                                                                    | Only OUTV powered                                                                                      |                  | V <sub>DDV</sub> |        |       |  |  |
| V <sub>DDI</sub> Supply Range                      | V <sub>DDI</sub>                                                   | Only OUTI powered                                                                                      | +13.48           |                  | +40.00 | V     |  |  |
|                                                    |                                                                    | Both OUTV and OUTI powered                                                                             | VDDV             |                  | +40    |       |  |  |
|                                                    |                                                                    | Only OUTV powered                                                                                      |                  | V <sub>DDV</sub> |        |       |  |  |
| VDDCORE Supply Range                               | VDDCORE                                                            | Only OUTI powered                                                                                      | V <sub>DDI</sub> |                  |        |       |  |  |
|                                                    |                                                                    | Both OUTV and OUTI powered                                                                             |                  | V <sub>DDV</sub> |        |       |  |  |
| Analog and Digital Supply                          | I <sub>VDDV</sub> +<br>I <sub>VDDI</sub> +<br>I <sub>VDDCORE</sub> | OUTV powered, $V_{DDV} = V_{DDI} = V_{DDCORE}$<br>= +15.75V, $V_{SSV} = -15.75V$ , $V_{CC} = +5.25V$ , |                  | 4.5              | 6.5    |       |  |  |
| nalog and Digital Supply<br>currents (OUTV Active) | IVSSV                                                              | OUTV unloaded, all ditgital inputs at $V_{CC}$ or                                                      | -5               | -2.5             |        | mA    |  |  |
|                                                    | IAGND                                                              | DGND                                                                                                   | -3.0             | -1.6             |        |       |  |  |
|                                                    | Ivcc                                                               |                                                                                                        |                  | 0.03             | 0.2    |       |  |  |
| Analog and Digital Supply                          | I <sub>VDDV</sub> +<br>I <sub>VDDI</sub> +<br>I <sub>VDDCORE</sub> | OUTI powered, $V_{DDV} = V_{SSV} = AGND$ ,                                                             |                  | 2.8              | 5.5    |       |  |  |
| Currents (OUTI Active), 0 to                       | IVSSV                                                              | $V_{DDI} = V_{DDCORE} = +12V \text{ to } +40V, V_{CC} =$                                               | -1.0             | -0.03            |        | mA    |  |  |
| 20mA Mode                                          | IAGND                                                              | +5.25V, zero code                                                                                      | -4.0             | -2.1             |        |       |  |  |
|                                                    | IVCC                                                               |                                                                                                        |                  | 0.03             | 0.2    |       |  |  |
| Analog and Digital Supply                          | IVDDV +<br>IVDDI +<br>IVDDCORE                                     | OUTI powered, $V_{DDV} = V_{SSV} = AGND$ ,                                                             |                  | 6.8              | 9.5    |       |  |  |
| Currents (OUTI Active), 4–20mA<br>Mode             | Ivssv                                                              | $V_{DDI} = V_{DDCORE} = +12V$ to +40V, $V_{CC} = +5.25V$ , zero code                                   | -1.0             | -0.03            |        | mA    |  |  |
| Mode                                               | IAGND                                                              | +5.25%, 2010 Code                                                                                      | -4.0             | -2.1             |        |       |  |  |
|                                                    | Ivcc                                                               |                                                                                                        |                  | 0.03             | 0.2    |       |  |  |
|                                                    | IVDDV +<br>IVDDCORE                                                | Both OUTV and OUTI powered, $V_{DDV} =$                                                                |                  | 4.2              | 6      |       |  |  |
| Analog and Digital Supply                          | IVSSV                                                              | $V_{DDCORE} = +15.75V, V_{SSV} = -15.75V, V_{DDI} = +40V, V_{CC} = +5.25V, OUTV unloaded at zero$      | -4.0             | 2.6              |        | mA    |  |  |
| Currents (Either OUTV or OUTI                      | IAGND                                                              | code, all ditgital inputs at $V_{CC}$ or DGND                                                          | -4.0             | -2.0             |        |       |  |  |
| Active)                                            | IVCC                                                               |                                                                                                        |                  | 0.03             | 0.2    |       |  |  |
|                                                    | IVDDI                                                              | 0 to 20mA at zero code                                                                                 |                  | 1.3              | 2      |       |  |  |
|                                                    | Ivddi                                                              | 4–20mA at zero code                                                                                    |                  | 5.3              | 6.5    |       |  |  |



6

**MAX5661** 

### TIMING CHARACTERISTICS

 $(V_{CC} = +5V, C_{COMPI} = 22nF, V_{DDV} = V_{DDCORE} = +15V, V_{SSV} = -15V, V_{DDI} = +24V, V_{REF} = +4.096V, AGND = DGND = DUTGND = DACGND = 0V, R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = -40^{\circ}C$  to  $+105^{\circ}C$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ . See Figure 1.) (Notes 1, 6)

| PARAMETER                                      | SYMBOL            | CONDITIONS                | MIN | ТҮР | MAX | UNITS |
|------------------------------------------------|-------------------|---------------------------|-----|-----|-----|-------|
| SCLK Rise or Fall to CS Fall Setup Time        | tcso              |                           | 45  |     |     | ns    |
| CS Fall to SCLK Rise or Fall Setup Time        | tcss              |                           | 40  |     |     | ns    |
| SCLK Pulse-Width High                          | tСН               |                           | 45  |     |     | ns    |
| SCLK Pulse-Width Low                           | tCL               |                           | 45  |     |     | ns    |
| DIN to SCLK High Setup Time                    | tDS               |                           | 40  |     |     | ns    |
| DIN to SCLK High Hold Time                     | tDH               |                           | 0   |     |     | ns    |
| SCLK Period                                    | tCP               |                           | 100 |     |     | ns    |
| CS Pulse-Width High                            | tcsw              |                           | 100 |     |     | ns    |
| CS High to SCLK High or Low Setup Time         | tCS1              |                           | 45  |     |     | ns    |
| SCLK High to $\overline{CS}$ Hold Time         | tCSH              |                           | 45  |     |     | ns    |
| SCLK Fall to DOUT Valid<br>Propagation Delay   | tDO               | C <sub>DOUT</sub> = 100pF |     |     | 100 | ns    |
| CS Transitions to DOUT<br>Enable/Disable Delay | t <sub>DV</sub>   | C <sub>DOUT</sub> = 100pF |     |     | 100 | ns    |
| SCLK Fall or Rise to $\overline{CS}$ Rise Time | tscs              |                           | 15  |     |     | ns    |
| LDAC Pulse-Width Low                           | tldl              |                           | 40  |     |     | ns    |
| CS Rise to LDAC Rise Time                      | t <sub>CSLD</sub> |                           | 80  |     |     | ns    |

Note 1: Devices are 100% production tested at  $T_A = +25^{\circ}C$  and  $+105^{\circ}C$ . Operation to  $-40^{\circ}C$  is guaranteed by design.

Note 2: I<sub>OUT</sub> INL 100% production tested from 0 to 20mA only.

Note 3: IOUT DNL guaranteed by VOUT DNL.

Note 4: 0 to 20mA zero-scale current extrapolated by interpolation from full scale and code 192. See the *Measuring Zero-Code Current (0 to 20mA Mode)* section.

**Note 5:** OUTI voltage compliance measured at  $V_{DDI} = +33.22V$ .

Note 6: When updating the DAC registers, allow 5µs before sending the next command.



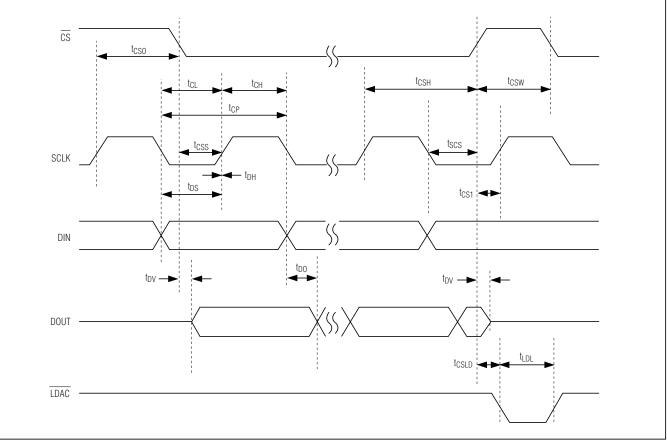
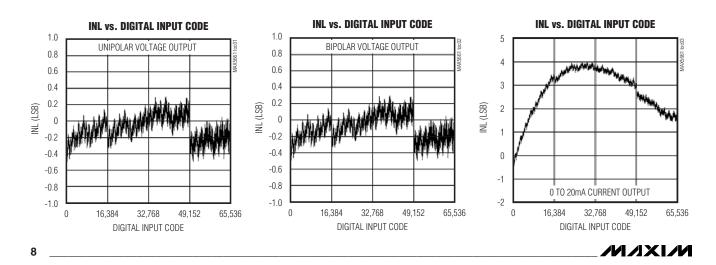
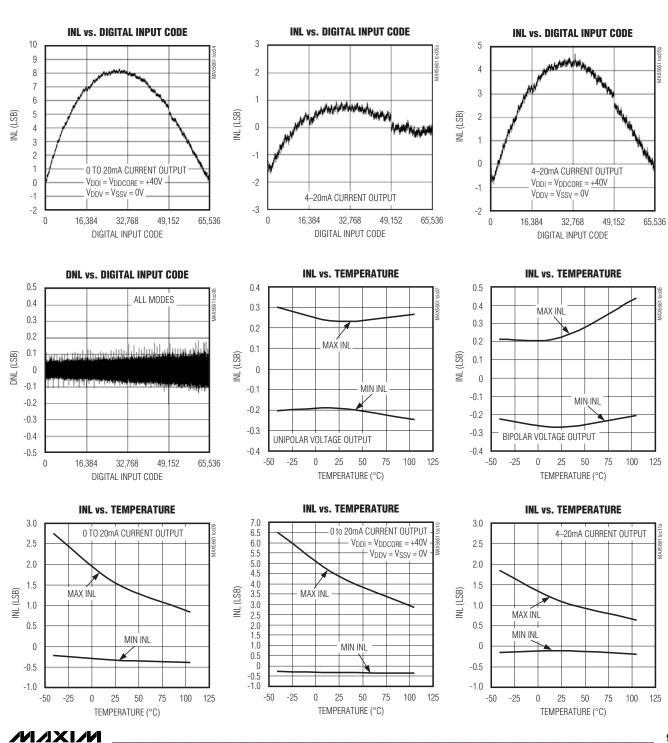





Figure 1. Serial-Interface Timing Diagram

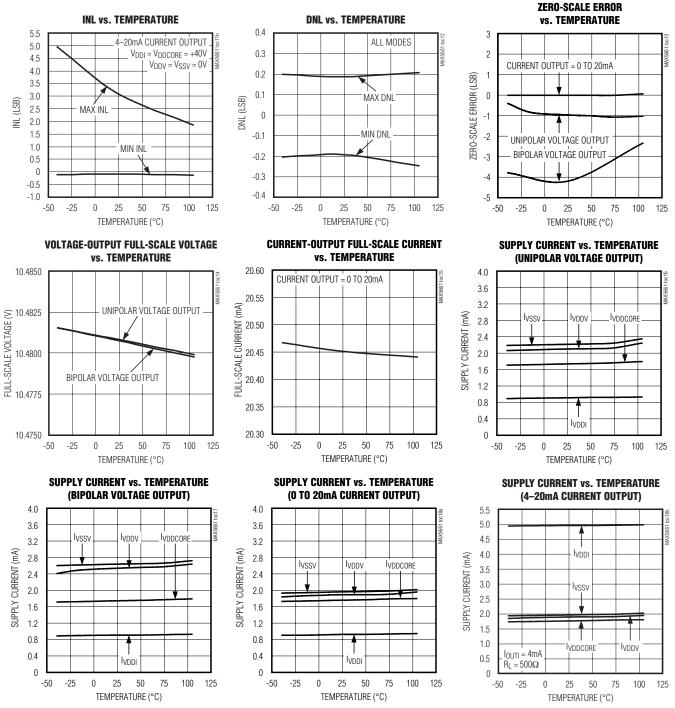
### **Typical Operating Characteristics**

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)



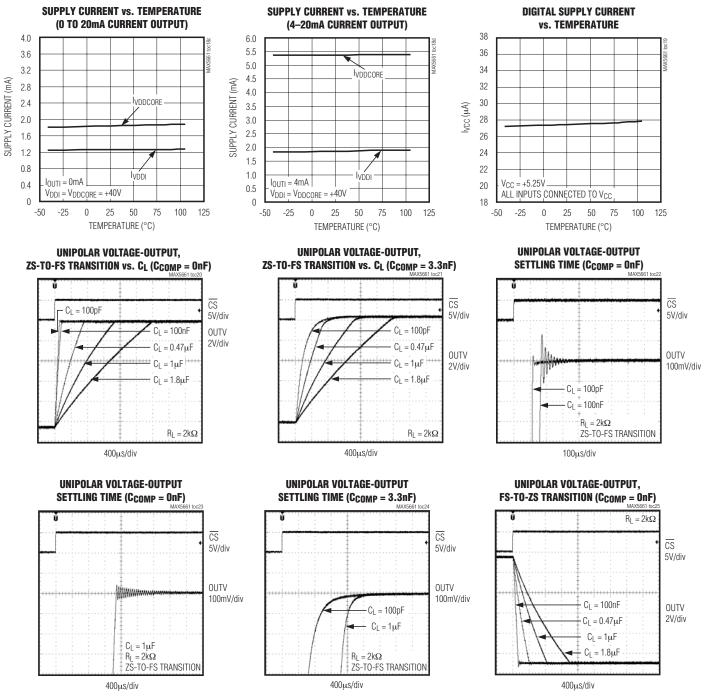


### **Typical Operating Characteristics (continued)**

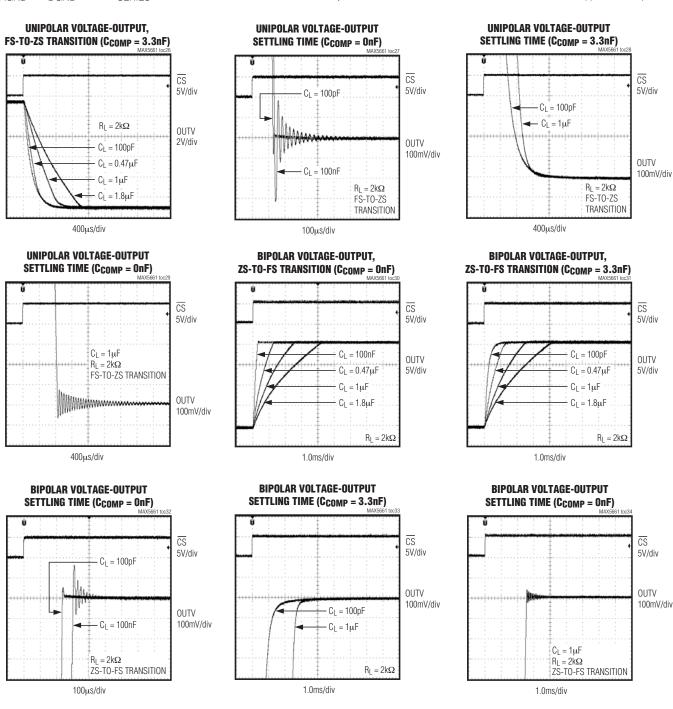

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)



### **Typical Operating Characteristics (continued)**


///XI//

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)




### **Typical Operating Characteristics (continued)**

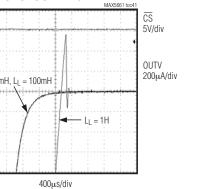
(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)

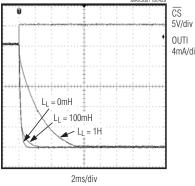


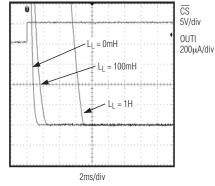




### **Typical Operating Characteristics (continued)**


/N/IXI/N

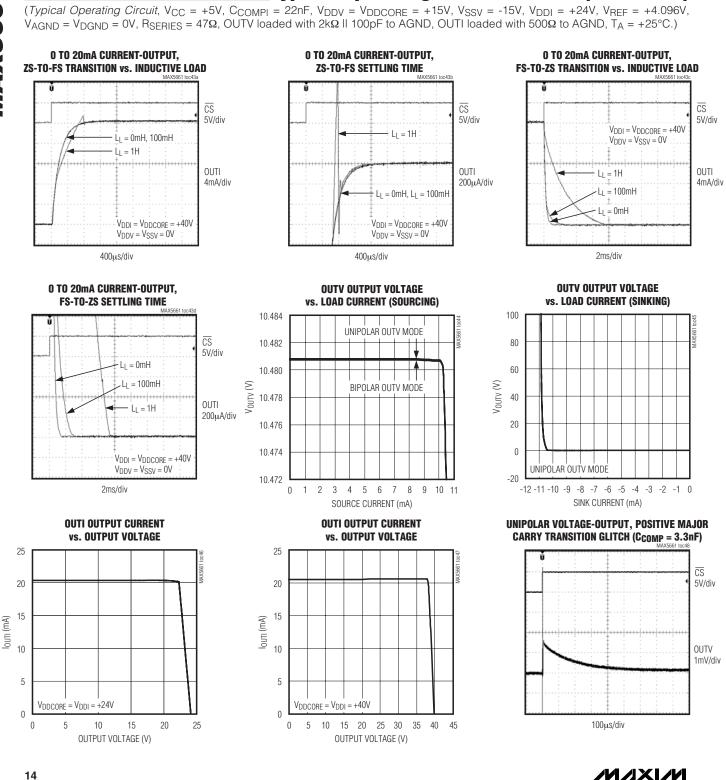

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)


### **Typical Operating Characteristics (continued)**

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)

#### **BIPOLAR VOLTAGE-OUTPUT, BIPOLAR VOLTAGE-OUTPUT. BIPOLAR VOLTAGE-OUTPUT** FS-TO-ZS TRANSITION (CCOMP = OnF) FS-TO-ZS TRANSITION (C<sub>COMP</sub> = 3.3nF) SETTLING TIME (CCOMP = OnF) CS CS CS 5V/div 5V/div 5V/div $C_{L} = 100 pF +$ $C_L = 100 pF$ ± C<sub>L</sub> = 100pF $C_{I} = 100 nF$ OUTV OUTV $C_{I} = 0.47 \mu F$ $C_{I} = 0.47 \mu F$ 5V/div 5V/div - C<sub>L</sub> = 1µF $C_L = 1\mu F$ OUTV - Ci = 1.8µF $C_{I} = 1.8 \mu F$ 100mV/div $R_I = 2k\Omega$ $R_I = 2k\Omega$ $R_L = 2k\Omega$ FS-TO-ZS TRANSITION 1.0ms/div 1.0ms/div 100us/div **BIPOLAR VOLTAGE-OUTPUT BIPOLAR VOLTAGE-OUTPUT 0 TO 20mA CURRENT-OUTPUT,** SETTLING TIME (CCOMP = 3.3nF) SETTLING TIME (CCOMP = OnF) **ZS-TO-FS TRANSITION vs. INDUCTIVE LOAD** CS 5V/div CS CS OUTI 5V/div 5V/div 4mA/div $L_L = 1H$ $C_I = 1 \mu F$ $R_1 = 2k\Omega$ $\cdot C_L = 100 pF$ FS-TO-ZS TRANSITION $L_{1} = 0mH, L_{1} = 100mH$ $C_L = 1\mu F$ OUTV OUTV 100mV/div 100mV/div $R_{I} = 2k\Omega$ FS-TO-ZS TRANSITION 1.0ms/div 1.0ms/div 400µs/div **0 TO 20mA CURRENT-OUTPUT. 0 TO 20mA CURRENT-OUTPUT. 0 TO 20mA CURRENT-OUTPUT.** FS-TO-ZS TRANSITION vs. INDUCTIVE LOAD **FS-TO-ZS SETTLING TIME ZS-TO-FS SETTLING TIME** CS CS 5V/div 5V/div 5V/div OUTI OUTI = 0 mH4mA/div OUTV $L_{I} = 100 mH$ 200µA/div $L_{I} = 0mH, L_{I} = 100mH$

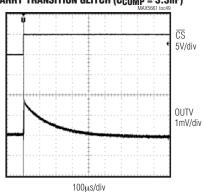




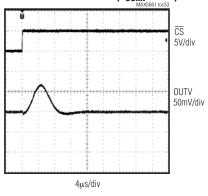



**MAX566** 

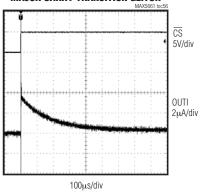
**Typical Operating Characteristics (continued)** 

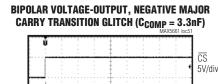




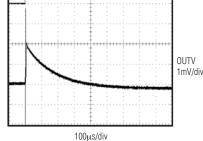


### **Typical Operating Characteristics (continued)**

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)

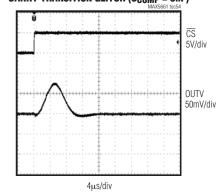

## UNIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR CARRY TRANSITION GLITCH ( $C_{COMP} = 3.3nF$ )



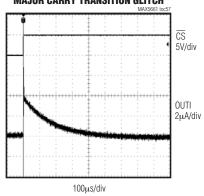

UNIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR CARRY TRANSITION GLITCH (C<sub>COMP</sub> = OnF)



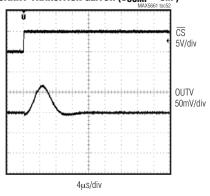

0 TO 20mA CURRENT-OUTPUT, POSITIVE MAJOR CARRY TRANSITION GLITCH



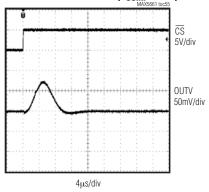




**MAX5661** 




BIPOLAR VOLTAGE-OUTPUT, POSITIVE MAJOR CARRY TRANSITION GLITCH (C<sub>COMP</sub> = OnF)

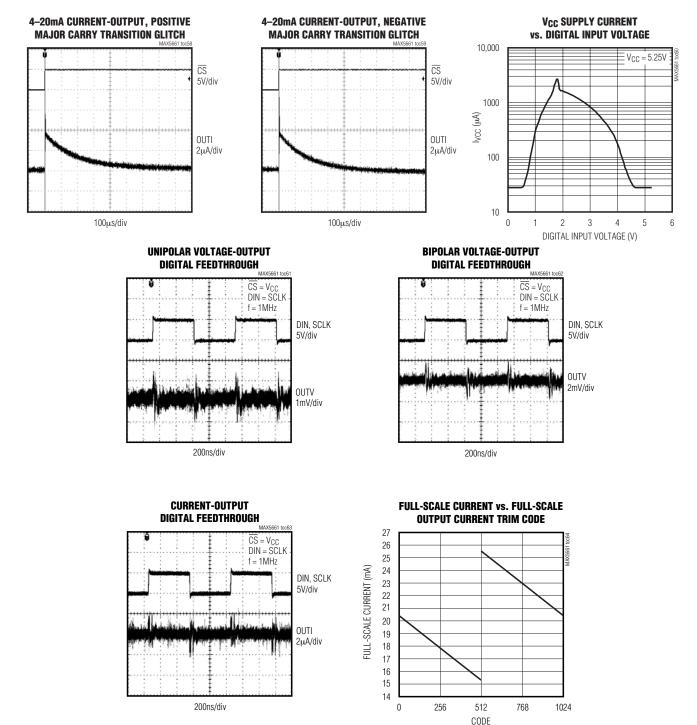



0 TO 20mA CURRENT-OUTPUT, NEGATIVE MAJOR CARRY TRANSITION GLITCH



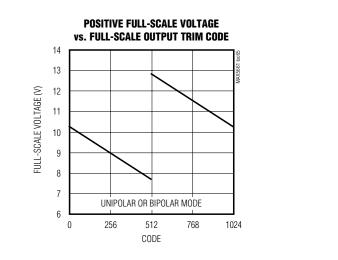
UNIPOLAR VOLTAGE-OUTPUT, POSITIVE MAJOR CARRY TRANSITION GLITCH (C<sub>COMP</sub> = 0nF)

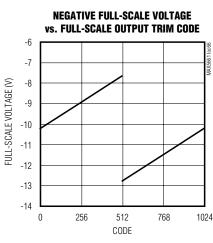



BIPOLAR VOLTAGE-OUTPUT, NEGATIVE MAJOR CARRY TRANSITION GLITCH (C<sub>COMP</sub> = 0nF)






### **Typical Operating Characteristics (continued)**


(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)



### **Typical Operating Characteristics (continued)**

(*Typical Operating Circuit*,  $V_{CC} = +5V$ ,  $C_{COMPI} = 22nF$ ,  $V_{DDV} = V_{DDCORE} = +15V$ ,  $V_{SSV} = -15V$ ,  $V_{DDI} = +24V$ ,  $V_{REF} = +4.096V$ ,  $V_{AGND} = V_{DGND} = 0V$ ,  $R_{SERIES} = 47\Omega$ , OUTV loaded with  $2k\Omega$  II 100pF to AGND, OUTI loaded with  $500\Omega$  to AGND,  $T_A = +25^{\circ}C$ .)





### Pin Description

| PIN                                                                           | NAME    | FUNCTION                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1, 3, 5, 7, 8,<br>10, 15–20,<br>29–34, 36, 38,<br>42, 44, 46–52,<br>58, 61–64 | N.C.    | No Connection. Not internally connected.                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| 2                                                                             | OUTI    | DAC Current-Source Output. OUTI sources either from 0 to 20mA or from 4–20mA.                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 4                                                                             | Vddi    | DAC Current-Output Positive Supply. Connect $V_{DDI}$ to a power supply between +13.48V and +40V to power the DAC current-output (OUTI) buffer. Bypass $V_{DDI}$ with a 0.1µF capacitor to AGND, as close as possible to the device.                                                                                     |  |  |  |  |  |  |  |
| 6                                                                             | COMPI   | OUTI Noise-Limiting Capacitor Connection. Connect a 22nF capacitor from COMPI to $V_{DDI}$ to reduce transient noise at OUTI.                                                                                                                                                                                            |  |  |  |  |  |  |  |
| 9                                                                             | OUTI4/0 | Current-Output Range Selection Input. Connect OUTI4/0 to AGND to select the 0 to 20mA OUTI current-output range. Connect OUTI4/0 to VDDI to select the 4–20mA OUTI current-output range. The OUTI current range can also be set by software. When using software to set the OUTI current range, connect OUTI4/0 to AGND. |  |  |  |  |  |  |  |
| 11                                                                            | REF     | Buffered Voltage Reference Input. Connect an external +4.096V voltage reference to REF. Bypass REF with a 0.1 $\mu$ F capacitor to DACGND, as close as possible to the device. Use a 1k $\Omega$ resistor in series to the reference input for optimum performance.                                                      |  |  |  |  |  |  |  |
| 12                                                                            | DACGND  | DAC Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on a low-noise ground plane with a star connection.                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 13                                                                            | DACGNDS | DAC Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on a low-noise ground plane with a star connection.                                                                                                                                                                                       |  |  |  |  |  |  |  |
| 14                                                                            | CNF1    | Voltage/Current Configuration Input. CNF1 and CNF0 control the OUTV and OUTI outputs. See Tables 13 and 14.                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 21                                                                            | CNF0    | Voltage/Current Configuration Input. CNF0 and CNF1 control the OUTV and OUTI outputs. See Tables 13 and 14.                                                                                                                                                                                                              |  |  |  |  |  |  |  |



### \_\_\_\_\_Pin Description (continued)

| 24       US       the serial interface. DOUT is high impedance when CS is high.         25       DGND       Digital Ground         26       VCC       Digital Power Supply. Connect Vcc to a power supply between +4.75V and +5.25V. Bypass 1 with a 0.1µF capacitor to DGND, as close as possible to the device.         27       LDAC       Active-Low Asynchronous Load DAC Input. Drive LDAC to Vcc if unuse register to the DAC register to immediately update the output. Connect LDAC to Vcc if unuse OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).         28       FAULT       Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, a OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).         35       DOUT       Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance when CS is high. Use DOUT to read the shift register contents of the clear register, to OV in voltage mode, or 0mA/4mA depending on the output current mode. Program contents of the clear register through the serial interface. Enable and disable the CLR input through the control register's CLREN bit (see Table 4).         39       VDDCORE       DAC Core Positive Supply. Connect VDDCORE to VDDI or VDDV (see Table 16). Bypass VDDCV with a 0.1µF capacitor to AGND, as close as possible to the device.         40       DUTGNDS       DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on low-noise ground plane with a star connection.         43       COMPV       OUTV Analog Ground.       Remote Ground Se                                                                                              | PIN    | NAME    | FUNCTION                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 24         CS         Active-Low Chip-Select Input. Drive CS low to enable the serial interface. Drive CS high to dis<br>the serial interface. DOUT is high impedance when CS is high.           25         DGND         Digital Ground           26         VCC         Digital Power Supply. Connect VCc to a power supply between +4.75V and +5.25V. Bypass 1<br>with a 0.1µF capacitor to DGND, as close as possible to the device.           27         LDAC         Active-Low Asynchronous Load DAC Input. Drive LDAC to Vcc if unuse<br>register to the DAC register to immediately update the output. Connect DAC to Vcc if unuse<br>28           FAULT         Active-Low Open-Drain Fault Output. FAULT assets low for an OUTI open-circuit condition, a<br>OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).           35         DOUT         Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance<br>when CS is high. Use DOUT to read the shift register contents or for daisy chaining multiple<br>MAX56661 devices.           37         CLR         Active-Low Clear Input. Drive CLR low to set the DAC code to the value stored in the clear<br>register, to 0V in voltage mode, or 0mA/4mA depending on the output current mode. Progran<br>contents of the clear register through the serial interface. Enable and disable the CLR input<br>through the control register's CLREN bit (see Table 14).           39         VDDCORE         DAC Core Positive Supply. Connect VDCORE to VDD) or VDDV (see Table 16). Bypass VDDCO<br>with a 0.1µF capacitor to AGND, as close as possible to the device.           41         DUT Analog Ground. Connect DACGND, DACGND                          | 22     | DIN     | Serial-Data Input. Data is clocked into the serial interface on the rising edge of SCLK.                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| 24       US       the serial interface. DOUT is high impedance when CS is high.         25       DGND       Digital Ground         26       VCC       Digital Power Supply. Connect Vcc to a power supply between +4.75V and +5.25V. Bypass 1 with a 0.1µF capacitor to DGND, as close as possible to the device.         27       LDAC       Active-Low Asynchronous Load DAC Input. Drive LDAC to Vcc if unuse register to the DAC register to immediately update the output. Connect LDAC to Vcc if unuse OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).         28       FAULT       Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, a OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).         35       DOUT       Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance when CS is high. Use DOUT to read the shift register contents of the clear register, to OV in voltage mode, or 0mA/4mA depending on the output current mode. Program contents of the clear register through the serial interface. Enable and disable the CLR input through the control register's CLREN bit (see Table 4).         39       VDDCORE       DAC Core Positive Supply. Connect VDDCORE to VDDI or VDDV (see Table 16). Bypass VDDCV with a 0.1µF capacitor to AGND, as close as possible to the device.         40       DUTGNDS       DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on low-noise ground plane with a star connection.         43       COMPV       OUTV Analog Ground.       Remote Ground Se                                                                                              | 23     | SCLK    | Serial-Clock Input                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| 26         VCC         Digital Power Supply. Connect V <sub>CC</sub> to a power supply between +4.75V and +5.25V. Bypass 's<br>with a 0.1µF capacitor to DGND, as close as possible to the device.           27         LDAC         Active-Low Asynchronous Load DAC Input. Drive LDAC low to transfer the contents of the input<br>register to the DAC register to immediately update the output. Connect LDAC to V <sub>CC</sub> if unuse<br>28           28         FAULT         Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).           35         DOUT         Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance<br>when CS is high. Use DOUT to read the shift register contents or for daisy chaining multiple<br>MAX5661 devices.           37         CLR         Active-Low Clear Input. Drive CLR low to set the DAC code to the value stored in the clear<br>register, to OV in voltage mode, or 0mA/4mA depending on the output current mode. Program<br>contents of the clear register through the serial interface. Enable and disable the CLR input<br>through the control register's CLREN bit (see Table 4).           39         VDDCORE         DAC Core Positive Supply. Connect VDDCORE to VDD V (see Table 16). Bypass VDDCORE<br>with a 0.1µF capacitor to AGND, as close as possible to the device.           40         DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on<br>low-noise ground plane with a star connection.           41         DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on<br>low-noise ground plane with a star connection.           53 | 24     | CS      | Active-Low Chip-Select Input. Drive $\overline{CS}$ low to enable the serial interface. Drive $\overline{CS}$ high to disable the serial interface. DOUT is high impedance when $\overline{CS}$ is high.                                       |  |  |  |  |  |  |  |  |  |
| 26         VCC         with a 0.1µF capacitor to DGND, as close as possible to the device.           27         LDAC         Active-Low Asynchronous Load DAC Input. Drive TDAC low to transfer the contents of the inpregister to the DAC register to immediately update the output. Connect LDAC to Vcc if unuse register to the DAC register to immediately update the output. Connect LDAC to Vcc if unuse Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, a OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).           35         DOUT         Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance when CS is high. Use DOUT to read the shift register contents or for daisy chaining multiple MAX5661 devices.           37         CLR         Active-Low Clear Input. Drive CLR low to set the DAC code to the value stored in the clear register, to OV in voltage mode, or OmA/4mA depending on the output current mode. Program contents of the clear register through the serial interface. Enable and disable the CLR input through the control register's CLREN bit (see Table 4).           39         VDDCORE         DAC Core Positive Supply. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS togeth on a low-noise ground plane with a star connection.           41         DUT Analog Genued. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on tow-noise ground plane with a star connection.           53         SVP         OUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CC when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response ti Operating Circuit.              | 25     | DGND    | Digital Ground                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 27       LDAC       register to the DAC register to immediately update the output. Connect LDAC to V <sub>CC</sub> if unuse         28       FAULT       Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, a OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).         35       DOUT       Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance when CS is high. Use DOUT to read the shift register contents or for daisy chaining multiple MAX5661 devices.         37       CLR       Active-Low Clear Input. Drive CLR low to set the DAC code to the value stored in the clear register, to 0V in voltage mode, or OmA/4mA depending on the output current mode. Program contents of the clear register through the control register's CLREN bit (see Table 4).         39       VDDCORE       DAC Core Positive Supply. Connect VDpCoRet to VDpD or VDpV (see Table 16). Bypass VDpCC with a 0.1µF capacitor to AGND, as close as possible to the device.         40       DUTGNDS       DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on low-noise ground plane with a star connection.         41       DUTGND       OUTV Amplifier Compensation Feedback Node. Connect 4.       0.01VV Amplifier Compensation Feedback Node. Connect VSys to a power supply between +13.         53       SVP       Remote Ground Sense Input. Connect SVP to the bottom terminal of RouTv. See the <i>Typical Operating Circuit</i> .         54       AGND       Analog Ground       1.1µF capacitor to AGND, as close as possible to the device                                                                                                       | 26     | VCC     | Digital Power Supply. Connect V <sub>CC</sub> to a power supply between +4.75V and +5.25V. Bypass V <sub>CC</sub> with a 0.1 $\mu$ F capacitor to DGND, as close as possible to the device.                                                    |  |  |  |  |  |  |  |  |  |
| 28       FAUL1       OUTV short-circuit condition, or when the CLR input is low (see Table 12 and Figure 9).         35       DOUT       Serial Data Output. Data transitions at DOUT on SCLK's falling edge. DOUT is high impedance when CS is high. Use DOUT to read the shift register contents or for daisy chaining multiple MAX5661 devices.         37       CLR       Active-Low Clear Input. Drive CLR low to set the DAC code to the value stored in the clear register, to OV in voltage mode, or OmA/4mA depending on the output current mode. Program contents of the clear register through the serial interface. Enable and disable the CLR input through the control register's CLREN bit (see Table 4).         39       VDDCORE       DAC Core Positive Supply. Connect VppCore to Vpp) or Vppy (see Table 16). Bypass Vppc, with a 0.1µF capacitor to AGND, as close as possible to the device.         40       DUTGNDS       DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS togeth on a low-noise ground plane with a star connection.         41       DUTGND       OUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CC when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response ti doparating Circuit.         53       SVP       Remote Ground Sense Input. Connect SVP to the bottom terminal of Roury. See the Typical Operating Circuit.         54       AGND       Analog Ground         55       VSSV       DAC Voltage-Output Negative Power Supply. Always connect VSSy to a power supply between -13 and -15.75V. Bypass VSysy with a 0.1µF capacitor to AGND, as close as possible to the d                                                                                     | 27     | LDAC    | Active-Low Asynchronous Load DAC Input. Drive $\overline{\text{LDAC}}$ low to transfer the contents of the input register to the DAC register to immediately update the output. Connect $\overline{\text{LDAC}}$ to V <sub>CC</sub> if unused. |  |  |  |  |  |  |  |  |  |
| 35       DOUT       when $\overline{CS}$ is high. Use DOUT to read the shift register contents or for daisy chaining multiple MAX5661 devices.         37 $\overline{CLR}$ Active-Low Clear Input. Drive $\overline{CLR}$ low to set the DAC code to the value stored in the clear register, to 0V in voltage mode, or 0mA/4mA depending on the output current mode. Program contents of the clear register through the serial interface. Enable and disable the $\overline{CLR}$ input through the control register's $\overline{CLREN}$ bit (see Table 4).         39       VDDCORE       DAC Core Positive Supply. Connect VDDCORE to VDD) or VDDV (see Table 16). Bypass VDDCO with a 0.1µF capacitor to AGND, as close as possible to the device.         40       DUTGNDS       DUT Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS togeth on a low-noise ground plane with a star connection.         41       DUTGND       DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on low-noise ground plane with a star connection.         43       COMPV       OUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CC when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response ti <i>A</i> falog Ground         53       SVP       Remote Ground Sense Input. Connect SVP to the bottom terminal of ROUTV. See the <i>Typical Operating Circuit</i> .         54, 59       I.C.       Internal Connection. Leave unconnected.         55       VSSV       DAC Voltage-Output Negative Power Supply. Always connect VSSV to a power supply between -13 and -15.75V. Bypass VSSV with a 0.1µF capacitor to AGND, as close as possible to the                                              | 28     | FAULT   | Active-Low Open-Drain Fault Output. FAULT asserts low for an OUTI open-circuit condition, an OUTV short-circuit condition, or when the $\overline{\text{CLR}}$ input is low (see Table 12 and Figure 9).                                       |  |  |  |  |  |  |  |  |  |
| 37Termregister, to 0V in voltage mode, or 0mA/4mA depending on the output current mode. Program<br>contents of the clear register through the serial interface. Enable and disable the CLR input<br>through the control register's CLREN bit (see Table 4).39VDDCOREDAC Core Positive Supply. Connect VDDCORE to VDD1 or VDDV (see Table 16). Bypass VDDCOR<br>with a 0.1µF capacitor to AGND, as close as possible to the device.40DUTGNDSDUT Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS toget<br>on a low-noise ground plane with a star connection.41DUTGNDDUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on<br>low-noise ground plane with a star connection.43COMPVOUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CO<br>when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response ti<br>4545AGNDAnalog Ground53SVPRemote Ground Sense Input. Connect SVP to the bottom terminal of ROUTV. See the Typical<br>Operating Circuit.54, 59I.C.Internal Connection. Leave unconnected.55VSSVDAC Voltage-Output Negative Power Supply. Always connect VSSV to a power supply between -13<br>and -15.75V. Bypass VSSV with a 0.1µF capacitor to AGND, as close as possible to the device56OUTVDAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10<br>to +10.48V in bipolar mode.57VSSVDAC Voltage-Output Positive Power Supply. Connect VDDV to a power supply between +13.4                                                                                                                                                                                                                                                                   | 35     | DOUT    |                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| 39VDDCOREwith a 0.1µF capacitor to AGND, as close as possible to the device.40DUTGNDSDUT Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS togeth<br>on a low-noise ground plane with a star connection.41DUTGNDDUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on<br>low-noise ground plane with a star connection.43COMPVOUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CO<br>when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response ti<br>4545AGNDAnalog Ground53SVPRemote Ground Sense Input. Connect SVP to the bottom terminal of R <sub>OUTV</sub> . See the <i>Typical</i><br><i>Operating Circuit</i> .54, 59I.C.Internal Connection. Leave unconnected.55VSSVDAC Voltage-Output Negative Power Supply. Always connect VSSV to a power supply between -13<br>and -15.75V. Bypass VSSV with a 0.1µF capacitor to AGND, as close as possible to the devic<br>to +10.48V in unipolar mode and -10<br>to +10.48V in bipolar mode.57VGDVDAC Voltage-Output Positive Power Supply. Connect VDDV to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37     | CLR     | register, to 0V in voltage mode, or 0mA/4mA depending on the output current mode. Program the contents of the clear register through the serial interface. Enable and disable the $\overline{\text{CLR}}$ input                                |  |  |  |  |  |  |  |  |  |
| 40DUTGNDSon a low-noise ground plane with a star connection.41DUTGNDDUTGNDDUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on<br>low-noise ground plane with a star connection.43COMPVOUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CO<br>when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response ti<br>4545AGNDAnalog Ground53SVPRemote Ground Sense Input. Connect SVP to the bottom terminal of Routy. See the Typical<br>Operating Circuit.54, 59I.C.Internal Connection. Leave unconnected.55VSSVDAC Voltage-Output Negative Power Supply. Always connect VSSV to a power supply between -13<br>and -15.75V. Bypass VSSV with a 0.1µF capacitor to AGND, as close as possible to the devic<br>to +10.48V in bipolar Mode.56OUTVDAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10<br>to +10.48V in bipolar mode.57VDAC Voltage-Output Positive Power Supply. Connect VDDV to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39     | VDDCORE | DAC Core Positive Supply. Connect $V_{DDCORE}$ to $V_{DDI}$ or $V_{DDV}$ (see Table 16). Bypass $V_{DDCORE}$ with a 0.1µF capacitor to AGND, as close as possible to the device.                                                               |  |  |  |  |  |  |  |  |  |
| 41       DUTGND       low-noise ground plane with a star connection.         43       COMPV       OUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to CC when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response to 45         45       AGND       Analog Ground         53       SVP       Remote Ground Sense Input. Connect SVP to the bottom terminal of R <sub>OUTV</sub> . See the <i>Typical Operating Circuit</i> .         54, 59       I.C.       Internal Connection. Leave unconnected.         55       VSSV       DAC Voltage-Output Negative Power Supply. Always connect V <sub>SSV</sub> to a power supply between -13 and -15.75V. Bypass V <sub>SSV</sub> with a 0.1µF capacitor to AGND, as close as possible to the devic to +10.48V in unipolar mode and -10 to +10.48V in bipolar mode.         56       OUTV       DAC Voltage-Output Positive Power Supply. Connect V <sub>DDV</sub> to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40     | DUTGNDS | DUT Analog Sense Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on a low-noise ground plane with a star connection.                                                                                                             |  |  |  |  |  |  |  |  |  |
| 43COMPVwhen OUTV drives capacitive loads of up to 1.2μF. Leave COMPV open for faster response ti45AGNDAnalog Ground53SVPRemote Ground Sense Input. Connect SVP to the bottom terminal of ROUTV. See the Typical<br>Operating Circuit.54, 59I.C.Internal Connection. Leave unconnected.55VSSVDAC Voltage-Output Negative Power Supply. Always connect VSSV to a power supply between -13.<br>and -15.75V. Bypass VSSV with a 0.1μF capacitor to AGND, as close as possible to the devic<br>to +10.48V in unipolar mode and -1056OUTVDAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10<br>to +10.48V in bipolar mode.57VSDVDAC Voltage-Output Positive Power Supply. Connect VDDV to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41     | DUTGND  | DUT Analog Ground. Connect DACGND, DACGNDS, DUTGND, and DUTGNDS together on a low-noise ground plane with a star connection.                                                                                                                   |  |  |  |  |  |  |  |  |  |
| 53       SVP       Remote Ground Sense Input. Connect SVP to the bottom terminal of R <sub>OUTV</sub> . See the <i>Typical Operating Circuit</i> .         54, 59       I.C.       Internal Connection. Leave unconnected.         55       VSSV       DAC Voltage-Output Negative Power Supply. Always connect V <sub>SSV</sub> to a power supply between -13 and -15.75V. Bypass V <sub>SSV</sub> with a 0.1µF capacitor to AGND, as close as possible to the devic         56       OUTV       DAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10 to +10.48V in bipolar mode.         57       VSSV       DAC Voltage-Output Positive Power Supply. Connect V <sub>DDV</sub> to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43     | COMPV   | OUTV Amplifier Compensation Feedback Node. Connect a 3.3nF capacitor from OUTV to COMPV when OUTV drives capacitive loads of up to 1.2µF. Leave COMPV open for faster response time.                                                           |  |  |  |  |  |  |  |  |  |
| 53       SVP       Operating Circuit.         54, 59       I.C.       Internal Connection. Leave unconnected.         55       VSSV       DAC Voltage-Output Negative Power Supply. Always connect V <sub>SSV</sub> to a power supply between -13. and -15.75V. Bypass V <sub>SSV</sub> with a 0.1µF capacitor to AGND, as close as possible to the devic         56       OUTV       DAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10 to +10.48V in bipolar mode.         57       VSSV       DAC Voltage-Output Positive Power Supply. Connect V <sub>DDV</sub> to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45     | AGND    | Analog Ground                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| 55       VSSV       DAC Voltage-Output Negative Power Supply. Always connect V <sub>SSV</sub> to a power supply between -13. and -15.75V. Bypass V <sub>SSV</sub> with a 0.1µF capacitor to AGND, as close as possible to the devic         56       OUTV       DAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10 to +10.48V in bipolar mode.         57       USDV       DAC Voltage-Output Positive Power Supply. Connect V <sub>DDV</sub> to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53     | SVP     |                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| 55       VSSV       and -15.75V. Bypass V <sub>SSV</sub> with a 0.1µF capacitor to AGND, as close as possible to the devic         56       OUTV       DAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10 to +10.48V in bipolar mode.         57       VSSV       DAC Voltage-Output Positive Power Supply. Connect VDDV to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54, 59 | I.C.    | Internal Connection. Leave unconnected.                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 56     OUTV     to +10.48V in bipolar mode.       57     DAC Voltage-Output Positive Power Supply. Connect V <sub>DDV</sub> to a power supply between +13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55     | VSSV    | DAC Voltage-Output Negative Power Supply. Always connect $V_{SSV}$ to a power supply between -13.48V and -15.75V. Bypass $V_{SSV}$ with a 0.1µF capacitor to AGND, as close as possible to the device.                                         |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56     | OUTV    | DAC Unipolar/Bipolar Voltage Output. OUTV provides 0 to +10.48V in unipolar mode and -10.48V to +10.48V in bipolar mode.                                                                                                                       |  |  |  |  |  |  |  |  |  |
| and + 15.75V. Dypass VDDV with a 0.1µF capacitor to Adivid, as close as possible to the devi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57     | VDDV    | DAC Voltage-Output Positive Power Supply. Connect $V_{DDV}$ to a power supply between +13.48V and +15.75V. Bypass $V_{DDV}$ with a 0.1µF capacitor to AGND, as close as possible to the device.                                                |  |  |  |  |  |  |  |  |  |
| 60 SVN Remote Voltage Sense Input. Connect to the top terminal of R <sub>OUTV</sub> . See the <i>Typical Operating C</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60     | SVN     | Remote Voltage Sense Input. Connect to the top terminal of ROUTV. See the Typical Operating Circuit.                                                                                                                                           |  |  |  |  |  |  |  |  |  |

### **Detailed Description**

The MAX5661 single 16-bit DAC with precision high-voltage amplifiers provides a complete solution for programmable current and voltage-output applications. The programmable output amplifiers swing to industry-standard voltage levels of ±10V or current levels from 0mA (or from 4mA) to 20mA. The OUTV voltage output drives resistive loads greater than  $2k\Omega$  and capacitive loads up to  $1.2\mu$ F. Force and sense connections on the voltage output compensate for series protection resistors and field wiring resistance. Short-circuit protection on the voltage output limits output current. The OUTI current output drives resistive loads from  $0\Omega$  and higher, up to a compliance voltage of (V<sub>DDI</sub> - 2.5V). The OUTI current output also drives inductive loads up to 1H.

The MAX5661 provides a current output or a voltage output, with only one output active at any given time. The MAX5661 operates with  $\pm 13.48V$  to  $\pm 15.75V$  dual supplies (V<sub>DDV</sub>, V<sub>SSV</sub>) for the voltage output and a  $\pm 13.48V$  to  $\pm 40V$  single supply (V<sub>DDI</sub>) for the current output (see Table 16). The  $\pm 4.75V$  to  $\pm 5.25V$  digital supply (V<sub>CC</sub>) powers the digital circuitry and V<sub>DDCORE</sub> powers the rest of the internal analog circuitry. A buffered reference input accepts a  $\pm 4.096V$  reference voltage.

The LDAC and CLR inputs asynchronously update the DAC outputs. CLR sets the DAC code to the value stored in the clear register (software clear), or to zero scale (hardware clear). The FAULT output asserts for an open-circuit current output, a short-circuit voltage output, or a clear state condition when CLR is low. The power-on reset circuitry guarantees the outputs remain off at power-up and all register bits are set to zero to ensure a glitchless power-up sequence.

A 10MHz SPI-/QSPI-/MICROWIRE-compatible serial interface programs the DAC outputs and configures the device. The DOUT output allows shift-register reads or daisy chaining of several devices. The double-buffered interface includes an input register and a DAC register. Use software commands or the asynchronous LDAC input to transfer the input register contents to the DAC register and update the DAC outputs.

**4-Wire SPI-Compatible Serial Interface** The MAX5661 communicates through a serial interface compatible with SPI, QSPI, and MICROWIRE devices. For SPI, ensure that the SPI bus master (typically a microcontroller ( $\mu$ C)) runs in master mode to generate the serial-clock signal. Set the SCLK frequency to 10MHz or less, and set the clock polarity (CPOL) and phase (CPHA) in the  $\mu$ C control registers to the same value. The MAX5661 operates with SCLK idling high or low, and thus operates with CPOL = CPHA = 0 (see Figure 2) or CPOL = CPHA = 1 (see Figure 3). Force CS low to input data at DIN on the rising edge of SCLK. Output data at DOUT updates on the falling edge of SCLK (see Figure 1).

A high-to-low transition on  $\overline{CS}$  initiates the 24-bit data input cycle. Once  $\overline{CS}$  is low, write an 8-bit command byte (MSB first) at DIN to send data to the appropriate internal register (see Tables 1, 2, and 3). C7 is the MSB of the command byte and C0 is the LSB. Following the command byte, write 2 data bytes containing bits D15–D0. D15 is the MSB of the 2 data bytes and D0 is the LSB (see Figure 4 and the *Register Descriptions* section). Data loads into the shift register 1 bit at a time.

Write the data as one continuous 24-bit stream, always keeping CS low throughout the entire 24-bit word. The MAX5661 stores the 24 most recent bits received, including bits from previous transmission(s). Ensure SCLK has 24 rising and falling edges between CS falling low to CS returning high. Data loads into the shift register on the rising edge of SCLK. Once CS returns high, data transfers from the shift register into the appropriate internal register.

When reading data, write an 8-bit command byte and 16 data bits at DIN. On the following 24-bit sequence, read out the shift register's contents (command byte and the 16 data bits) at DOUT (see Figure 5). Data transitions at DOUT on the falling edge of SCLK. While reading data at DOUT on the second 24-bit sequence, load another command byte and 2 data bytes at DIN or write a no-operation command. DOUT three-states when  $\overline{CS}$  is high. The DAC outputs update on the rising edge of  $\overline{CS}$  after writing to the DAC register or by pulling LDAC low.

Daisy chain multiple devices by connecting the first DOUT to the second DIN, and so forth. Daisy chaining allows communication with multiple MAX5661 devices using single CS and SCLK signals. See the Daisy Chaining Multiple MAX5661 Devices section.

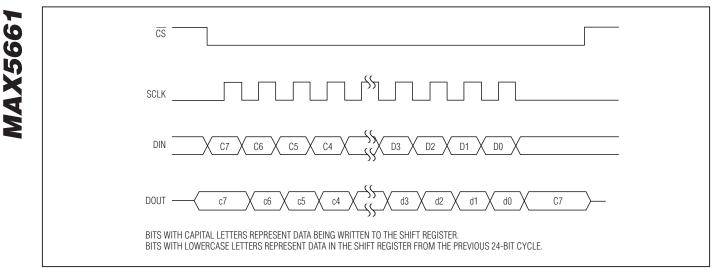



Figure 2. MICROWIRE- or SPI-Interface Timing Diagram (CPOL = CPHA = 0)

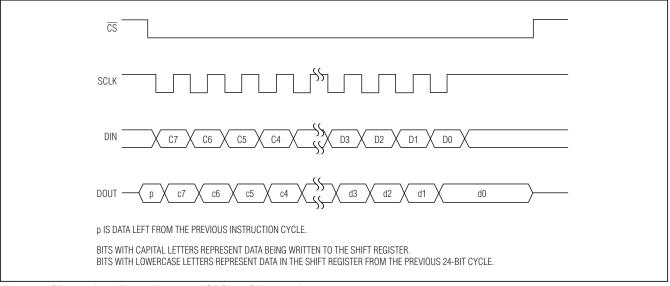



Figure 3. SPI-Interface Timing Diagram (CPOL = CPHA = 1)

#### Table 1. Input Command Bits

|    | 24-BIT SERIAL INPUT WORD |    |    |    |    |    |    |     |     |     |     |     |     |       |    |    |    |    |    |    |    |     |    |
|----|--------------------------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-------|----|----|----|----|----|----|----|-----|----|
|    | COMMAND BYTE             |    |    |    |    |    |    |     |     |     |     |     | DA  | TA BI | TS |    |    |    |    |    |    |     |    |
| MS | MSB                      |    |    |    |    |    |    |     |     |     |     |     |     |       |    |    |    |    |    |    |    | LSB |    |
| C7 | C6                       | C5 | C4 | C3 | C2 | C1 | C0 | D15 | D14 | D13 | D12 | D11 | D10 | D9    | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1  | D0 |

### **Table 2. Register Description**

|    |    |    | СОММА |    | ;  |    |            | OPERATION                                                                                                              |
|----|----|----|-------|----|----|----|------------|------------------------------------------------------------------------------------------------------------------------|
| C7 | C6 | C5 | C4    | C3 | C2 | C1 | <b>C</b> 0 | OPERATION                                                                                                              |
| Х  | Х  | Х  | Х     | 0  | 0  | 0  | 0          | No operation. Transfer shift register's data to DOUT.                                                                  |
| Х  | Х  | Х  | Х     | 0  | 0  | 0  | 1          | Write control register.                                                                                                |
| Х  | Х  | Х  | Х     | 0  | 0  | 1  | 0          | Read control register.                                                                                                 |
| Х  | Х  | Х  | Х     | 0  | 0  | 1  | 1          | Load input register. DAC register unchanged.                                                                           |
| Х  | Х  | Х  | Х     | 0  | 1  | 0  | 0          | Load DAC and input register.                                                                                           |
| Х  | Х  | Х  | Х     | 0  | 1  | 0  | 1          | Load DAC register. Transfer input register data to DAC register. DAC outputs update on $\overline{CS}$ 's rising edge. |
| Х  | Х  | Х  | Х     | 0  | 1  | 1  | 0          | Write clear register.                                                                                                  |
| Х  | Х  | Х  | Х     | 0  | 1  | 1  | 1          | Read input register.                                                                                                   |
| Х  | Х  | Х  | Х     | 1  | 0  | 0  | 0          | Read DAC register.                                                                                                     |
| Х  | Х  | Х  | Х     | 1  | 0  | 0  | 1          | Read clear register.                                                                                                   |
| Х  | Х  | Х  | Х     | 1  | 1  | 1  | 1          | No operation. Transfer shift register's data to DOUT.                                                                  |

*X* = Don't care. All other commands are reserved for factory use. Do not use.

#### **Register Descriptions**

The MAX5661 communicates between its internal registers and the external bus lines through the 4-wire SPI-/QSPI-/MICROWIRE-compatible serial interface. Table 1 details the command bits (C7–C0) and the data bits (D15–D0) of the serial input word. Tables 2 and 3 detail the command byte and the subsequent register accessed. Tables 4–8 detail the various read/write internal registers and their power-on reset states. **When updating the DAC register, allow 5µs before sending the next command.** 

#### Control Register (Read/Write)

Write to the control register to enable the current or voltage output, set the voltage output for unipolar or bipolar mode, and set the current-output range. The control register also initializes the clear and fault modes. Set the command byte to 0x01 to write to the control register. Set the command byte to 0x02 to read from the control register. Write or read data bits D15–D5. D4–D0 are don't-care bits for a write operation. D4, D3, and D2 are read-only bits. D1 and D0 are don't-care bits for a read operation (see Table 4).

Set the OUTVON bit (D15) to 1 to enable the OUTV DAC voltage output. Set the OUTION bit (D14) to 1 to enable the OUTI DAC current output. Always set bit D13 to 0. Set the  $\overline{B}/U$  bit (D12) to determine whether the OUTV output operates in bipolar mode ( $\overline{B}/U = 0$ ) or unipolar mode ( $\overline{B}/U = 1$ ).

**MAX566** 

### **Table 3. Register Bit Descriptions**

COMMAND BYTE **1ST DATA BYTE** 2NDDATA BYTE OPERATION DESCRIPTION C7 C6 C5 C4 C3 C2 C1 CO D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO Data in shift registe Х Х χ 0 0 0 0 Х χ Х Х х Х Х Х Х χ Х Х Х Х Х Х before CS driven high and Х No operation command executed Transfer shift-register data to DOUT. Data in shift register Same as line above. Shift-register data not changed by this operation. after CS driven high and command executed Data in shift register before CS driven high and command executed Х Х Х Х Х Х Х 1 1 1 1 Х Х Х Х Х Х Х Х Х Х Х Х Х No operation Transfer shift register data to DOUT. Data in shift register after  $\overline{CS}$  driven high and Same as line above. Shift-register data not changed by this operation command executed t to 20 BIT CLRFLAGEN Data in shift registe NOVTUO CLRMODE FAULTEN OUTION OUTI4/0 CLREN RCLR Х Х χ 0 0 0 ΒN Х Х Х Х before CS driven high and Х 1 EN Х 0 command executed Write control register Data in shift register after  $\overline{\text{CS}}$  driven high and Same as line above. Shift-register data not changed by this operation command executed Data in shift register before CS driven high and command executed Х Х Х Х 0 0 0 Х χ Х Х χ Х Х Х χ Х Х Х Х Х 1 Х Х Read control register CLRMODE CLRFLAGEN NOVTUO 0UTI4/0 EN FAULTEN FAULTV CLEARST Data in shift register OUTION CLREN FAULTI 14 to 20 BIT RCLR B/U 0 Х after CS driven high and command executed Same as line above Х Data in shift registe Х Х Х 0 MSB <-- 16-Bit DAC Data --> LSB Х 0 1 Load input before CS driven high and 1 register from shift register. DAC command executed Data in shift registe register unchanged. Same as line above. Shift-register data not changed by this operation. after CS driven high and command executed Data in shift registe Load input register and DAC register from shift before CS driven high and Х Х Х Х 0 1 0 0 MSB <-- 16-Bit DAC Data --> LSB command executed Data in shift register after  $\overline{\text{CS}}$  driven high and register. Same as line above. Shift-register data not changed by this operation. command executed Data in shift registe Х Х Х Х 0 1 0 1 Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х before CS driven high and Load DAC register from input command executed Data in shift register after CS driven high and register Same as line above. Shift-register data not changed by this operation. command executed Data in shift register before  $\overline{\text{CS}}$  driven high and Х χ Х χ 0 1 1 0 MSB <-- 16-Bit Clear-Register Data --> LSB Write clear command executed register Data in shift register after CS driven high and command executed Same as line above. Shift-register data not changed by this operation Data in shift register Х Х Х 0 Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х Х before CS driven high and command executed Х 1 1 1 Read input register Data in shift registe Same as line above MSB <--- 16-Bit Input-Register Data --> LSB after CS driven high and command executed Data in shift registe Х χ Х Х 1 0 0 0 Х χ Х Х Х χ Х Х Х Х Х Х Х Х Х Х before CS driven high and command executed Read DAC register Data in shift register Same as line above MSB <-- 16-Bit DAC-Register Data --> LSB after CS driven high and command executed Data in shift register Х Х Х 0 χ Х Х Х Х Х Х Х Х Х Х Х 1 0 1 Х Х Х Х Х before CS driven high and command executed Read clear register Data in shift register after CS driven high and Same as line above MSB <-- 16-Bit DAC Clear Register Data --> LSB command executed Data in shift register Х Х Х Х Х 1 0 0 1 χ Х Х Х Х Х Х Х Х Х Х χ Х Х before CS driven high and command executed 1 Write full-scale output trim FS\_ BIT 9 (MSB) BIT 0 (LSB) Data in shift register BIT 8 BIT 2 BIT 6 BIT 5 BIT 3 E. BIT 7 BIT 4 BIT 1 register after CS driven high and command executed Same as line above. Х Х Х Х Х Ъ FS FS\_E S S S S FS S £

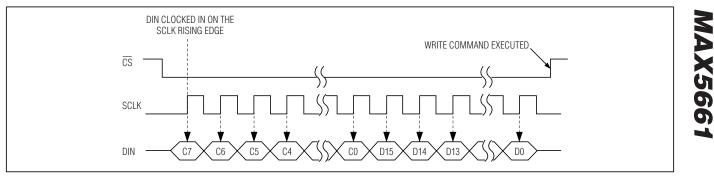



Figure 4. Write Timing

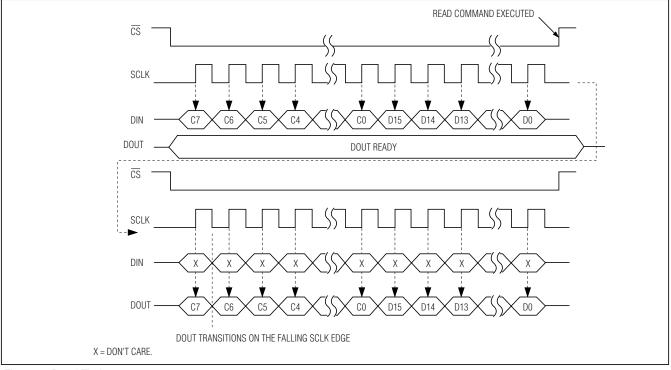



Figure 5. Read Timing

Set the OUTI4/0EN bit (D11) low to enable the OUTI4/0 hardware input. Set the I4TO20BIT bit (D10) high to select the current-output range through the software. Set the CLREN bit (D9) low to enable the CLR hardware input. Set the CLRMODE bit (D8) high to force the output to the value in the clear register or the zero state when the CLR hardware input is pulled low. Set the RCLR bit (D7) high to remain in the clear state. Set the FAULTEN bit (D6) high to enable the FAULT output functionality. Set the CLRFLAGEN bit (D5) high to activate the  $\overline{\text{FAULT}}$  output when the MAX5661 is in the clear state.

Bits D4, D3, and D2 are read-only bits. The FAULTV bit (D4) is set to 1 when OUTV is short circuited. The FAULTI bit (D3) is set to 1 when OUTI is open circuited. The CLEARST bit (D2) is set to 1 when the MAX5661 is in the clear state.



### Table 4. Control Register (Read/Write)

| BIT NAME  | DATA<br>BIT | RESET<br>STATE | FUNCTION                                                                                                                                                                                                                                                                                                          |
|-----------|-------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTVON    | D15         | 0              | DAC OUTV output enable bit. Set to 1 to enable the OUTV output.                                                                                                                                                                                                                                                   |
| OUTION    | D14         | 0              | DAC OUTI output enable bit. Set to 1 to enable the OUTI output.                                                                                                                                                                                                                                                   |
|           | D13         | 0              | Reserved. Always set to 0.                                                                                                                                                                                                                                                                                        |
| B/U       | D12         | 0              | Voltage-output unipolar/bipolar mode select bit. Set to 0 (default power-up state) to select the bipolar output range ( $\pm 10.48V$ ). Set to 1 to select the unipolar output range (0 to $\pm 10.48V$ ).                                                                                                        |
| OUTI4/0EN | D11         | 0              | OUTI4/0 enable bit. Set to 0 (default power-up state) to enable the OUTI4/0 hardware input. Set to 1 to disable the OUTI4/0 hardware input, thereby controlling the current-output range through software commands.                                                                                               |
| I4TO20BIT | D10         | 0              | OUTI current range bit. Set to 0 to set the OUTI current range from 0 to 20mA. Set to 1 to set the OUTI current range from 4–20mA.                                                                                                                                                                                |
| CLREN     | D9          | 0              | Clear enable bit. Set to 0 to enable the external $\overline{\text{CLR}}$ input. Set to 1 to disable the external $\overline{\text{CLR}}$ input.                                                                                                                                                                  |
| CLRMODE   | D8          | 0              | Clear mode bit. Set to 1 and drive the external $\overline{\text{CLR}}$ input low to force the DAC output to the value stored in the clear register. Set to 0 and drive the external $\overline{\text{CLR}}$ input low to force the DAC output to 0V in voltage mode or 0mA/4mA depending on output-current mode. |
| RCLR      | D7          | 0              | Remain in clear bit. Set to 1 to remain in the clear state. The RCLR bit determines the steps required to exit the clear state. See the $\overline{CLR}$ Input section.                                                                                                                                           |
| FAULTEN   | D6          | 0              | Fault output enable. Set to 1 to enable the FAULT output functionality. Set to 0 to disable the FAULT output functionality.                                                                                                                                                                                       |
| CLRFLAGEN | D5          | 0              | Clear flag enable. Set to 1 to enable the FAULT output to report when the device is in the clear state.                                                                                                                                                                                                           |
| FAULTV    | D4          | 0              | Output voltage fault bit (read only). The FAULTV bit is set to 1 when FAULT triggers due to an OUTV short-circuit condition. The FAULTV bit is a don't-care bit for control-register write commands.                                                                                                              |
| FAULTI    | D3          | 0              | Output-current fault bit (read only). The FAULTI bit is set to 1 when FAULT triggers due to an OUTI open-circuit condition. The FAULTI bit is a don't-care bit for the control register write commands.                                                                                                           |
| CLEARST   | D2          | 0              | Clear state bit (read only). The CLEARST bit is set to 1 when $\overline{\text{CLR}}$ is low and CLREN = 0. The CLRST bit is a don't-care bit for control register write commands.                                                                                                                                |
| Х         | D1, D0      | 0              | Not used.                                                                                                                                                                                                                                                                                                         |

#### Input Register (Read/Write)

Write to the input register to store the DAC code. Transfer the value written to the input register to the DAC register by pulling the LDAC input low or by writing to the load DAC register (0x05). Set the command byte to 0x03 to write to the input register. Set the command byte to 0x07 to read from the input register. Bits D15–D0 contain the straight binary data (see Table 5).

#### DAC Register (Read/Write)

Write to the DAC register to update the OUTV and OUTI outputs after  $\overline{CS}$  returns high. Set the command byte to 0x04 to write to the DAC register. Set the command byte to 0x08 to read from the DAC register. Bits D15–D0 contain the straight binary data (see Table 6).

#### Load DAC Register (Write)

Write to the load DAC register to transfer the input register data to the DAC register and update the DAC out-

### Table 5. Input Register (Read/Write)

put. Set the command byte to 0x05 to write to the load DAC register. Bits D15–D0 are don't-care bits.

#### Clear Register (Read/Write)

Write to the clear register to set the DAC output value when the CLR hardware input is pulled low (forcing the MAX5661 into the clear state). Set the command byte to 0x06 to write to the clear register. Set the command byte to 0x09 to read the clear register. Bits D15–D0 contain the straight binary data (see Table 7).

#### No Operation

Set the command byte to 0x0F or 0x00 to perform a nooperation command. After writing the command byte and 2 data bytes (16 don't-care bits), read out the shift register's contents on the following 24-bit cycle.

| BIT NAME | DATA BIT | RESET STATE                                                                   | FUNCTION                                                            |
|----------|----------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|
| IN15-IN0 | D15-D0   | 0000 0000 0000 0000<br>(unipolar/current)<br>1000 0000 0000 0000<br>(bipolar) | IN15 is the MSB and IN0 is the LSB. Data format is straight binary. |

#### Table 6. DAC Register (Read/Write)

| BIT NAME   | DATA BIT | RESET STATE                                                                   | FUNCTION                                                              |
|------------|----------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| DAC15-DAC0 | D15-D0   | 0000 0000 0000 0000<br>(unipolar/current)<br>0000 0000 0000 0000<br>(bipolar) | DAC15 is the MSB and DAC0 is the LSB. Data format is straight binary. |

#### Table 7. Clear Register (Read/Write)

| BIT NAME   | DATA BIT | RESET STATE                                                                   | FUNCTION                                                              |
|------------|----------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| CLR15-CLR0 | D15-D0   | 0000 0000 0000 0000<br>(unipolar/current)<br>1000 0000 0000 0000<br>(bipolar) | CLR15 is the MSB and CLR0 is the LSB. Data format is straight binary. |

#### Table 8. Full-Scale Output Trim Register (Write)

| BIT NAME                       | DATA BIT | RESET STATE         | FUNCTION                                                                                                                                         |  |  |  |
|--------------------------------|----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FS_EN +<br>FS_BIT9–<br>FS_BIT0 | D9-D0    | 0000 0000 0000 0000 | FS_EN (D15) enables the full-scale output adjustment feature. D9 is the MSB and D0 is the LSB. D9 is straight binary, D8–D0 are inverted binary. |  |  |  |
|                                |          |                     |                                                                                                                                                  |  |  |  |

#### Full-Scale Output Current Trim Register (Write)

Write to the full-scale output trim register to adjust the output voltage or current  $\pm 25\%$ . Set command bits to 0x06 to write to the output trim register. Bit 15 enables the output trim register. Bits D9–D0 program the 10-bit trim DAC (Table 8).

### Table 9. N to D: Full-Scale Output Trim Register Bits Map

| N9 | N8 | N7 | N6 | N5 | N4 | N3 | N2 | N1 | N0 |
|----|----|----|----|----|----|----|----|----|----|
| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO |

# Table 10. Full-Scale Output Variation vs. N and B

| DECIMAL<br>VALUE (N) | BIT DECIMAL<br>VALUE (B) | % CHANGE |
|----------------------|--------------------------|----------|
| 0                    | 511                      | -25      |
| 256                  | 255                      | -12.5    |
| 511                  | 0                        | 0-       |
| 512                  | 1023                     | 0+       |
| 767                  | 768                      | +12.5    |
| 1023                 | 512                      | +25      |

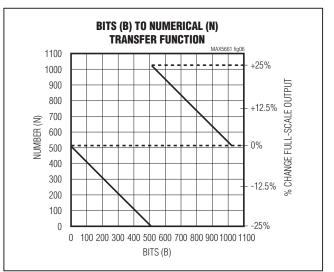



Figure 6. Transfer Function of Bits (B) to Numerical (N) Representation

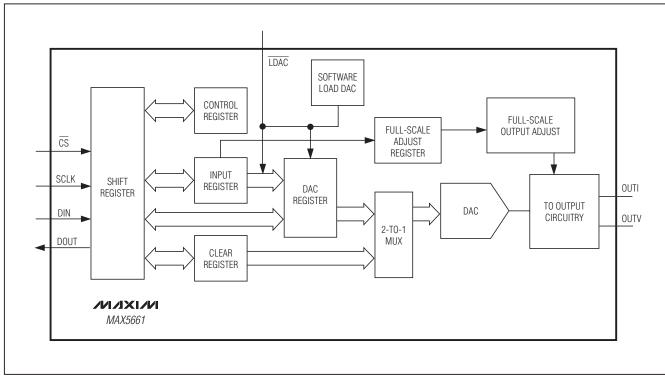



Figure 7. Functional Diagram

#### **Reference Input**

Connect an external voltage reference in the +4V to +4.2V range through a  $1k\Omega$  series resistor to the buffered REF input. Use a high-accuracy, lownoise +4.096V voltage reference such as the MAX6126AASA41 (3ppm/°C temperature drift and 0.02% initial accuracy) for best 16-bit static accuracy. REF does not accept AC signals. See Table 17 for a listing of +4.096V references.

#### LDAC Input

The MAX5661 features an active-low load DAC ( $\overline{\text{LDAC}}$ ) logic input that allows asynchronous updates to the DAC outputs. Drive  $\overline{\text{LDAC}}$  high to V<sub>CC</sub> during normal operation while controlling the MAX5661 using only the serial interface. Drive  $\overline{\text{LDAC}}$  low to update the DAC output with the input register data. Hold  $\overline{\text{LDAC}}$  low to make the input register transparent and immediately update the DAC output with the input register data. Figure 8 shows the  $\overline{\text{LDAC}}$  timing with respect to OUT\_.

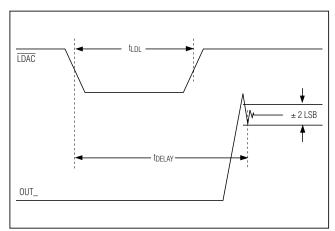



Figure 8. LDAC Timing

### **//**/XI/M

27

**MAX5661** 

#### **CLR** Input

The active-low external CLR input asynchronously sets the DAC code to the value in the clear register (software clear) or to the zero state (hardware clear), depending on the control register's CLRMODE bit setting (see Tables 4 and 11). Set the CLRMODE bit to 1 and drive external CLR low to force the output to the value stored in the clear register. Set the CLRMODE bit to 0 and drive the external CLR input low to force the output to the zero state. The zero state value is 0mA in 0 to 20mA current mode, 3.97mA in 4–20mA current mode, or 0V in voltage mode (unipolar or bipolar).

Disable the external  $\overline{\text{CLR}}$  input functionality by setting the control register's  $\overline{\text{CLREN}}$  bit to 1. Set the  $\overline{\text{CLREN}}$  bit to 0 to enable the external  $\overline{\text{CLR}}$  input functionality.

After setting the  $\overline{\text{CLREN}}$  bit to 0, force the external  $\overline{\text{CLR}}$  input low to set the MAX5661 into the clear state. The control register's read-only CLEARST bit is set to 1 while in the clear state. The RCLR (remain in clear) bit determines the steps required to exit the clear state.

With the RCLR bit set to 1, exit the clear state in one of three ways:

- Pull the external CLR input high and then write to the DAC register (0x04) or the load DAC register (0x05) or force LDAC low.
- 2) Pull the external CLR input high and set the RCLR bit low.
- 3) Initiate a power-on reset (POR) to reset the RCLR bit to 0.

With the RCLR bit set to 0, exit the clear state one of three ways:

- 1) Set the CLREN bit high.
- 2) Pull the external CLR input high.
- 3) Initiate a power-on reset (POR).

#### **FAULT** Output

The open-drain active-low FAULT output asserts low for a current-output open circuit or dropout condition, for a voltage-output short circuit, or when the MAX5661 is in the clear state (see the *CLR Input* section).

Enable and disable the FAULT output with the control register's FAULTEN and CLRFLAGEN bits (see Tables 4, 12, and Figure 9). Set the FAULTEN bit to 1 to enable the FAULT output to report fault conditions on OUTV and OUTI. Set FAULTEN to 0 to disable the FAULT output for fault conditions on OUTV and OUTI. Set the CLRFLAGEN bit to 1 to enable the FAULT output to report when the device is in the clear state. Set CLRFLAGEN to 0 to disable a hardware indication of the clear state. The FAULT output asserts low if CLRFLAGEN = 1 and CLEARST = 1.

Read the control register to determine the source of a FAULT output condition. The FAULTV read-only bit is set to 1 when the voltage output (OUTV) is shortcircuited. The FAULTI bit is set to 1 when the current output (OUTI) is open circuited or in a dropout condition (VDDI - VOUTI at 1.3V typ). The FAULT output asserts low if FAULTEN is set to 1 and either the FAULTV bit or FAULTI bit is set to 1.

| CLEARST BIT<br>(READ)  | CLRMODE BIT<br>(READ/WRITE) | HARDWARE CLEAR              | SOFTWARE CLEAR                      |
|------------------------|-----------------------------|-----------------------------|-------------------------------------|
| 0 (not in clear state) | Х                           | Х                           | Х                                   |
| 1 (in clear state)     | 0                           | DAC code set to zero state* |                                     |
| 1 (in clear state)     | 1                           | —                           | DAC code set by clear register data |

### Table 11. Hardware-Clear and Software-Clear Truth Table

X = Don't care.

\*Zero state is 0V in unipolar voltage mode, -10.48V in bipolar voltage mode, and 0mA/4mA depending on output-current mode.

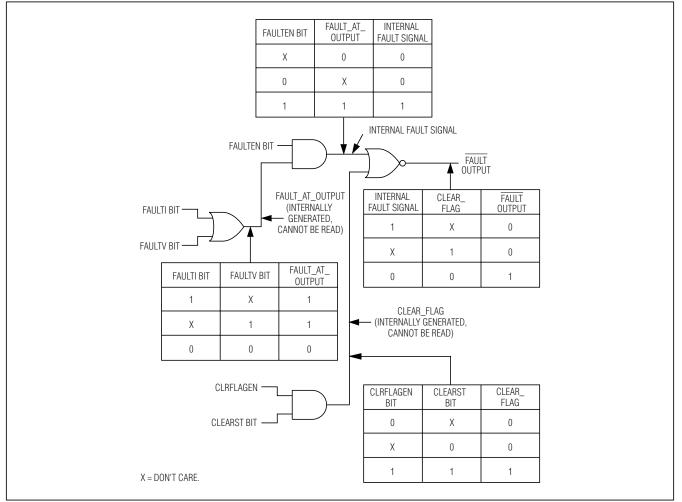



Figure 9. FAULT Output Logic Diagram

| Table 12 | FAULT | Output | Truth | Table |
|----------|-------|--------|-------|-------|

| OUTV SHORT<br>CIRCUITED | OUTI OPEN CIRCUITED<br>OR IN DROPOUT | CLEARST<br>BIT | FAULTEN BIT | CLRFLAGEN BIT | FAULT OUTPUT |
|-------------------------|--------------------------------------|----------------|-------------|---------------|--------------|
| No                      | No                                   | 0              | Х           | Х             | High         |
| No                      | No                                   | Х              | Х           | 0             | High         |
| Х                       | Х                                    | 1              | Х           | 1             | Low          |
| Х                       | Х                                    | 0              | 0           | Х             | High         |
| No                      | Yes                                  | Х              | 1           | Х             | Low          |
| Х                       | Х                                    | Х              | 0           | 0             | High         |
| Yes                     | No                                   | Х              | 1           | Х             | Low          |

X = Don't care. Only one output (OUTV or OUTI) is active at a time.



29

**MAX5661** 

#### **Output Configurations**

The CNF0, CNF1, and OUTI4/0 hardware inputs determine whether the hardware or software controls the MAX5661 DAC outputs (see Table 13). The CNF0 and CNF1 inputs enable and disable the DAC outputs or allow software control of the outputs (see Table 14). The OUTI4/0 input sets the current range of the OUTI output. Hardware inputs take precedence over the software commands. The V<sub>CC</sub> digital supply powers the CNF1, CNF0, and OUTI4/0 inputs. If V<sub>CC</sub> = 0V, the DAC outputs enter the zero state and all register bits are set to 0. The zero state of the voltage output (OUTV) is 0V. The zero state of the current output (OUTI) is 0mA when OUTI4/0 = AGND or 4mA when OUTI4/0 = V<sub>DDI</sub>.

| CONTROL<br>SIGNAL | HARDWARE<br>INPUT/SOFTWARE BIT | DESCRIPTION                                               | DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|--------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CNF1              | Hardware input                 | Enables/disables the DAC                                  | CNF1, CNF0:<br>00 = both outputs disabled<br>01 = OUTI active, set to 0 to 20mA range                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CNF0              | Hardware input                 | OUTV and OUTI outputs.                                    | 10 = OUTV active, set to bipolar mode<br>11 = outputs controlled by serial interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OUTI4/0           | Hardware input                 | Sets the OUTI current range.                              | Set the OUTI4/ $\overline{0}$ EN bit to 0 (default power-up state) to enable<br>the OUTI4/ $\overline{0}$ hardware input. Connect the OUTI4/ $\overline{0}$ hardware<br>input to AGND to set the OUTI current range to 0 to 20mA.<br>Connect the OUTI4/ $\overline{0}$ hardware input to V <sub>DDI</sub> to set the OUTI<br>current range to 4–20mA. Set the OUTI4/ $\overline{0}$ EN bit to 1 to<br>disable the OUT14/ $\overline{0}$ hardware input. Connect OUTI4/ $\overline{0}$ to<br>AGND when controlling the current output through software. |
| OUTI4/0EN         | Software bit                   | Enables and disables the OUTI4/0 input.                   | Set the OUTI4/0EN bit to 0 (default power-up state) to enable the OUTI4/0 hardware input. Set to 1 to disable the OUTI4/0 hardware input.                                                                                                                                                                                                                                                                                                                                                                                                              |
| OUTVON            | Software bit                   | Enables and disables the<br>DAC OUTV and OUTI             | When the CNF1 and CNF0 hardware inputs are high, the OUTION and OUTVON bits control the DAC output OUTI and OUTV settings.<br>OUTVON, OUTION:                                                                                                                                                                                                                                                                                                                                                                                                          |
| OUTION            | Software bit                   | outputs.                                                  | <ul> <li>00 = both outputs powered down</li> <li>01 = OUTI active</li> <li>10 = OUTV active</li> <li>11 = both outputs powered down</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         |
| B/U               | Software bit                   | Sets the voltage output to unipolar mode or bipolar mode. | Set $\overline{B}/U$ to 0 to set the OUTV output to bipolar mode (±10.48V). Set $\overline{B}/U$ to 1 to set the OUTV output to unipolar mode (0 to +10.48V).                                                                                                                                                                                                                                                                                                                                                                                          |
| I4TO20BIT         | Software bit                   | Sets the OUTI current range through software.             | Set I4TO20BIT to 0 to set the OUTI current range from 0 to 20mA. Set I4TO20BIT to 1 to set the OUTI current range from 4–20mA.                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Table 13. Output Configuration

#### CNF0/CNF1 Hardware Inputs

The CNF0 and CNF1 inputs enable the DAC's voltage (OUTV) or current (OUTI) outputs. Drive CNF0 and CNF1 low to disable both the OUTV and OUTI outputs. Drive CNF0 high and CNF1 low to enable the OUTI output. Drive CNF0 low and CNF1 high to enable the OUTV output. Drive CNF0 and CNF1 high to control the OUTV output. Drive CNF0 and CNF1 high to control the OUTV and OUTI outputs through the serial interface. Table 14 summarizes the output behavior when programmed by the CNF0/CNF1 hardware inputs.

#### **OUTI Current-Output Configuration**

Drive CNF0 high and CNF1 low to enable the OUTI output through the hardware. Alternatively, drive CNF0 and CNF1 high to control OUTI with the serial interface. With CNF1 and CNF0 high, the control register's OUTION bit enables the OUTI output. Set OUTION to 1 to enable the OUTI output. Set OUTION to 0 (default power-up state) to disable the OUTI output.

The OUTI current output derives power from V<sub>DDI</sub> and V<sub>DDCORE</sub> (+13.48V to +40V). Connect V<sub>DDCORE</sub> to V<sub>DDI</sub> when using the OUTI output.

The control register's OUTI4/ $\overline{O}$ EN bit (see Tables 4 and 13) determines whether the OUTI4/ $\overline{O}$  hardware input or the control register's I4TO20BIT bit controls the OUTI current range. Set the OUTI4/ $\overline{O}$ EN bit to 0 (default power-up state) to control the current range through the OUTI4/ $\overline{O}$  hardware input. Connect the OUTI4/ $\overline{O}$  hardware input to AGND to select the 0 to 20mA mode. Connect the OUTI4/ $\overline{O}$  hardware input to VDDI to select the 4–20mA mode.

Set the OUTI4/0EN bit to 1 to allow software control of the OUTI current range through the I4TO20BIT bit (see Table 13). Set I4TO20BIT to 0 to select the 0 to 20mA mode. Set I4TO20BIT to 1 to select the 4–20mA mode.

#### **OUTV Voltage-Output Configuration**

Drive CNF0 low and CNF1 high to enable the OUTV output through the hardware (see Table 14). Alternatively, drive CNF0 and CNF1 high to control OUTV with the serial interface. With CNF1 and CNF0 high, the control register's OUTVON bit enables the OUTV output. Set OUTVON to 1 to enable the OUTV output. Set OUTVON to 0 (default power-up state) to disable the OUTV output.

The OUTV output derives power from V<sub>DDV</sub>, V<sub>SSV</sub>, and V<sub>DDCORE</sub>. Connect V<sub>DDCORE</sub> to V<sub>DDV</sub> (+13.48V to +15.75V) when using the OUTV output. Always connect a negative supply to V<sub>SSV</sub> (-13.48V to -15.75V) (see Table 16).

The control register's  $\overline{B}/U$  bit sets OUTV for bipolar or unipolar mode. Set  $\overline{B}/U$  to 0 (default power-up state) to select the bipolar output range (±10.48V). Set  $\overline{B}/U$  to 1 to select the unipolar output range (0 to +10.48V).

#### **Output Transfer Functions**

The DAC output voltage/current is a function of the various hardware control inputs and digital inputs in the control register (see Table 13). The transfer functions below assume that the outputs are on, and a reference voltage of +4.096V is applied to the reference input. For the voltage output, the sense input is at the same potential as the DAC output (OUTV = SVP and AGND = SVN). Table 15a details the bipolar output voltage transfer function. Table 15b details the unipolar output voltage transfer function. Table 15c details the 0 to 20mA current-range transfer function. Table 15d details the 4mA to 20mA current-range transfer function.

| CNF1            | CNF0            | OUTV, OUTI SETTING                              |  |
|-----------------|-----------------|-------------------------------------------------|--|
| DGND            | DGND            | Both DAC outputs disabled.                      |  |
| DGND            | V <sub>CC</sub> | OUTI enabled. OUTV disabled.                    |  |
| Vcc             | DGND            | OUTV enabled. OUTI disabled.                    |  |
| V <sub>CC</sub> | V <sub>CC</sub> | DAC outputs controlled by the serial interface. |  |

#### Table 14. CNF1/CNF0 Hardware Settings

### Table 15a. Bipolar Voltage Output

| DAC CODE (DECIMAL VALUE) | OUTPUT VOLTAGE (V) | RANGE         |  |
|--------------------------|--------------------|---------------|--|
| 65535                    | 10.47984           | Overrange     |  |
| 64769                    | 10.23485           | Overrange     |  |
| 64768                    | 10.23453           | Nominal range |  |
| 64767                    | 10.23421           | Nominal range |  |
| 48769                    | 5.117585           | Nominal range |  |
| 48768                    | 5.117266           | Nominal range |  |
| 48767                    | 5.116946           | Nominal range |  |
| 35969                    | 1.023773           | Nominal range |  |
| 35968                    | 1.023453           | Nominal range |  |
| 35967                    | 1.023133           | Nominal range |  |
| 32769                    | 0.00032            | Nominal range |  |
| 32768                    | 0                  | Nominal range |  |
| 32767                    | -0.00032           | Nominal range |  |
| 29569                    | -1.02313           | Nominal range |  |
| 29568                    | -1.02345           | Nominal range |  |
| 29567                    | -1.02377           | Nominal range |  |
| 16769                    | -5.11695           | Nominal range |  |
| 16768                    | -5.11727           | Nominal range |  |
| 16767                    | -5.11759           | Nominal range |  |
| 769                      | -10.2342           | Nominal range |  |
| 768                      | -10.2345           | Nominal range |  |
| 767                      | -10.2349           | Underrange    |  |
| 0                        | -10.4802           | Underrange    |  |

### Table 15b. Unipolar Voltage Output

| DAC CODE (DECIMAL VALUE) | OUTPUT VOLTAGE (V) | RANGE         |  |
|--------------------------|--------------------|---------------|--|
| 65535                    | 10.48              | Overrange     |  |
| 64001                    | 10.23469           | Overrange     |  |
| 64000                    | 10.23453           | Nominal range |  |
| 32001                    | 5.117425           | Nominal range |  |
| 32000                    | 5.117266           | Nominal range |  |
| 31999                    | 5.117106           | Nominal range |  |
| 6401                     | 1.023613           | Nominal range |  |
| 6400                     | 1.023453           | Nominal range |  |
| 6399                     | 1.023293           | Nominal range |  |
| 1                        | 0.00016            | Nominal range |  |
| 0                        | 0                  | Nominal range |  |



### Table 15c. 0 to 20mA Current Output

| DAC CODE (DECIMAL) | ACTUAL OUTPUT CURRENT<br>(mA) | RANGE         | EXTENSION OF OUTPUT<br>CURRENT LINEAR RANGE<br>(mA) |
|--------------------|-------------------------------|---------------|-----------------------------------------------------|
| 65535              | 20.449688                     | Overrange     | 20.449688                                           |
| 64001              | 19.970313                     | Overrange     | 19.970313                                           |
| 64000              | 19.970000                     | Nominal range | 19.970000                                           |
| 63999              | 19.969688                     | Nominal range | 19.969688                                           |
| 32001              | 9.970313                      | Nominal range | 9.970313                                            |
| 32000              | 9.970000                      | Nominal range | 9.970000                                            |
| 31999              | 9.969688                      | Nominal range | 9.969688                                            |
| 12801              | 3.970313                      | Nominal range | 3.970313                                            |
| 12800              | 3.970000                      | Nominal range | 3.970000                                            |
| 12799              | 3.969688                      | Nominal range | 3.969688                                            |
| 97                 | 0.000313                      | Nominal range | 0.000313                                            |
| 96                 | 0.000000                      | Nominal range | 0.000000                                            |
| 95                 | 0.00000                       | Underrange    | -0.000313                                           |
| 80                 | 0.000000                      | Underrange    | -0.005000                                           |
| 60                 | 0.000000                      | Underrange    | -0.011250                                           |
| 40                 | 0.000000                      | Underrange    | -0.017500                                           |
| 30                 | 0.000000                      | Underrange    | -0.020625                                           |
| 0                  | 0.000000                      | Underrange    | -0.030000                                           |

### Table 15d. 4–20mA Current Output

| DAC CODE (DECIMAL) | OUTPUT CURRENT (mA) | RANGE         |  |
|--------------------|---------------------|---------------|--|
| 65535              | 20.449688           | Overrange     |  |
| 64000              | 20.063690           | Overrange     |  |
| 63634              | 19.971655           | Nominal range |  |
| 60000              | 19.057835           | Nominal range |  |
| 50000              | 16.543196           | Nominal range |  |
| 40000              | 14.028556           | Nominal range |  |
| 30000              | 11.513917           | Nominal range |  |
| 20000              | 8.999278            | Nominal range |  |
| 16000              | 7.993423            | Nominal range |  |
| 5000               | 5.227320            | Nominal range |  |
| 500                | 4.095732            | Nominal range |  |
| 238                | 4.029848            | Nominal range |  |
| 200                | 4.020293            | Underrange    |  |
| 100                | 3.970000            | Underrange    |  |
| 80                 | 3.970000            | Underrange    |  |
| 60                 | 3.970000            | Underrange    |  |
| 30                 | 3.970000            | Underrange    |  |
| 0                  | 3.970000            | Underrange    |  |

Measuring Zero-Code Current (0 to 20mA Mode)

After setting the MAX5661 for 0 to 20mA current-range mode, determine the LSB size as follows:

1) Measure IOUT at full scale (FS).

2) Measure IOUT at code 192.

3) Measure IOUT at code 193:

$$I_{LSB} = \frac{I_{OUT} \text{ at FS} - I_{OUT} \text{ at 192}}{(2^{16} - 1) - 192}$$

If I\_OUT (code 193) - I\_OUT (code 192) > 0.5 I\_LSB, I\_OUT (code 192) is inside the linear region of the I\_OUT transfer curve.

Obtain the straight-line equation from  $I_{OUT}$  (FS) and  $I_{OUT}$  (192) and substituting code 0 for  $I_{OUT}$  (zero scale) in the equation:

$$(I - I_{OUT} \text{ at } 192) = \left(\frac{I_{OUT} \text{ at } FS - I_{OUT} \text{ at } 192}{65535 - 192}\right) \times (\text{code} - 192)$$

 $I_{OUT}$  at ZS = ( $I_{OUT}$  at 192 –  $I_{OUT}$  at FS)  $\times$  0.0029383 +  $I_{OUT}$  at 192

The expected current is -30µA (typ).

#### **Applications Information**

**Power-Supply Sequencing and Bypassing** After connecting all ground inputs, apply the analog supply voltages V<sub>SSV</sub> first followed by the most positive supply, the second most positive supply, etc. Before applying power, connect the V<sub>DDCORE</sub> supply to either V<sub>DDV</sub> or V<sub>DDI</sub>, as shown in Table 16, depending on whether the current output or voltage output is used. Do not apply V<sub>DDCORE</sub> separate from the main supply (V<sub>DDV</sub>/V<sub>SSV</sub> or V<sub>DDI</sub>) in the preferred configuration (Table 16). Ensure that there are no unconnected power-supply connections when powering the MAX5661. If V<sub>SSV</sub> cannot be powered first, connect a Schottky diode between V<sub>SSV</sub> and AGND.

#### **Daisy Chaining Multiple MAX5661 Devices**

In standard SPI-/QSPI-/MICROWIRE-compatible systems, a microcontroller ( $\mu$ C) communicates with its slave devices through a 3- or 4-wire serial interface. The typical interface includes a chip select signal  $(\overline{CS})$ , a serial clock (SCLK), a data input signal (DIN), and sometimes a data signal output (DOUT). In this system, the uC allots an independent chip-select signal to each slave device so that they can be addressed individually (see Figure 10). Only the slaves with their  $\overline{CS}$  inputs asserted low acknowledge and respond to the activity on the serial clock and data lines. This is simple to implement when there are very few slave devices in the system. An alternative programming method is daisy chaining. Daisy chaining, in serial-interface applications, is a method of propagating commands through multiple devices connected in series (see Figure 11). Daisy chaining reduces  $\overline{CS}$  and DIN line routing, and saves board space when using the MAX5661.

Daisy chain multiple MAX5661 devices by connecting the DOUT of one device to the DIN of the next. Connect the SCLK of all devices to a common clock and connect the  $\overline{CS}$  from all devices to a common chip-select line. Data shifts out of DOUT 24.5 clock cycles after it is shifted into DIN on the falling edge of SCLK. Hold  $\overline{CS}$  low until each slave in the chain receives its 24-bit word (8 command bits and 16 data bits). In this configuration, the  $\mu$ C only needs three signals ( $\overline{CS}$ , SCLK, and DIN) to control all the slaves in the network. The SPI-/QSPI-/MICROWIRE-compatible serial interface normally works at up to 10MHz, but must be slowed to 6MHz if daisy chaining. DOUT is high impedance when  $\overline{CS}$  is high.

Figure 10 details a method of controlling multiple MAX5661 devices using separate CS lines. This method allows writes to and reads from each device without shifting data through the other device's shift register. Figure 10 shows the FAULT outputs shorted together. This configuration requires a read from each device to determine which one has the fault condition and saves an optocoupler in isolated applications. It is not necessary to short the FAULT outputs together.

#### Table 16. Application Modes and Supply-Voltage Limits

| APPLICATION MODE                         | V <sub>DDV</sub>   | V <sub>SSV</sub>   | V <sub>DDI</sub>         | VDDCORE          |
|------------------------------------------|--------------------|--------------------|--------------------------|------------------|
| Voltage from OUTV                        | +13.48V to +15.75V | -13.48V to -15.75V | V <sub>DDV</sub>         | V <sub>DDV</sub> |
| Current from OUTI<br>(Single Supply)     | AGND               | AGND               | +13.48V to +40V          | V <sub>DDI</sub> |
| Voltage from OUTV and Current from OUTI* | +13.48V to +15.75V | -13.48V to -15.75V | V <sub>DDV</sub> to +40V | V <sub>DDV</sub> |

\*On-the-fly switching. Only one output is active at a time.

Figure 11 shows a method of daisy chaining multiple MAX5661 devices using a single CS and SCLK line with the FAULT outputs shorted together. Connect DOUT from IC1 to DIN of IC2, and DOUT from IC2 to DIN of

IC3. Hold  $\overline{CS}$  low for three 24-bit write cycles to load data into all three devices. Due to the latency of reading and writing to the different devices, using separate lines for each FAULT output does not save time.

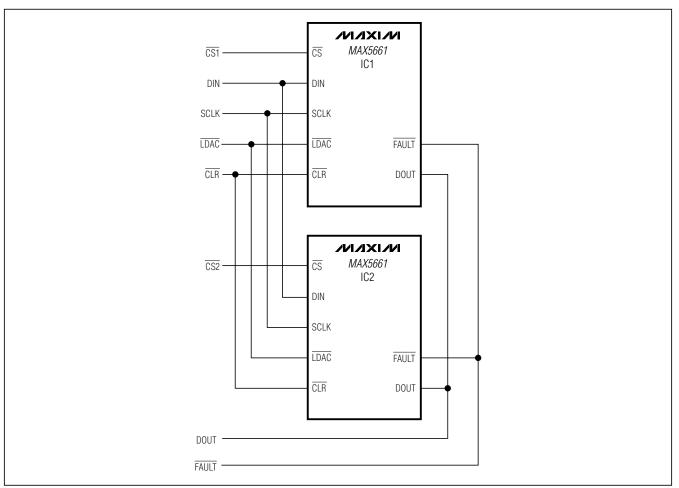


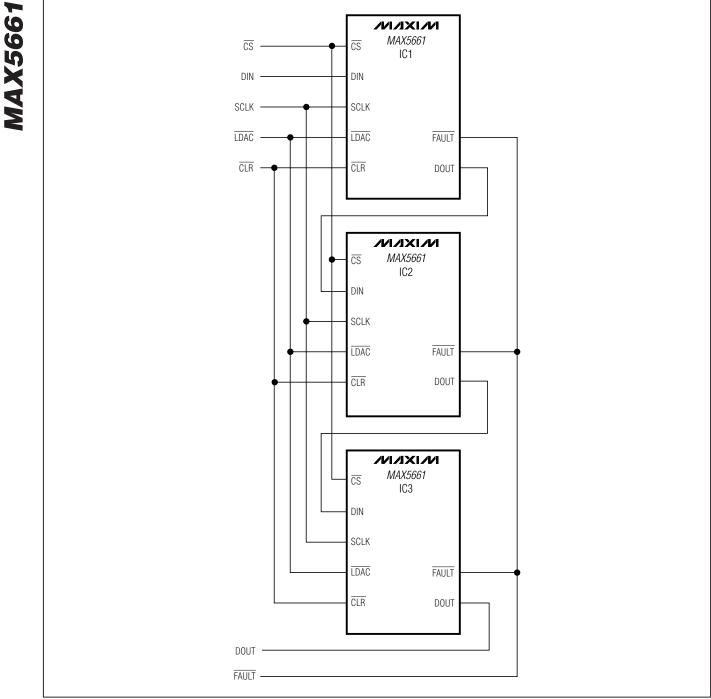

Figure 10. Address Two MAX5661 Devices Through Separate  $\overline{CS}$  Lines

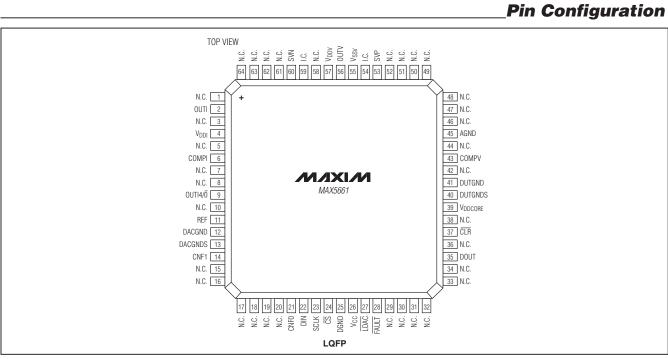
#### **Driving Inductive Loads from IOUT**

When driving inductive loads >  $275\mu$ H with the current output (I<sub>OUT</sub>), connect a 1nF capacitor between V<sub>DDI</sub> and I<sub>OUT</sub> for optimal performance.

MIXIM

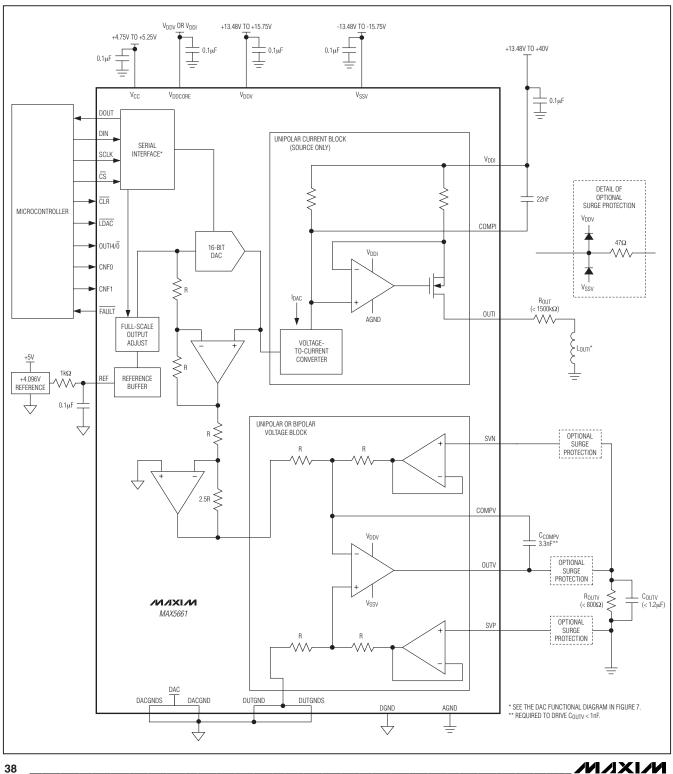
**MAX5661** 





Figure 11. Address Three MAX5661 Devices Through Separate CS Lines

| PART       | SUPPLY VOLTAGE<br>RANGE (V) | TEMPERATURE<br>DRIFT (ppm/°C max) | INITIAL<br>ACCURACY<br>(%) | FEATURES                                         |
|------------|-----------------------------|-----------------------------------|----------------------------|--------------------------------------------------|
| MAX6341    | +8 to +36                   | 1                                 | 0.02                       | Ultra-low drift, 2.4µVP-P output noise           |
| MAX6241    | +8 to +36                   | 3                                 | 0.02                       | Low drift, $2.4\mu V_{P-P}$ output noise         |
| MAX6174    | +4.3 to +40                 | 3                                 | 0.06                       | High-precision reference with temperature sensor |
| MAX6133_41 | +4.3 to +12.6               | 3                                 | 0.04                       | Ultra-low drift, µMAX®                           |
| MAX6126_41 | +4.3 to +12.6               | 3                                 | 0.02                       | Ultra-low noise, µMAX                            |
| MAX6043_41 | +6 to +40                   | 3                                 | 0.05                       | High voltage, low drift                          |
| MAX6143_41 | +6 to +40                   | 8                                 | 0.1                        | High precision                                   |
| MAX6033_41 | +4.3 to +12.6               | 10                                | 0.04                       | 10mA output current, ultra-low drift, SOT23      |
| MAX6041    | +4.3 to +12.6               | 20                                | 0.2                        | Low power, low drift, low dropout                |
| MAX6064    | +4.3 to +12.6               | 20                                | 0.2                        | 5mA current output, precision SOT23              |
| MAX6220    | +8 to +40                   | 20                                | 0.1                        | -40°C to +125°C, 15mA output                     |
| MAX6037_41 | +4.3 to +5.5                | 25                                | 0.2                        | SOT23 with shutdown                              |
| MAX6034_41 | +4.3 to +5.5                | 30                                | 0.2                        | Low supply current in SC70                       |
| MAX6029    | +4.3 to +12.6               | 30                                | 0.15                       | Ultra-low supply current, SOT23                  |

### Table 17. +4.096V Reference Selector Guide


### Chip Information

#### PROCESS: BICMOS



 $\mu$ MAX is a registered trademark of Maxim Integrated Products, Inc.

### **Typical Operating Circuit**



**MAX5661** 

### **Package Information**

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO.   |
|--------------|--------------|----------------|
| 64 LQFP      | C64-8        | <u>21-0083</u> |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 \_\_\_\_\_

© 2008 Maxim Integrated Products

**MAXIM** is a registered trademark of Maxim Integrated Products, Inc.

\_\_\_\_\_ 39