PRELIMINARY DATA SHEET

PHOTOCOUPLER PS9313L,PS9313L2

1 Mbps, OPEN COLLECTOR OUTPUT TYPE, HIGH CMR, INTELLIGENT POWER MODULE DRIVE 8 mm CREEPAGE 6-PIN SDIP PHOTOCOUPLER -NEPOC Series-

DESCRIPTION

NEC

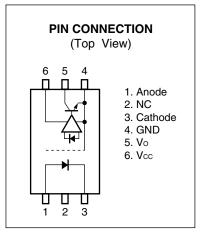
The PS9313L and PS9313L2 are optical coupled isolators containing a GaAlAs LED on the input side and a photo diode and a signal processing circuit on the output side on one chip.

The PS9313L and PS9313L2 are specified high CMR, high CTR and pulse width distortion with operating temperature. It is suitable for IPM drive.

The PS9313L is lead bending type (Gull-wing) for surface mounting.

The PS9313L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.

FEATURES


<R>

<R>

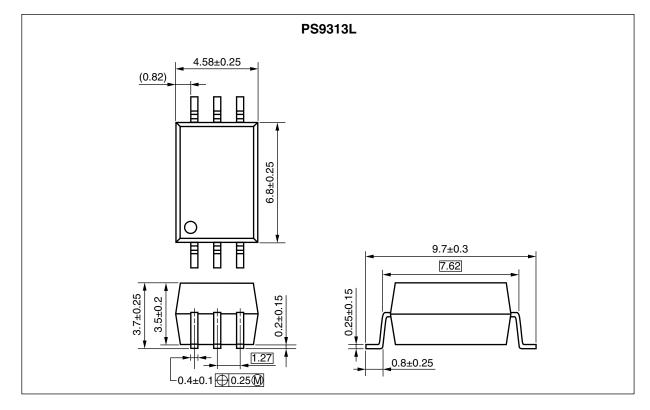
- High common mode transient immunity (CM_H, CM_L = $\pm 15 \text{ kV}/\mu \text{s MIN.}$)
- Half size of 8-pin DIP
- Long creepage distance (8 mm MIN. : PS9313L2)
- High-speed response (tPHL = 500 ns MAX., tPLH = 750 ns MAX.)
- Maximum propagation delays (tplh tphL = 220 ns TYP.)
- Pulse width distortion ($|t_{PHL} t_{PLH}| = 220 \text{ ns TYP.}$)
- High isolation voltage (BV = 5 000 Vr.m.s.)
- Open collector output
- Pb-Free product

APPLICATIONS

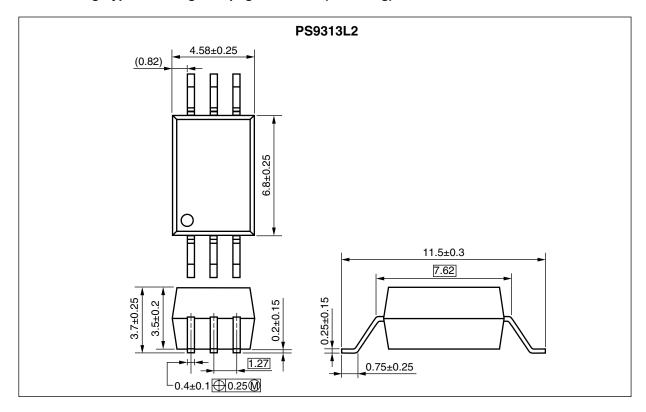
- IPM Driver
- General purpose inverter

TRUTH TABLE

LED	Output	
ON	L	
OFF	Н	

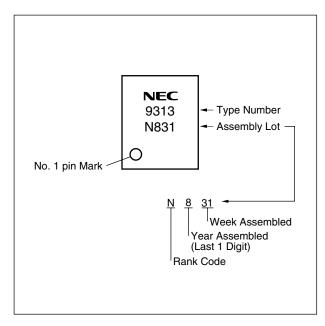

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

© NEC Electronics Corporation 2007, 2008


The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

PACKAGE DIMENSIONS (UNIT: mm)

Lead Bending Type (Gull-wing) For Surface Mount



Lead Bending Type For Long Creepage Distance (Gull-wing) For Surface Mount

NEC

<R> MARKING EXAMPLE

PHOTOCOUPLER CONSTRUCTION

Parameter	PS9313L	PS9313L2	
Air Distance (MIN.)	7 mm	8 mm	
Outer Creepage Distance (MIN.)	7 mm	8 mm	
Isolation Distance (MIN.)	0.4 mm	0.4 mm	

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current [™]	lF	25	mA
	Reverse Voltage	VR	5	V
Detector	Supply Voltage	Vcc	–0.5 to +35	V
	Output Voltage	Vo	–0.5 to +35	V
	Output Current	lo	15	mA
	Power Dissipation ²	Pc	100	mW
Isolation	Voltage ^{*3}	BV	5 000	Vr.m.s.
Operating Ambient Temperature		TA	-40 to +110	°C
Storage Temperature		Tstg	–55 to +125	°C

- *1 Reduced to 0.33 mA/°C at $T_A = 70$ °C or more.
- *2 Reduced to 2.0 mW/°C at $T_A = 75^{\circ}C$ or more.
- *3 AC voltage for 1 minute at $T_A = 25^{\circ}$ C, RH = 60% between input and output. Pins 1-3 shorted together, 4-6 shorted together.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	4.5	15	30	V
Output Voltage	Vo	0		30	V
Forward Current (ON)	IF (ON)	8		12	mA
Forward Voltage (OFF)	VF (OFF)	0		0.8	V

	Parameter	Symbol	Conditions	MIN.	TYP. ^{*1}	MAX.	Unit
Diode	Forward Voltage	VF	IF = 10 mA, TA = 25°C	1.2	1.56	1.9	V
	Reverse Current	IR	$V_{R} = 3 V, T_{A} = 25^{\circ}C$			10	μA
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		60		pF
Detector	Low Level Output Voltage	Vol	I⊧ = 10 mA, Io∟ = 2.4 mA		0.13	0.6	V
	High Level Output Current	Іон	$V_{CC} = 30 \text{ V}, \text{ V}_{F} = 0.8 \text{ V}$		1.0	50	μA
	High Level Supply Current	Іссн	$V_{CC} = 30 \text{ V}, \text{ V}_F = 0.8 \text{ V}, \text{ V}_O = \text{open}$		0.6	1.3	mA
	Low Level Supply Current	lcc∟	Vcc = 30 V, I⊧ = 10 mA, Vo = open		0.7	1.3	mA
Coupled	Threshold Input Current $(H \rightarrow L)$	Ifhl	Vo = 0.8 V, Io = 0.75 mA		0.75	5.0	mA
	Current Transfer Ratio (Ic/IF)	CTR	IF = 10 mA, Vo = 0.6 V	44	110		%
	Isolation Resistance	Ri-o	VI-O = 1 KVDC	10 ¹¹			Ω
	Isolation Capacitance	CI-O	V = 0 V, f = 1 MHz		0.7		pF
	Propagation Delay Time $(H \rightarrow L)$	tph∟	$\label{eq:lf} \begin{split} I_{\text{F}} &= 10 \text{ mA}, \text{R}_{\text{L}} = 20 \text{k}\Omega, \text{C}_{\text{L}} = 100 \text{pF}, \\ \text{V}_{\text{THHL}} &= 1.5 \text{V}, \text{V}_{\text{THLH}} = 2.0 \text{V} \end{split}$		240	500	ns
	Propagation Delay Time $(L \rightarrow H)$	tрін			460	750	
	Maximum Propagation Delays	tрін—tрні		-200	220	650	
	Pulse Width Distortion (PWD)	tphl—tplh			220	650	
	Common Mode Transient Immunity at High Level Output	СМн	$\label{eq:TA} \begin{split} &T_{\text{A}} = 25^{\circ}\text{C}, \ \text{I}_{\text{F}} = 0 \ \text{mA}, \ \text{Vo} > 3.0 \ \text{V}, \\ &V_{\text{CM}} = 1.5 \ \text{kV}, \ \text{R}_{\text{L}} = 20 \ \text{k}\Omega, \\ &C_{\text{L}} = 100 \ \text{pF} \end{split}$	15			kV/μ
	Common Mode Transient Immunity at Low Level Output	CM∟	$\label{eq:TA} \begin{split} T_{A} &= 25^{\circ}C, \ I_{F} = 10 \ mA, \ V_{O} < 1.0 \ V, \\ V_{CM} &= 1.5 \ kV, \ R_{L} = 20 \ k\Omega, \\ C_{L} &= 100 \ pF \end{split}$	15			kV/μ

<R> ELECTRICAL CHARACTERISTICS (T_A = -40 to +110°C, Vcc = 15 V, unless otherwise specified)

***1** Typical values at $T_A = 25^{\circ}C$.

USAGE CAUTIONS

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of 0.1 μ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- 3. Avoid storage at a high temperature and high humidity.

NOTES ON HANDLING

Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collector-emitters at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

- The information in this document is current as of April, 2008. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	 Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	 Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	• Do not burn, destroy, cut, crush, or chemically dissolve the product.
	Do not lick the product or i any way allow it to enter the mouth.