N-channel TrenchMOS logic level FET

Rev. 02 — 5 January 2009

Product data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in industrial and communications applications.

1.2 Features and benefits

High efficiency due to low switching and conduction losses

1.3 Applications

Table 4

- Class-D amplifiers
- DC-to-DC converters

Out als not an an a

1.4 Quick reference data

- Suitable for logic level gate drive sources
- Motor control
- Server power supplies

Table 1.	Quick reference						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C		-	-	30	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ see <u>Figure 1</u> ;	[1]	-	-	100	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	88	W
Dynamic	characteristics						
Q _{GD}	gate-drain charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 4.5 \text{ V}; \text{ I}_{D} = 10 \text{ A}; \\ V_{DS} = 12 \text{ V}; \text{ see } \underline{\text{Figure } 14}; \\ \text{see } \underline{\text{Figure } 15} \end{array}$		-	6.5	-	nC
Q _{G(tot)}	total gate charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 4.5 \text{ V}; \text{ I}_{D} = 10 \text{ A}; \\ V_{DS} = 12 \text{ V}; \text{ see } \underline{\text{Figure } 14}; \\ \text{see } \underline{\text{Figure } 15} \end{array}$		-	27	-	nC
Static ch	aracteristics						
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A};$ $T_j = 25 \text{ °C}$		-	1.79	2.4	mΩ

[1] Continuous current is limited by package.

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source	_	_
2	S	source	mb	
3	S	source		
4	G	gate	q;	
mb	D	mounting base; connected to drain	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mbb076 S
			SOT669 (LFPAK)	

3. Ordering information

Table 3. Ord	lering information	n	
Type number	Package		
	Name	Description	Version
PSMN2R5-30Y	L LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

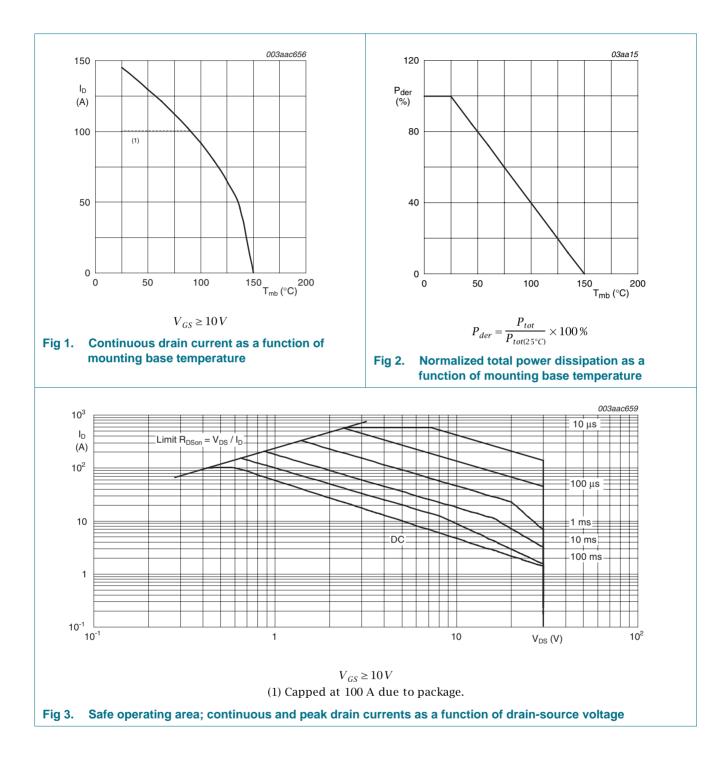
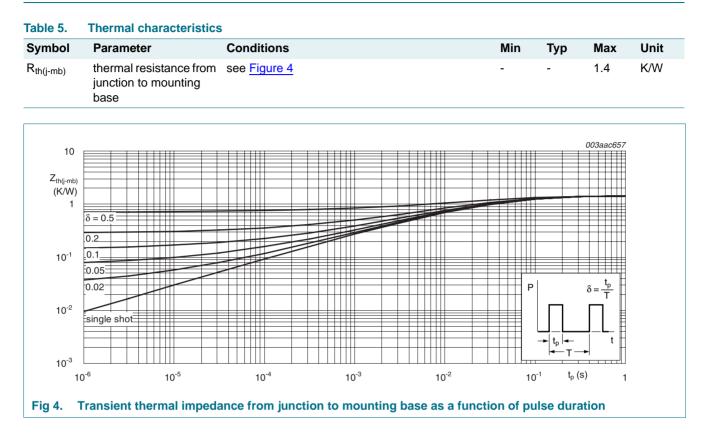

4. Limiting values

Table 4. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Conditions		Min	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 150 °C		-	30	V
drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 150 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$		-	30	V
gate-source voltage			-20	20	V
drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u> ;	[1]	-	91	А
	V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u> ;	[1]	-	100	А
peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see <u>Figure 3</u>		-	580	А
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	88	W
storage temperature			-55	150	°C
junction temperature			-55	150	°C
ain diode					
source current	T _{mb} = 25 °C;	[1]	-	100	А
peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	580	А
ruggedness					
non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_{D} = 100 A; V_{sup} \leq 30 V; R_{GS} = 50 $\Omega;$ unclamped		-	103	mJ
	drain-source voltage drain-gate voltage gate-source voltage drain current peak drain current total power dissipation storage temperature junction temperature ain diode source current peak source current ruggedness non-repetitive drain-source avalanche	$\label{eq:response} \begin{array}{ll} T_{j} \geq 25 \ ^{\circ}\text{C}; \ T_{j} \leq 150 \ ^{\circ}\text{C} \\ \text{drain-gate voltage} & T_{j} \geq 25 \ ^{\circ}\text{C}; \ T_{j} \leq 150 \ ^{\circ}\text{C}; \ R_{GS} = 20 \ \text{k}\Omega \\ \text{gate-source voltage} \\ \text{drain current} & \frac{V_{GS} = 10 \ ^{\circ}\text{V}; \ T_{mb} = 100 \ ^{\circ}\text{C}; \ \text{see Figure 1}; \\ V_{GS} = 10 \ ^{\circ}\text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 1}; \\ V_{GS} = 10 \ ^{\circ}\text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 1}; \\ \text{v}_{GS} = 10 \ ^{\circ}\text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 3} \\ \text{total power dissipation} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 2} \\ \text{storage temperature} \\ \text{junction temperature} \\ \text{junction temperature} \\ \hline \text{ain diode} \\ \hline \text{source current} & T_{mb} = 25 \ ^{\circ}\text{C}; \\ \text{peak source current} & t_{p} \leq 10 \ \text{\mu}\text{s}; \ \text{pulsed}; \ T_{mb} = 25 \ ^{\circ}\text{C} \\ \hline \text{ruggedness} \\ \hline \text{non-repetitive} & V_{GS} = 10 \ ^{\circ}\text{V}; \ T_{j(init)} = 25 \ ^{\circ}\text{C}; \ ^{\circ}\text{L} = 100 \ ^{\circ}\text{A}; \ V_{sup} \leq 30 \ ^{\circ}\text{V}; \\ R_{GS} = 50 \ \Omega; \ \text{unclamped} \\ \end{array}$	$\label{eq:response} \begin{array}{ll} T_{j} \geq 25 \ ^{\circ}\text{C}; \ T_{j} \leq 150 \ ^{\circ}\text{C} \\ T_{j} \geq 25 \ ^{\circ}\text{C}; \ T_{j} \leq 150 \ ^{\circ}\text{C}; \ R_{GS} = 20 \ \text{k}\Omega \\ \hline \text{gate-source voltage} \\ \hline \text{gate-source voltage} \\ \hline \text{drain current} & V_{GS} = 10 \ \text{V}; \ T_{mb} = 100 \ ^{\circ}\text{C}; \ \text{see Figure 1}; & [1] \\ \hline V_{GS} = 10 \ \text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 1}; & [1] \\ \hline \text{v}_{GS} = 10 \ \text{V}; \ T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 3} \\ \hline \text{total power dissipation} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 3} \\ \hline \text{total power dissipation} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 2} \\ \hline \text{storage temperature} & \\ \hline \text{junction temperature} \\ \hline \text{source current} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 2} \\ \hline \text{source current} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 3} \\ \hline \text{source current} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 3} \\ \hline \text{source current} & T_{mb} = 25 \ ^{\circ}\text{C}; \ \text{see Figure 3} \\ \hline \text{ruggedness} \\ \hline \text{non-repetitive} & V_{GS} = 10 \ \text{V}; \ \text{T}_{j(\text{init})} = 25 \ ^{\circ}\text{C}; \ \text{ID} = 100 \ \text{A}; \ \text{V}_{sup} \leq 30 \ \text{V}; \\ \hline \text{R}_{GS} = 50 \ \Omega; \ \text{unclamped} \\ \end{array}$	$\begin{tabular}{ c c c } & T_j \ge 25 \ {}^\circ\mbox{C}; \ T_j \le 150 \ {}^\circ\mbox{C} & -$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{cccc} drain-source voltage & T_j \geq 25\ ^{\circ}C;\ T_j \leq 150\ ^{\circ}C & & & & & & & & & & & & & & & & & & &$

[1] Continuous current is limited by package.

5. Thermal characteristics

6. Characteristics

Table 6. Characteristics

Tested to JEDEC standards where applicable.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS} drain-source breakdown voltage		$I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ C$	30	-	-	V
		$I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^{\circ}C$	27	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C}; \text{ see}$ Figure 11; see Figure 12	1.3	1.7	2.15	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 150 \text{ °C}; \text{ see}$ Figure 12	0.65	-	-	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = -55 °C; see Figure 12	-	-	2.45	V
I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	μA
		V _{DS} = 30 V; V _{GS} = 0 V; T _j = 150 °C	-	-	100	μA
I _{GSS}	gate leakage current	V _{GS} = 16 V; V _{DS} = 0 V; T _j = 25 °C	-	-	100	nA
		V_{GS} = -16 V; V_{DS} = 0 V; T_j = 25 °C	-	-	100	nA
DOON	drain-source on-state	V _{GS} = 4.5 V; I _D = 15 A; T _j = 25 °C	-	2.47	3.9	mΩ
	resistance	V _{GS} = 10 V; I _D = 15 A; T _j = 150 °C; see Figure 13	-	-	4.2	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _i = 25 °C	-	1.79	2.4	mΩ
R _G	gate resistance	f = 1 MHz	-	0.67	-	Ω
Dynamic of	characteristics					
$Q_{G(tot)}$ total gate charge	total gate charge	$I_D = 10 \text{ A}; \text{ V}_{DS} = 12 \text{ V}; \text{ V}_{GS} = 4.5 \text{ V}; \text{ see}$ Figure 14; see Figure 15	-	27	-	nC
		$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$	-	52	-	nC
		I_D = 10 A; V_{DS} = 12 V; V_{GS} = 10 V; see Figure 14; see Figure 15	-	57	-	nC
Q _{GS}	gate-source charge	I_D = 10 A; V_{DS} = 12 V; V_{GS} = 4.5 V; see	-	8.5	-	nC
Q _{GS(th)}	pre-threshold gate-source charge	Figure 14; see Figure 15	-	5.7	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	2.8	-	nC
Q _{GD}	gate-drain charge		-	6.5	-	nC
V _{GS(pl)}	gate-source plateau voltage	V_{DS} = 12 V; see <u>Figure 14</u> ; see <u>Figure 15</u>	-	2.35	-	V
Ciss	input capacitance	V _{DS} = 12 V; V _{GS} = 0 V; f = 1 MHz;	-	3468	-	pF
C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } Figure 16$	-	710	-	pF
C _{rss}	reverse transfer capacitance		-	314	-	pF
t _{d(on)}	turn-on delay time	V_{DS} = 12 V; R_{L} = 0.5 Ω ; V_{GS} = 4.5 V;	-	39	-	ns
t _r	rise time	$R_{G(ext)} = 4.7 \Omega$	-	62	-	ns
t _{d(off)}	turn-off delay time		-	61	-	ns
t _f	fall time		-	25	-	ns

Symbol

Source-drain diode

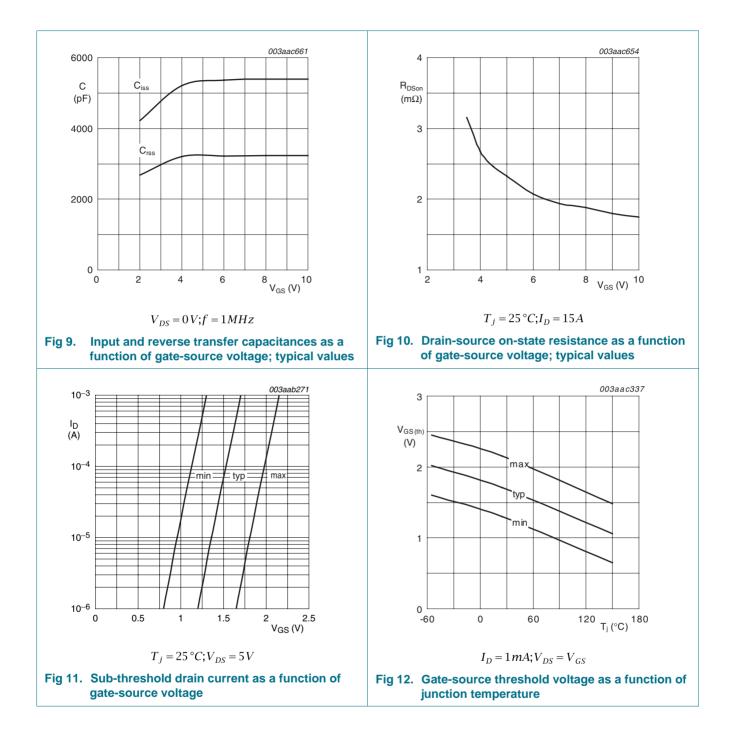
Max

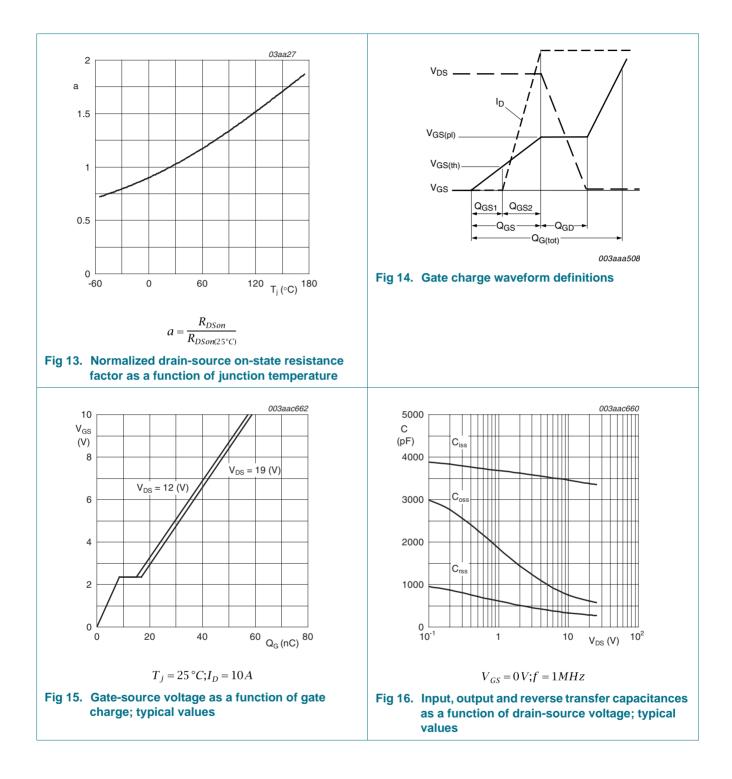
Unit

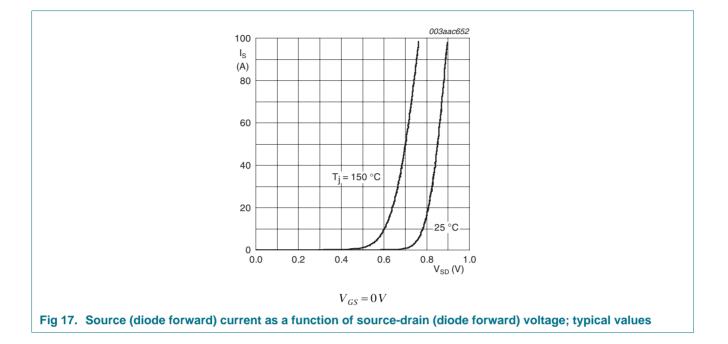
N-channel TrenchMOS logic level FET

Тур

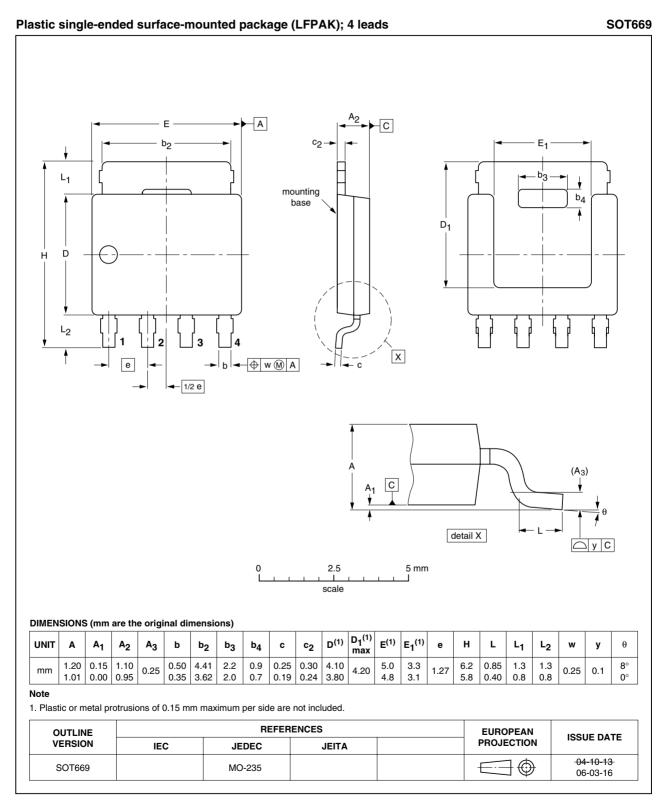
Min


	reverse recovery time	$1 - 20 \wedge dt / dt - 100$					
				-	39	-	ns
	recovered charge	V _{DS} = 20 V		-	38	-	nC
80 _D (A) 60		003aac651	$ \begin{array}{c} _{D} \\ (A) \\ 140 \\ 120 \\ 100 \\ 100 \end{array} $		V _{GS} (V)	003aac653 = 3.2 3 3	
40 -	T _j = 150 °C	25 °C	80 60 40			2.8	
0 0	1 2	3 V _{GS} (V) 4		2 4	6	2.4 2.2 8 V _{DS} (V) ¹⁰	0
	ransfer characteristics: nction of gate-source v				stics: drain o source volta		al valı
9 _{fs} (S) 120 -			R _{DSon} (mΩ) 7	V _G	_S (V) = 3.2		
80			5				
60 -			3			4.5 10	
40 0	20 40	60 I _D (A) 80	10	50	100	I _D (A) 15	0
g 7. Fo	$T_j = 25 ^{\circ}C; V_{DS} =$		Fig 8. Drain-s	5	$C; t_p = 300 \mu s$		funct


Table 6. Characteristics ...continued


Parameter

Tested to JEDEC standards where applicable.


Conditions

7. Package outline

Fig 18. Package outline SOT669 (LFPAK)

PSMN2R5-30YL_2

8. Revision history

Table 7.Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN2R5-30YL_2	20090105	Product data sheet	-	PSMN2R5-30YL_1
Modifications:	 Data shee 	t status updated.		
PSMN2R5-30YL_1	20080910	Preliminary data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline10
8	Revision history11
9	Legal information
9.1	Data sheet status12
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks12
10	Contact information

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 5 January 2009 Document identifier: PSMN2R5-30YL_2

All rights reserved.