

R1LV0816ABG -5SI, 7SI

8Mb Advanced LPSRAM (512k word x 16bit)

REJ03C0393-0100 Rev.1.00 2009.12.08

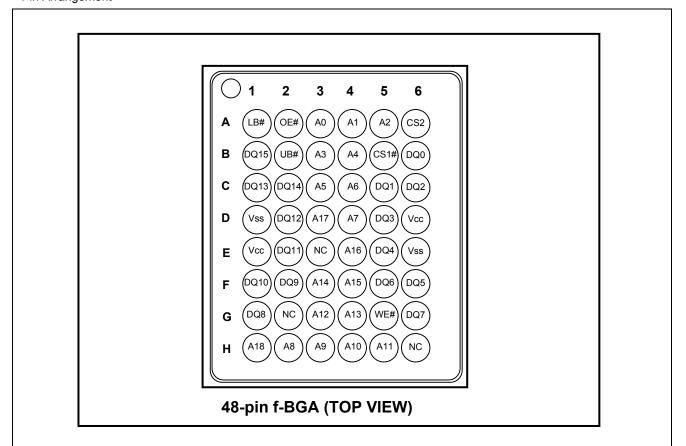
Description

The R1LV0816ABG is a family of low voltage 8-Mbit static RAMs organized as 524,288-words by 16-bit, fabricated by Renesas's high-performance 0.15um CMOS and TFT technologies.

The R1LV0816ABG is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives.

The R1LV0816ABG is packaged in a 48balls fine pitch ball grid array [f-BGA / 7.5 mm×8.5mm with the ball-pitch of 0.75mm and 6x8 array]. It gives the best solution for a compaction of mounting area as well as flexibility of wiring pattern of printed circuit boards.

Features


- Single 2.4-3.6V power supply
- Small stand-by current: 1.2μA (Vcc=3.0V, typ.)
- · No clocks, No refresh
- All inputs and outputs are TTL compatible
- Easy memory expansion by CS1#, CS2, LB# and UB#
- Common Data I/O
- Three-state outputs: OR-tie capability
- OE# prevents data contention in the I/O bus
- Operation temperature: -40 ~ +85°C

Ordering information

Type No.	Power supply	Access time	Temperature Range	Package
R1LV0816ABG-5SI	2.7V to 3.6V	55 ns		49 hall fDCA with 0.75mm hall nitch
K 1L V 00 10 A D G-551	2.4V to 2.7V	70 ns	-40 ~ +85°C	48-ball fBGA with 0.75mm ball pitch PTBG0048HB-A(48FHH)
R1LV0816ABG-7SI	2.4V to 3.6V	70 ns		FIDGUU40AB-A(40FAA)

Pin Arrangement

Pin Description

Pin name	Function
Vcc	Power supply
Vss	Ground
A0 to A18	Address input
DQ0 to DQ15	Data input/output
CS1#	Chip select 1
CS2	Chip select 2
WE#	Write enable
OE#	Output enable
LB#	Lower byte enable
UB#	Upper byte enable
NC	Non connection

Block Diagram

Operation Table

CS1#	CS2	LB#	UB#	WE#	OE#	DQ0~7	DQ8~15	Operation
Н	Х	Х	Х	Х	Х	High-Z	High-Z	Stand-by
Х	L	Х	Х	Х	Х	High-Z	High-Z	Stand-by
Х	Х	Н	Н	Х	Х	High-Z	High-Z	Stand-by
L	Н	L	Н	L	Х	Din	High-Z	Write in lower byte
L	Н	L	Н	Η	L	Dout	High-Z	Read in lower byte
L	Н	L	Н	Н	H High-Z		High-Z	Output disable
L	Н	Н	L	L	Х	High-Z	Din	Write in upper byte
L	Н	Η	L	Η	L	High-Z	Dout	Read in upper byte
L	Н	Н	L	Н	Н	High-Z	High-Z	Output disable
L	Н	L	L	L	Х	Din	Din	Word write
L	Н	Ĺ	Ĺ	Н	L	Dout	Dout	Word read
L	Н	L	L	Н	Н	High-Z	High-Z	Output disable

Note 1. H: V_{IH} L:V_{IL} X: V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	unit
Power supply voltage relative to Vss	Vcc	-0.5 to +4.6	V
Terminal voltage on any pin relative to Vss	V _T	-0.5 ^{*1} to Vcc+0.3 ^{*2}	V
Power dissipation	P _T	0.7	W
Operation temperature	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to 150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Note 1. -3.0V in case of AC (Pulse width ≤30ns)

^{2.} Maximum voltage is +4.6V

Recommend Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Supply voltage	Vcc	2.4	3.0	3.6	V	-	
	Vss	0	0	0	V	-	
Input high voltage	\/	2.0	-	Vcc+0.2	V	Vcc=2.4V to 2.7V	
	V _{IH}	2.2	-	Vcc+0.2	V	Vcc=2.7V to 3.6V	
Input low voltage	V	-0.2	-	0.4	V	Vcc=2.4V to 2.7V	1
	V_{IL}	-0.2	-	0.6	V	Vcc=2.7V to 3.6V	1
Ambient temperature range	Та	-40	-	+85	°C	-	

Note 1. -3.0V in case of AC (Pulse width ≤30ns)

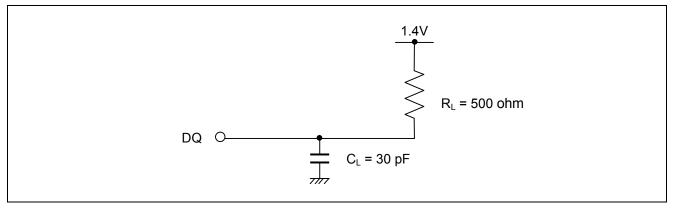
DC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions		
Input leakage current		-	-	1	μA	Vin = Vss to Vcc			
Output leakage current	I LO	-	-	1	μA	CS1# =V _{IH} or CS2 =V _{IL} or OE# =V _{IH} or WE# =V _{IL} or			
Average operating current	I _{CC1}	-	20 ^{*1}	35	mA	LB# = UB# = V_{IH} , VI/O = V_{SS} to Vcc Min. cycle, duty = 100% , II/O = 0mA CS1# = V_{IL} , CS2 = V_{IH} , Others = V_{IH}/V_{IL}			
	I _{CC2}	-	2*1	5	mA	CS1# ≤ 0	s, duty =100%, II/O = 0mA 1.2V, CS2 ≥ V _{CC} -0.2V, -0.2V, V _{IL} ≤ 0.2V		
Standby current	I _{SB}	-	0.1 ^{*1}	0.3	mA	CS2 =V _{IL}			
Standby current		-	1.2 ^{*1}	4	μА	~+25°C	Vin ≥ 0V (1) 0V ≤ CS2 ≤ 0.2V or		
	I _{SB1}	-	3*2	6	μA	~+40°C	(2) CS1# \geq V _{CC} -0.2V, CS2 \geq V _{CC} -0.2V or		
		-	-	15	μA	~+70°C	(3) LB# = UB# \geq V _{CC} -0.2V, CS1# \leq 0.2V, CS2 \geq V _{CC} -0.2V		
		-	-	20	μA	~+85°C	002 = 100 0.2		
Output high voltage	V _{OH}	2.4	-	-	V	I _{OH} = -1mA Vcc≥2.7V			
	V_{OH2}	2.0	-	-	V	I _{OH} = -0.1mA			
Output low voltage	V_{OL}	-	-	0.4	V	I _{OL} = 2mA Vcc≥2.7V			
	V_{OL2}	-	-	0.4	V	I _{OL} = 0.1r	mA		

Note 1.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+25°C), and not 100% tested. 2.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+40°C), and not 100% tested.

Capacitance

(Ta = 25° C, f =1MHz)


Parameter	Symbol	Min.	Тур.	Max.	Unit	Test conditions	Note
Input capacitance	C in	-	-	10	pF	Vin =0V	1
Input / output capacitance	C _{1/O}	-	-	10	pF	V _{I/O} =0V	1

Note 1.Typical parameter is sampled and not 100% tested.

AC Characteristics

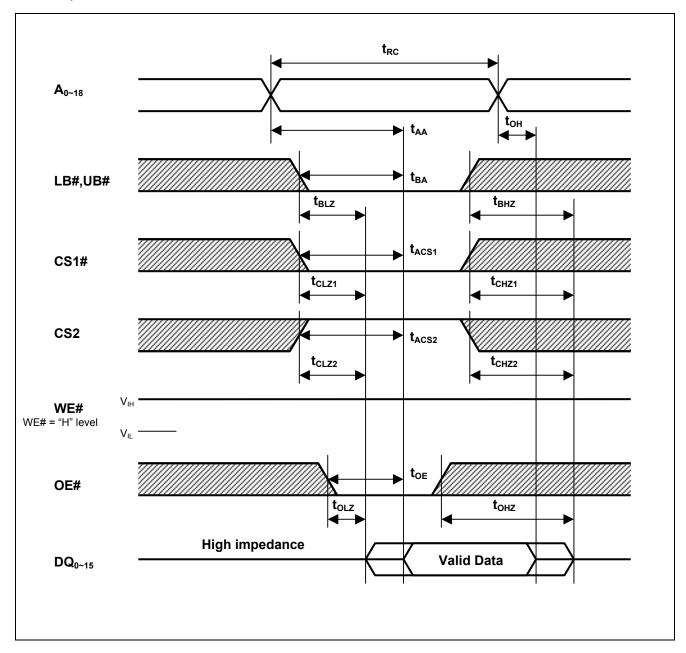
Test Conditions (Vcc = $2.4V \sim 3.6V$, Ta = $-40 \sim +85$ °C)

- Input pulse levels: VIL = 0.4V, VIH = 2.4V (Vcc = 2.7V ~ 3.6 V)
 VIL = 0.4V, VIH = 2.2V (Vcc = 2.4V ~ 2.7 V)
- Input rise and fall times: 5ns
- Input and output timing reference level: 1.4V
- Output load: See figures (Including scope and jig)

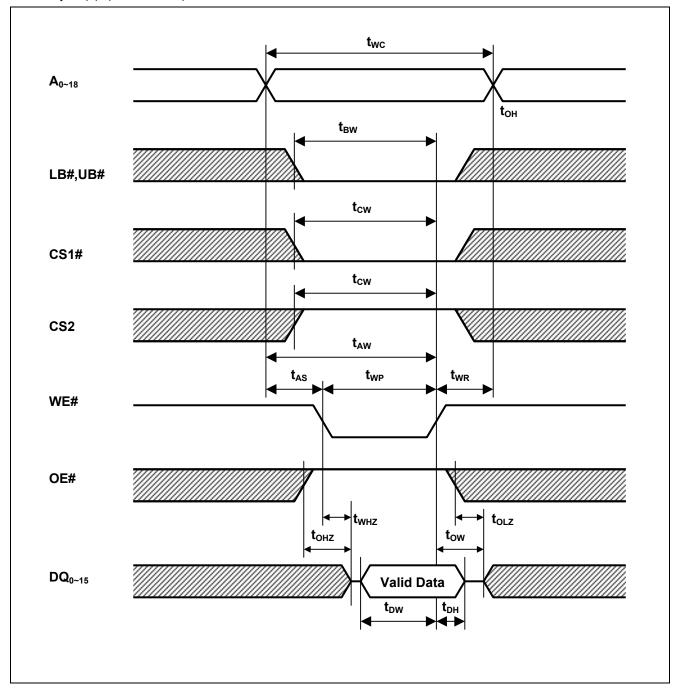
Read cycle

Parameter	Symbol	R1LV0816 (No	ABG-5SI te 0)	R1LV081	6ABG-7SI	Unit	Note
	Í	Min.	Max.	Min.	Max.		
Read cycle time	t _{RC}	55	-	70	-	ns	
Address access time	t _{AA}	-	55	-	70	ns	
Chip select access time	t _{ACS1}	-	55	-	70	ns	
Chip select access time	t _{ACS2}	-	55	-	70	ns	
Output enable to output valid	t _{OE}	-	30	-	35	ns	
Output hold from address change	t _{OH}	10	-	10	-	ns	
LB#, UB# access time	t _{BA}	-	55	-	70	ns	
Chin adject to output in law 7	t _{CLZ1}	10	-	10	_	ns	2,3
Chip select to output in low-Z	t _{CLZ2}	10	-	10	_	ns	2,3
LB#, UB# enable to low-Z	t _{BLZ}	5	-	5	_	ns	2,3
Output enable to output in low-Z	t _{OLZ}	5	-	5	_	ns	2,3
Chin deceler to cutout in high 7	t _{CHZ1}	0	20	0	25	ns	1,2,3
Chip deselect to output in high-Z	t _{CHZ2}	0	20	0	25	ns	1,2,3
LB#, UB# disable to high-Z	t _{BHZ}	0	20	0	25	ns	1,2,3
Output disable to output in high-7	t _{OHZ}	0	20	0	25	ns	1.2.3

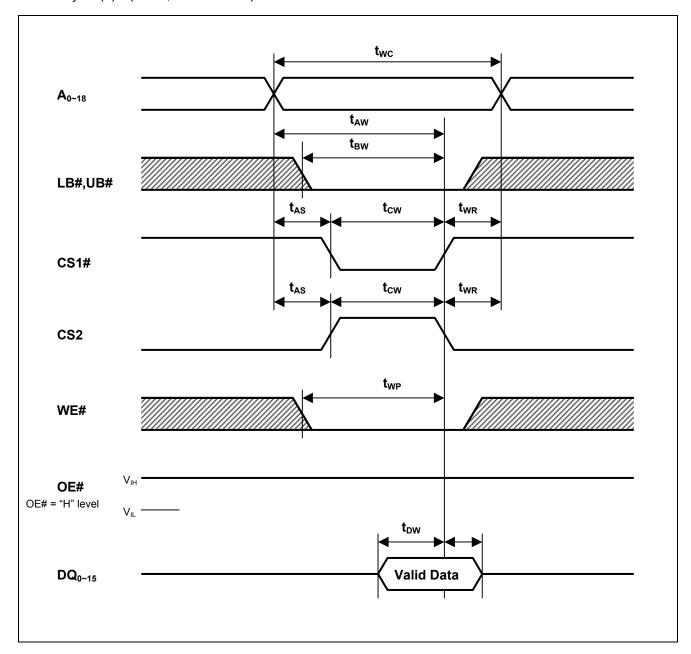
Write Cycle

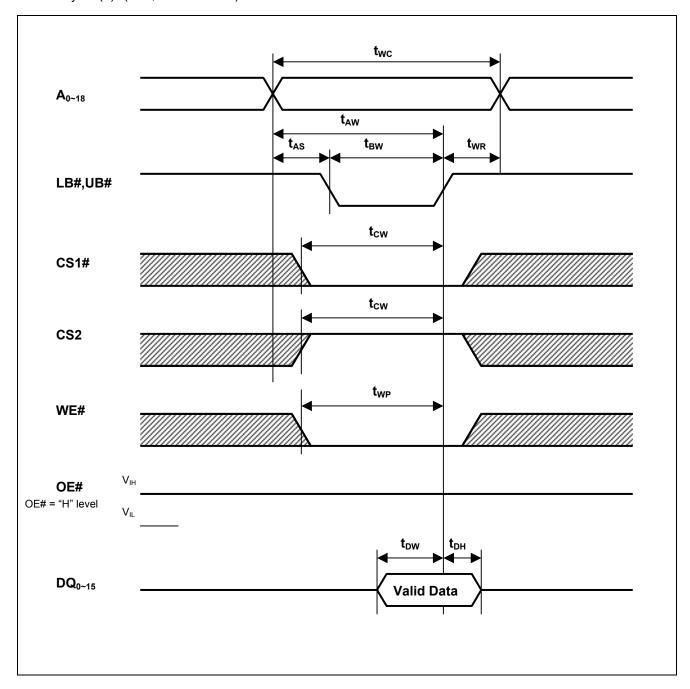

Parameter	Symbol	R1LV0816ABG-5SI (Note 0)		R1LV0816ABG-7SI		Unit	Note
		Min.	Max.	Min.	Max.		
Write cycle time	t _{WC}	55	-	70	-	ns	
Address valid to end of write	t _{AW}	50	1	65	-	ns	
Chip select to end of write	t _{CW}	50	1	65	-	ns	5
Write pulse width	t _{WP}	40	1	55	-	ns	4
LB#, UB# valid to end of write	t _{BW}	50	-	65	-	ns	
Address setup time	t _{AS}	0	-	0	-	ns	6
Write recovery time	t _{WR}	0	-	0	-	ns	7
Data to write time overlap	t _{DW}	25	-	35	-	ns	
Data hold from write time	t _{DH}	0	-	0	-	ns	
Output enable from end of write	tow	5	1	5	-	ns	2
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	ns	1,2
Write to output in high-Z	t _{WHZ}	0	20	0	25	ns	1,2

Note 0. If Vcc is 2.4-2.7V, parameters of R1LV0816ABG-7SI (70ns) are applied.


- 1. t_{CHZ} , t_{OHZ} , t_{WHZ} and t_{BHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.
- 2. Typical parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for given device and from device to device.
- 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or low UB#. A write begins at the latest transitions among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low.
- A write ends at the earliest transitions among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. twp is measured from the beginning of write to the end of write.
- 5. t_{CW} is measured from the later of CS1# going low or CS2 going high to the end of write.
- 6. t_{AS} is measured the address valid to the beginning of write.
- 7. twR is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle

Timing Waveforms


Read Cycle


Write Cycle (1) (WE# CLOCK)

Write Cycle (2) (CS1#, CS2 CLOCK)

Write Cycle (3) (LB#, UB# CLOCK)

Data Retention Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit		Test conditions*3	
V _{CC} for data retention	V_{DR}	1.5	-	3.6	>	(2) CS1# CS2 ≥ (3) LB# = CS1# ≤	$CS2 \le 0.2V$ or $\ge V_{CC}$ -0.2V, V_{CC} -0.2V or $\ge UB\# \ge V_{CC}$ -0.2V, $\le 0.2V$, V_{CC} -0.2V	
		-	1.2 ^{*1}	4	μΑ	~+25°C	Vcc=3.0V, Vin ≥ 0V	
Data retention current		-	3 ^{*2}	6	μΑ	~+40°C	(1) $0V \le CS2 \le 0.2V$ or (2) $CS1\# \ge V_{CC}-0.2V$,	
Data retention current	ICCDR	-	-	15	μΑ	~+70°C	$CS2 \ge V_{CC}-0.2V$ or (3) LB# = UB# $\ge V_{CC}-0.2V$, $CS1# \le 0.2V$.	
		-	-	20	μΑ	~+85°C	CS2 ≥ V _{CC} -0.2V	
Chip select to data retention time	t _{CDR}	0	-	1	ns	See retention waveform.		
Operation recovery time	t _R	5	-	-	ms			

Note 1.Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+25°C), and not 100% tested.

If CS2 controls data retention mode, Vin levels (address, WE#, OE#, LB#, UB#, DQ) can be in the high impedance state. If CS1# controls data retention mode, CS2 must be CS2 \geq V_{CC}-0.2V or 0V \leq CS2 \leq 0.2V .

The other inputs levels (address, WE#, OE#, CS1#, LB#, UB#, DQ) can be in the high impedance state.

^{2.}Typical parameter indicates the value for the center of distribution at 3.0V(Ta=+40°C), and not 100% tested.

^{3.}CS2 controls address buffer, WE# buffer, CS1# Buffer, OE# buffer, LB#, UB# buffer and Din buffer.

Data Retention Timing Waveforms

(1) CS1# controlled Vcc 2.4V t_{R} t_{CDR} V_{DR} 2.0<u>V</u> 2.0V CS1# ≥ Vcc - 0.2V CS1# • (2) CS2 controlled Vcc CS2 t_{CDR} $\boldsymbol{V}_{\text{DR}}$ 0.4V $0V \le CS2 \le 0.2V$ (3) LB#, UB# controlled Vcc 2.4V t_{CDR} V_{DR} 2.0V 2.0V LB#, UB# LB#, UB# ≥ Vcc - 0.2V

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510