TENTATIVE TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS

512-MBIT (64 M \times 8 BITS) CMOS NAND E^2PROM

DESCRIPTION

The TC58NVM9S3C is a single 3.3 V 512-Mbit (553,648,128 bits) NAND Electrically Erasable and Programmable Read-Only Memory (NAND E^2 PROM) organized as (2048 + 64) bytes × 64 pages × 512 blocks. The device has two 2112-byte static registers which allow program and read data to be transferred between the register and the memory cell array in 2112-byte increments. The Erase operation is implemented in a single block unit (128 Kbytes + 4 Kbytes: 2112 bytes × 64 pages).

The TC58NVM9S3C is a serial-type memory device which utilizes the I/O pins for both address and data input/output as well as for command inputs. The Erase and Program operations are automatically executed making the device most suitable for applications such as solid-state file storage, voice recording, image file memory for still cameras and other systems which require high-density non-volatile memory data storage.

FEATURES

Organization

 $\begin{array}{ccc} & TC58NVM9S3C \\ Memory cell array & 2112 \times 32K \times 8 \\ Register & 2112 \times 8 \\ Page size & 2112 \ bytes \\ Block size & (128K + 4K) \ bytes \end{array}$

Modes

Read, Reset, Auto Page Program, Auto Block Erase, Status Read, Page Copy

Mode control

Serial input/output Command control

· Number of valid blocks

Min 502 blocks Max 512 blocks

• Power supply

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$

• Access time

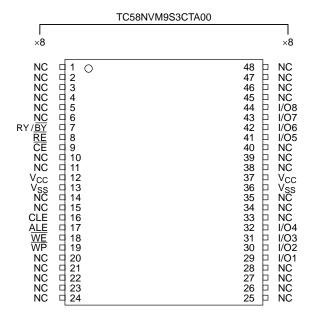
Cell array to register 30 µs max Serial Read Cycle 50 ns min

Program/Erase time

Auto Page Program 300 µs/page typ. Auto Block Erase 2.5 ms/block typ.

· Operating current

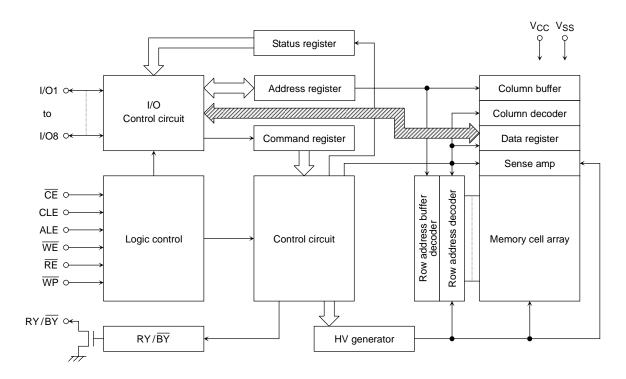
Read (50 ns cycle) 30 mA max Program (avg.) 30 mA max Erase (avg.) 30 mA max Standby 50 µA max


Package

TC58NVM9S3CTA00 TSOP I 48-P-1220-0.50

(Weight: 0.53 g typ.)

PIN ASSIGNMENT (TOP VIEW)



PINNAMES

I/O1 to I/O8	I/O port
CE	Chip enable
WE	Write enable
RE	Read enable
CLE	Command latch enable
ALE	Address latch enable
WP	Write protect
RY/BY	Ready/Busy
Vcc	Power supply
V _{SS}	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT
V _{CC}	Power Supply Voltage	-0.6 to 4.6	V
V_{IN}	Input Voltage	-0.6 to 4.6	V
V _{I/O}	Input /Output Voltage	-0.6 V to V _{CC} + 0.3 V (\leq 4.6 V)	V
P_{D}	Power Dissipation	0.3	W
T _{SOLDER}	Soldering Temperature (10 s)	260	°C
T _{STG}	Storage Temperature	-55 to 125	°C
T _{OPR}	Operating Temperature	0 to 70	°C

CAPACITANCE *(Ta = 25°C, f = 1 MHz)

SYMB0L	PARAMETER	CONDITION	MIN	MAX	UNIT
C _{IN}	Input	$V_{IN} = 0 V$	_	10	pF
C _{OUT}	Output	V _{OUT} = 0 V	_	10	pF

^{*} This parameter is periodically sampled and is not tested for every device.

VALID BLOCKS

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
N _{VB}	Number of Valid Blocks	502	_	512	Blocks

NOTE: The device occasionally contains unusable blocks. Refer to Application Note (13) toward the end of this document.

The first block (Block 0) is guaranteed to be a valid block at the time of shipment.

RECOMMENDED DC OPERATING CONDITIONS

SYMBOL	PAR	MIN	TYP.	MAX	UNIT	
V _{CC}	Power Supply Voltage	2.7 V	_	3.6 V	V	
V _{IH}	High Level input Voltage	2.7 V ≤ V _{CC} ≤ 3.6 V	V _{CC} × 0.78	_	V _{CC} + 0.3	V
V _{IL}	Low Level Input Voltage	2.7 V ≤ V _{CC} ≤ 3.6 V	-0.3*	_	V _{CC} × 0.22	V

^{*: -2} V (pulse width lower than 20 ns)

DC CHARACTERISTICS (Ta = 0 to 70°C, V_{CC} = 2.7 V to 3.6 V)

SYMBOL	PARAMETER	CONDITION	MIN	TYP.	MAX	UNIT
I _{IL}	Input Leakage Current	V _{IN} = 0 V to V _{CC}	_	_	±10	μА
I _{LO}	Output Leakage Current	$V_{OUT} = 0 V \text{ to } V_{CC}$		_	±10	μΑ
Icco ₁	Serial Read Current	$\overline{\text{CE}} = V_{\text{IL}}, I_{\text{OUT}} = 0 \text{ mA}, \text{ tcycle} = 50 \text{ ns}$	_	_	30	mA
I _{CCO2}	Programming Current	_	_	_	30	mA
I _{CCO3}	Erasing Current	_	_	_	30	mA
Iccs	Standby Current	$\overline{CE} = V_{CC} - 0.2 \text{ V}, \overline{WP} = 0 \text{ V/V}_{CC}$	_	_	50	μА
V _{OH}	High Level Output Voltage	$I_{OH} = -0.4 \text{ mA } (2.7 \text{ V} \le V_{CC} \le 3.6 \text{ V})$	2.4	_	_	V
V _{OL}	Low Level Output Voltage	$I_{OL} = 2.1 \text{ mA } (2.7 \text{ V} \le V_{CC} \le 3.6 \text{ V})$	_	_	0.4	V
I _{OL} (RY/BY)	Output current of RY/BY pin	$V_{OL} = 0.4 \text{ V } (2.7 \text{ V} \le V_{CC} \le 3.6 \text{ V})$	_	8	_	mA

The specification for the minimum number of valid blocks is applicable over the device lifetime.

AC CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS (Ta = 0 to 70 $^{\circ}$ C, V_{CC} = 2.7 V to 3.6 V)

SYMBOL	PARAMETER	MIN	MAX	UNIT
t _{CLS}	CLE Setup Time	0	_	ns
tCLH	CLE Hold Time	6	_	ns
t _{CS}	CE Setup Time	10	_	ns
t _{CH}	CE Hold Time	6	_	ns
t _{WP}	Write Pulse Width	15	_	ns
t _{ALS}	ALE Setup Time	0	_	ns
t _{ALH}	ALE Hold Time	6	_	ns
t _{DS}	Data Setup Time	12	_	ns
t _{DH}	Data Hold Time	6	_	ns
t _{WC}	Write Cycle Time	30	_	ns
t _{WH}	WE High Hold Time	10	_	ns
t _{WW}	WP High to WE Low	100	_	ns
t _{RR}	Ready to RE Falling Edge	20	_	ns
t _{RW}	Ready to WE Falling Edge	20	_	ns
t _{RP}	Read Pulse Width	25	_	ns
t _{RC}	Read Cycle Time	50	_	ns
t _{REA}	RE Access Time	_	35	ns
t _{CR}	CE Low to RE Low	10	_	ns
t _{CLR}	CLE Low to RE Low	10	_	ns
t _{AR}	ALE Low to RE Low	10	_	ns
t _{OH}	Data Output Hold Time	10	_	ns
t _{RHZ}	RE High to Output High Impedance	_	30	ns
t _{CHZ}	CE High to Output High Impedance	_	20	ns
t _{REH}	RE High Hold Time	15	_	ns
t _{IR}	Output-High-impedance-to- RE Falling Edge	0	_	ns
t _{RHW}	RE High to WE Low	30	_	ns
t _{WHC}	WE High to CE Low	30	_	ns
t _{WHR}	WE High to RE Low	100	_	ns
t _R	Memory Cell Array to Starting Address	_	30	μs
^t DCBSYR1	Data Cache Busy in Read Cache (following 31h and 3Fh)		30	μs
t _{DCBSYR2}	Data Cache Busy in Page Copy (following 3Ah)	_	35	μs
t _{WB}	WE High to Busy	_	200	ns
t _{RST}	Device Reset Time (Ready/Read/Program/Erase)	_	6/6/10/500	μs

5

AC TEST CONDITIONS

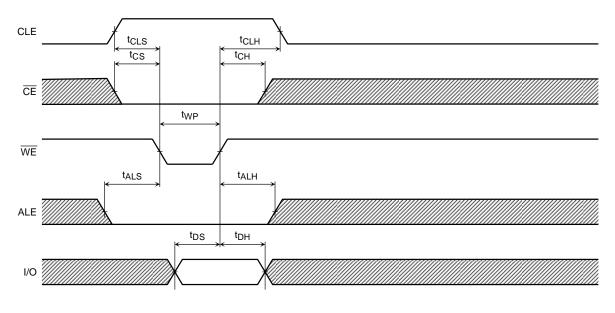
PARAMETER	CONDITION
PANAMETER	2.7 V ≤ V _{CC} ≤ 3.6 V
Input level	V _{CC} – 0.2 V, 0.2 V
Input pulse rise and fall time	3 ns
Input comparison level	Vcc / 2
Output data comparison level	Vcc / 2
Output load	C _L (100 pF) + 1 TTL

Note: Busy to ready time depends on the pull-up resistor tied to the RY/\overline{BY} pin. (Refer to Application Note (9) toward the end of this document.)

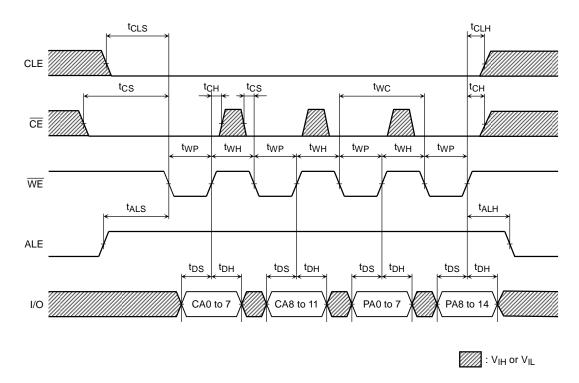
$\frac{PROGRAMMING\ AND\ ERASING\ CHARACTERISTICS}{(Ta=0\ to\ 70^{\circ}C,\ V_{CC}=2.7\ V\ to\ 3.6\ V)}$

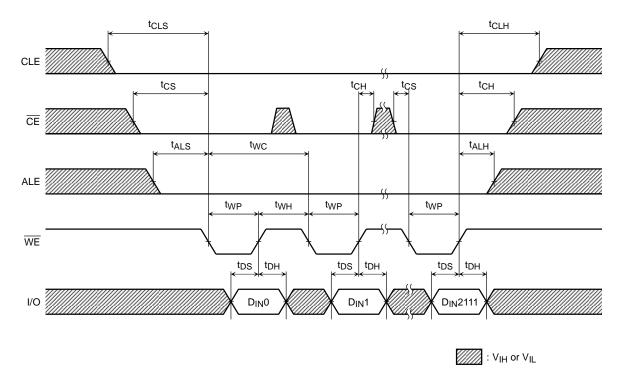

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT	NOTES
t _{PROG}	Average Programming Time		300	700	μs	
t _{DCBSYW2}	Data Cache Busy Time in Write Cache (following 15h)		_	700	μs	(2)
N	Number of Partial Program Cycles in the Same Page	_	_	4	_	(1)
t _{BERASE}	Block Erasing Time	_	2.5	10	ms	

⁽¹⁾ Refer to Application Note (12) toward the end of this document.

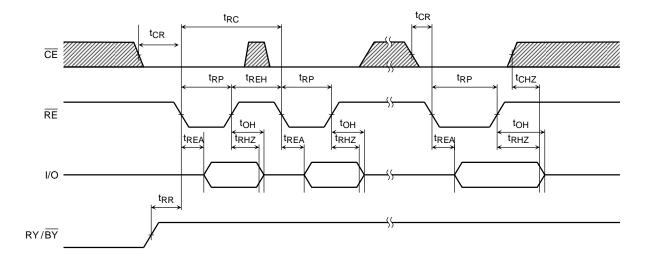

⁽²⁾ t_{DCBSYW2} depends on the timing between internal programming time and data in time.

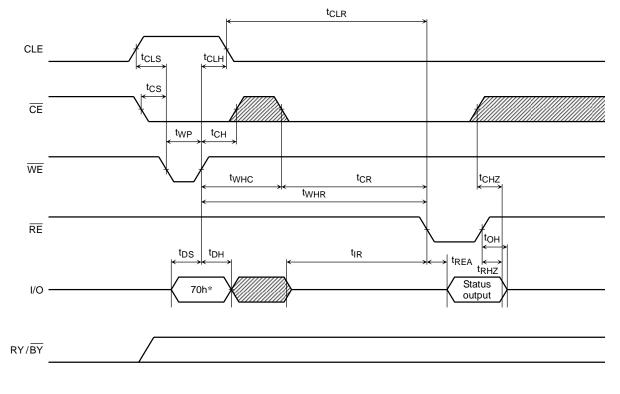
TIMING DIAGRAMS


Latch Timing Diagram for Command/Address/Data

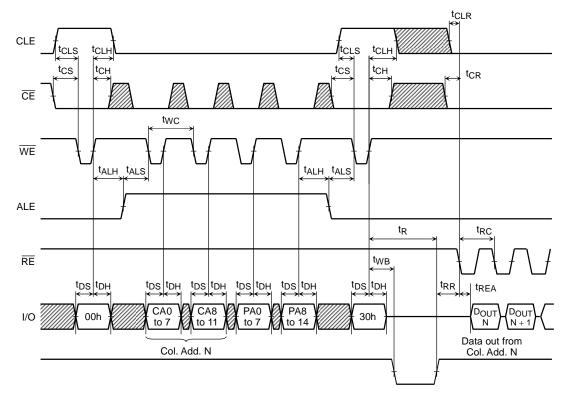

Command Input Cycle Timing Diagram

Address Input Cycle Timing Diagram

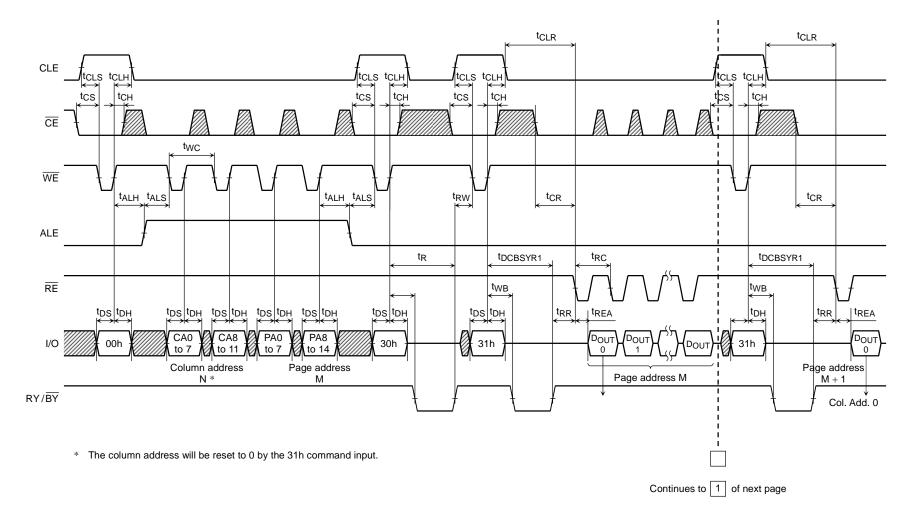

Data Input Cycle Timing Diagram


8

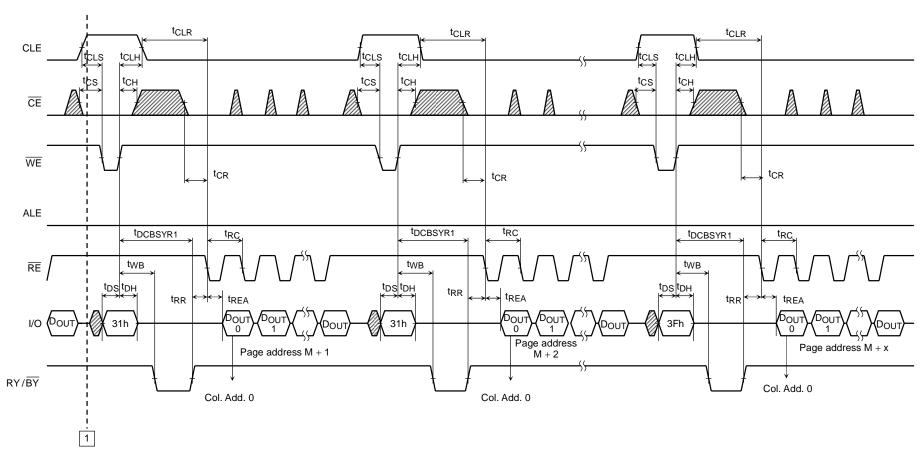
Serial Read Cycle Timing Diagram


Status Read Cycle Timing Diagram

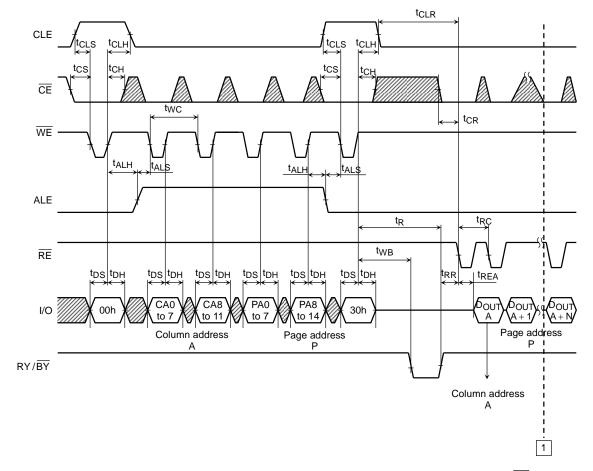

*: 70h represents the hexadecimal number


Read Cycle Timing Diagram

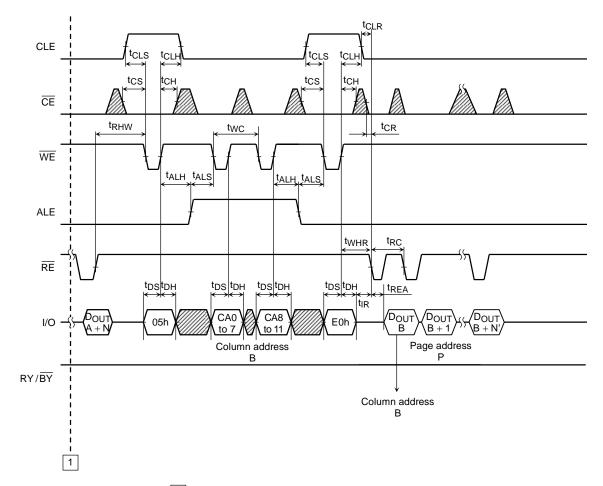
Read Cycle Timing Diagram: When Interrupted by CE



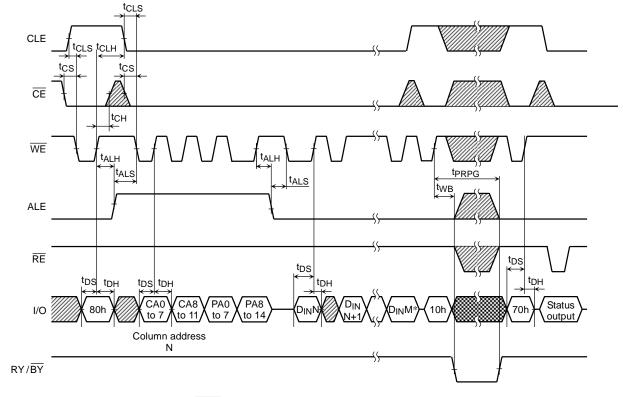
Read Cycle with Data Cache Timing Diagram (1/2)


TOSHIBA

Read Cycle with Data Cache Timing Diagram (2/2)


Continues from 1 of next page

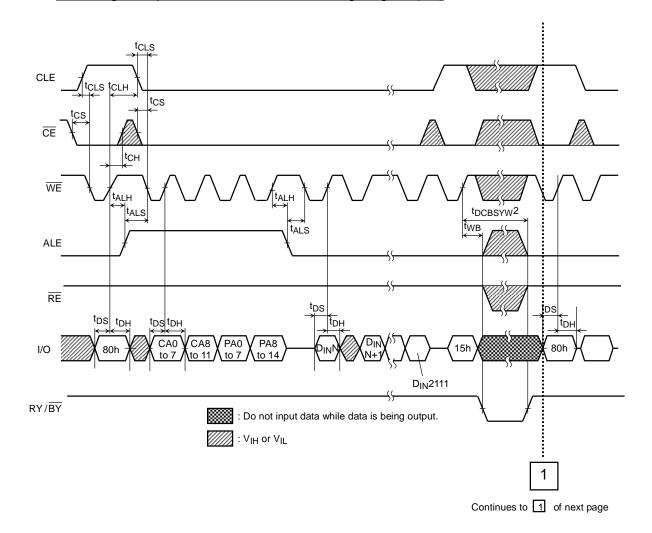
Column Address Change in Read Cycle Timing Diagram (1/2)


Continues from 1 of next page

Column Address Change in Read Cycle Timing Diagram (2/2)

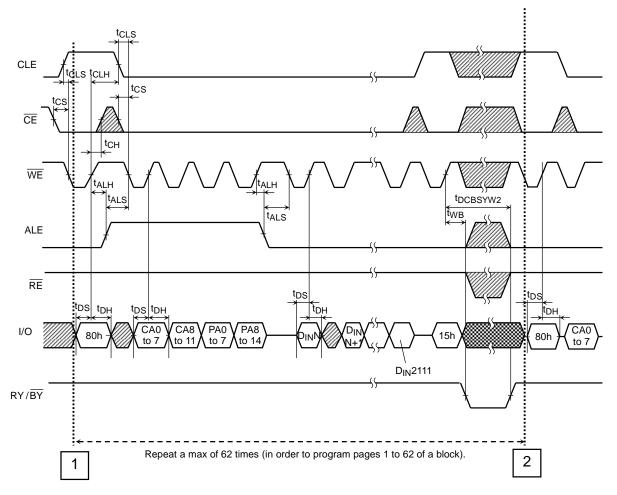
Continues from 1 of next page

Auto-Program Operation Timing Diagram



: Do not input data while data is being output.

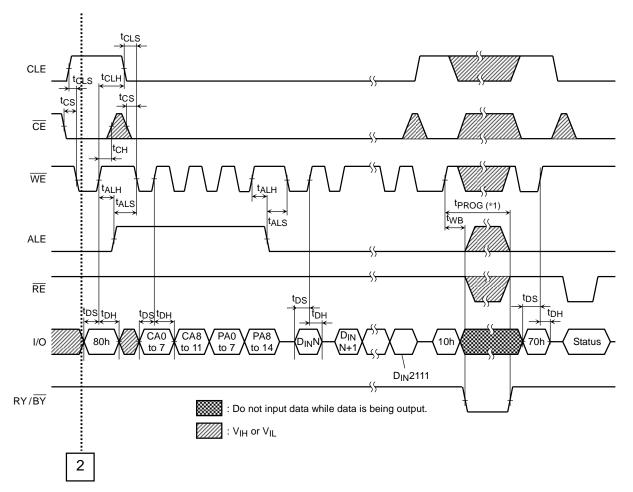
: V_{IH} or V_{IL}


*) M: up to 2112

Auto-Program Operation with Data Cache Timing Diagram (1/3)

16

Auto-Program Operation with Data Cache Timing Diagram (2/3)


Continued from 1 of last page

: Do not input data while data is being output.

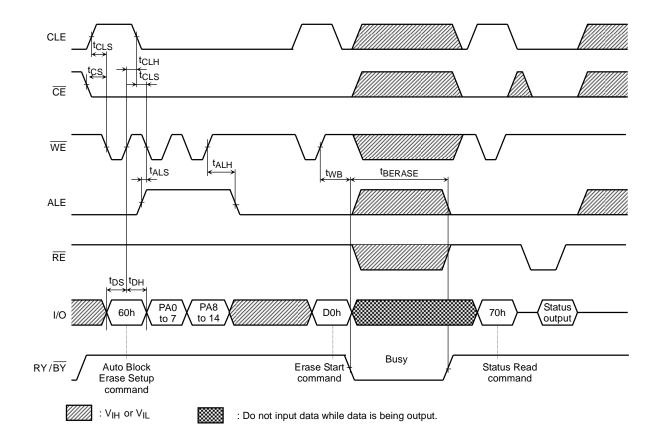
: V_{IH} or V_{IL}

Auto-Program Operation with Data Cache Timing Diagram (3/3)

Continued from 2 of last page

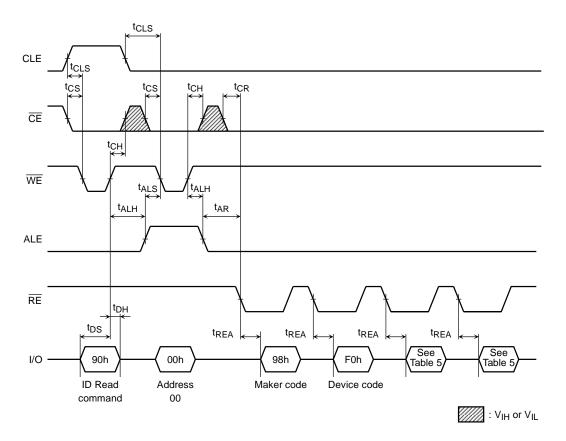
(*1) t_{PROG} : Since the last page programming by 10h command is initiated after the previous cache program, the t_{PROG} during cache programming is given by the following equation.

 $t_{PROG} = t_{PROG} \ of \ the \ last \ page + t_{PROG} \ of \ the \ previous \ page - A$ $A = (command \ input \ cycle + \ address \ input \ cycle + \ data \ input \ cycle \ time \ of \ the \ last \ page)$


If "A" exceeds the $t_{\mbox{\scriptsize PROG}}$ of previous page, $t_{\mbox{\scriptsize PROG}}$ of the last page is $t_{\mbox{\scriptsize PROG}}$ max.

(Note) Make sure to terminate the operation with 80h-10h-command sequence.

If the operation is terminated by 80h-15h command sequence, monitor I/O 6 (Ready / Busy) by issuing Status Read command (70h) and make sure the previous page program operation is completed. If the page program operation is completed issue FFh reset before next operation.



Auto Block Erase Timing Diagram

19

ID Read Operation Timing Diagram

PIN FUNCTIONS

The device is a serial access memory which utilizes time-sharing input of address information.

Command Latch Enable: CLE

The CLE input signal is used to control loading of the operation mode command into the internal command register. The command is latched into the command register from the I/O port on the rising edge of the $\overline{\text{WE}}$ signal while CLE is High.

Address Latch Enable: ALE

The ALE signal is used to control loading address information into the internal address register. Address information is latched into the address register from the I/O port on the rising edge of $\overline{\text{WE}}$ while ALE is High.

Chip Enable: CE

The device goes into a low-power Standby mode when \overline{CE} goes High during the device is in Ready state. The \overline{CE} signal is ignored when device is in Busy state (RY/ \overline{BY} = L), such as during a Program or Erase or Read operation, and will not enter Standby mode even if the \overline{CE} input goes High.

Write Enable: WE

The WE signal is used to control the acquisition of data from the I/O port.

Read Enable: RE

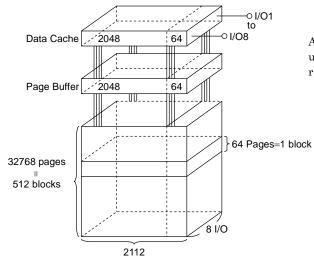
The \overline{RE} signal controls serial data output. Data is available treat after the falling edge of \overline{RE} . The internal column address counter is also incremented (Address = Address + 1) on this falling edge.

I/O Port: I/O1 to 8

The I/O1 to 8 pins are used as a port for transferring address, command and input/output data to and from the device.

Write Protect: WP

The \overline{WP} signal is used to protect the device from accidental programming or erasing. The internal voltage regulator is reset when \overline{WP} is Low. This signal is usually used for protecting the data during the power-on/off sequence when input signals are invalid.


Ready/Busy: RY/BY

The RY/ \overline{BY} output signal is used to indicate the operating condition of the device. The RY/ \overline{BY} signal is in Busy state (RY/ \overline{BY} = L) during the Program, Erase and Read operations and will return to Ready state (RY/ \overline{BY} = H) after completion of the operation. The output buffer for this signal is an open drain and has to be pulled-up to Vccq with an appropriate resister.

Schematic Cell Layout and Address Assignment

The Program operation works on page units while the Erase operation works on block units.

A page consists of 2112 bytes in which 2048 bytes are used for main memory storage and 64 bytes are for redundancy or for other uses.

 $\begin{array}{l} 1\;page=2112\;bytes\\ 1\;block=2112\;bytes\times 64\;pages=(128K+4K)\;bytes\\ Capacity=2112\;bytes\times 64\;pages\times 512\;blocks \end{array}$

Table 1. Addressing

	I/O8	1/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
First cycle	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
Second cycle	L	L	L	L	CA11	CA10	CA9	CA8
Third cycle	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Fourth cycle	L	PA14	PA13	PA12	PA11	PA10	PA9	PA8

CA0 to CA11: Column address PA0 to PA14 Page address

PA6 to PA14 Block address
PA0 to PA5 NAND address in block

Operation Mode: Logic and Command Tables

The operation modes such as Program, Erase, Read and Reset are controlled by command operations shown in Table 3. Address input, command input and data input/output are controlled by the CLE, ALE, \overline{CE} , \overline{WE} , \overline{RE} and \overline{WP} signals, as shown in Table 2.

Table 2. Logic Table

	CLE	ALE	CE	WE	RE	WP *1
Command Input	Н	L	L	F	Н	*
Data Input	L	L	L	F	Н	Н
Address input	L	Н	L	F	Н	*
Serial Data Output	L	L	L	Н	7	*
During Program (Busy)	*	*	*	*	*	Н
During Erase (Busy)	*	*	*	*	*	Н
During Dead (Dury)	*	*	Н	*	*	*
During Read (Busy)	*	*	L	H (*2)	H (*2)	*
Program, Erase Inhibit	*	*	*	*	*	L
Standby	*	*	Н	*	*	0 V/V _{CC}

H: V_{IH} , L: V_{IL} , *: V_{IH} or V_{IL}

^{*1:} Refer to Application Note (10) toward the end of this document regarding the WP signal when Program or Erase Inhibit

^{*2:} If \overline{CE} is low during read busy, \overline{WE} and \overline{RE} must be held High to avoid unintended command/address input to the device or read to device. Reset or Status Read command can be input during Read Busy.

Table 3. Command table (HEX)

	First Cycle	Second Cycle	Acceptable while Busy
Serial Data Input	80	_	
Read	00	30	
Column Address Change in Serial Data Output	05	E0	
Read with Data Cache	31	_	
Read Start for Last Page in Read Cycle with Data Cache	3F	_	
Auto Page Program	80	10	
Column Address Change in Serial Data Input	85	_	
Auto Program with Data Cache	80	15	
Read for Page Copy (2)	00	3A	
Auto Program with Data Cache during Page Copy (2)	8C	15	
Auto Program for last page during Page Copy (2)	8C	10	
Auto Block Erase	60	D0	
ID Read	90	_	
Status Read	70	_	0
Reset	FF	_	0

HEX data bit assignment (Example)

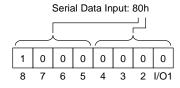
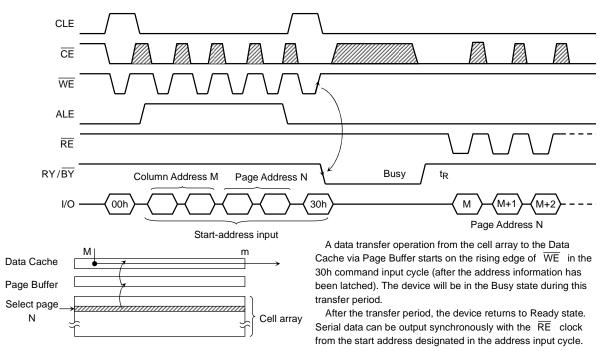
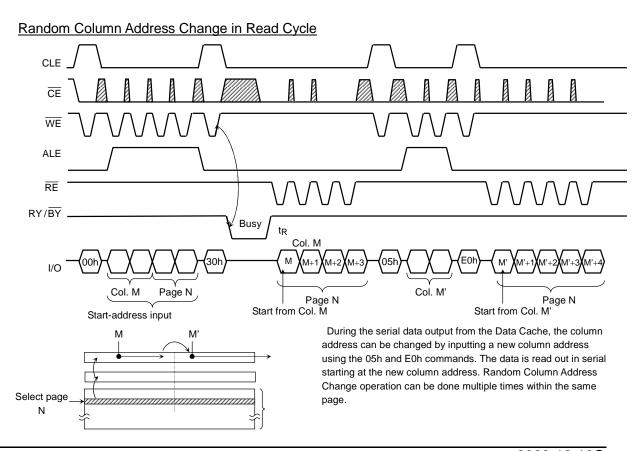


Table 4 shows the operation states for Read mode.

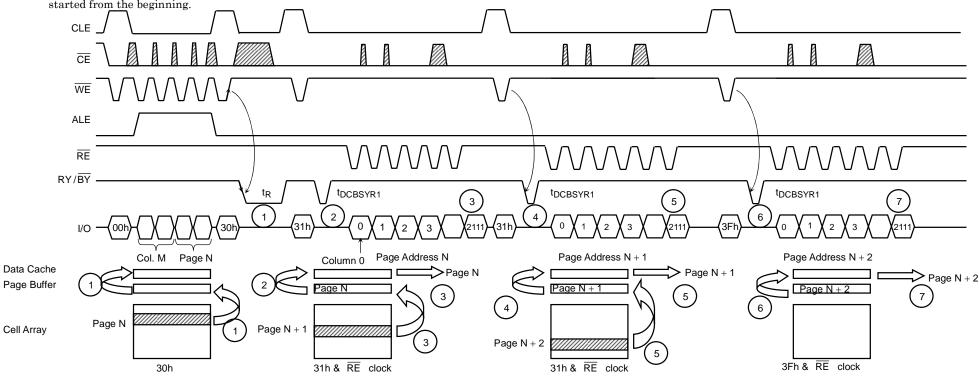
Table 4. Read mode operation states


	CLE	ALE	CE	WE	RE	I/O1 to I/O8	Power
Output select	L	L	L	Н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active


 $H: V_{IH}, L: V_{IL}$

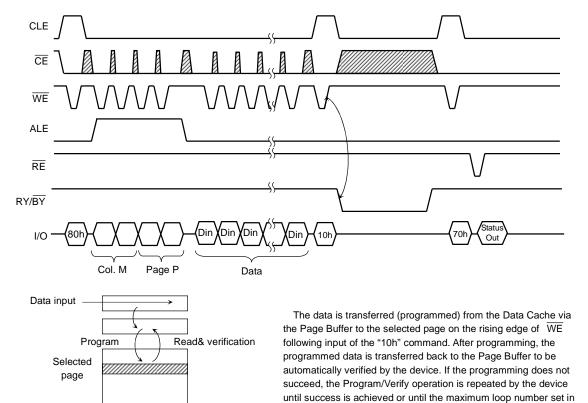
DEVICE OPERATION

Read Mode


Read mode is set when the "00h" and "30h" commands are issued to the Command register. Between the two commands, a start address for the Read mode needs to be issued. Refer to the figures below for the sequence and the block diagram (Refer to the detailed timing chart.).

Read Operation with Read Cache

The device has a Read operation with Data Cache that enables the high speed read operation shown below. When the block address changes, this sequence has to be started from the beginning.

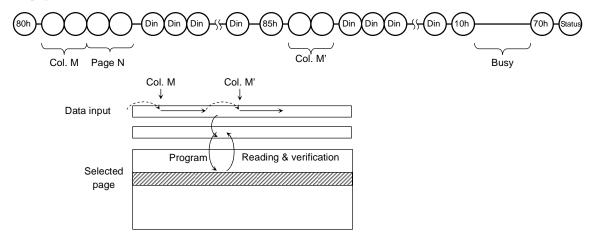


If the 31h command is issued to the device, the data content of the next page is transferred to the Page Buffer during serial data out from the Data Cache, and therefore the tR (Data transfer from memory cell to data register) will be reduced.

- 1 Normal read. Data is transferred from Page N to Data Cache through Page Buffer. During this time period, the device outputs Busy state for tR max.
- 2 After the Ready/Busy returns to Ready, 31h command is issued and data is transferred to Data Cache from Page Buffer again. This data transfer takes tDCBSYR1 max. and the completion of this time period can be detected by Ready/Busy signal.
- 3 Data of Page N + 1 is transferred to Page Buffer from cell while the data of Page N in Data cache can be read out by /RE clock simultaneously.
- The 31h command makes data of Page N + 1 transfer to Data Cache from Page Buffer after the completion of the transfer from cell to Page Buffer. The device outputs Busy state for tDCBSYR1 max. This Busy period depends on the combination of the internal data transfer time from cell to Page buffer and the serial data out time.
- 5 Data of Page N + 2 is transferred to Page Buffer from cell while the data of Page N + 1 in Data cache can be read out by /RE clock simultaneously
- The 3Fh command makes the data of Page N + 2 transfer to the Data Cache from the Page Buffer after the completion of the transfer from cell to Page Buffer. The device outputs Busy state for tDCBSYR1 max. This Busy period depends on the combination of the internal data transfer time from cell to Page buffer and the serial data out time.
- 7 Data of Page N + 2 in Data Cache can be read out, but since the 3Fh command does not transfer the data from the memory cell to Page Buffer, the device can accept new command input immediately after the completion of serial data out.

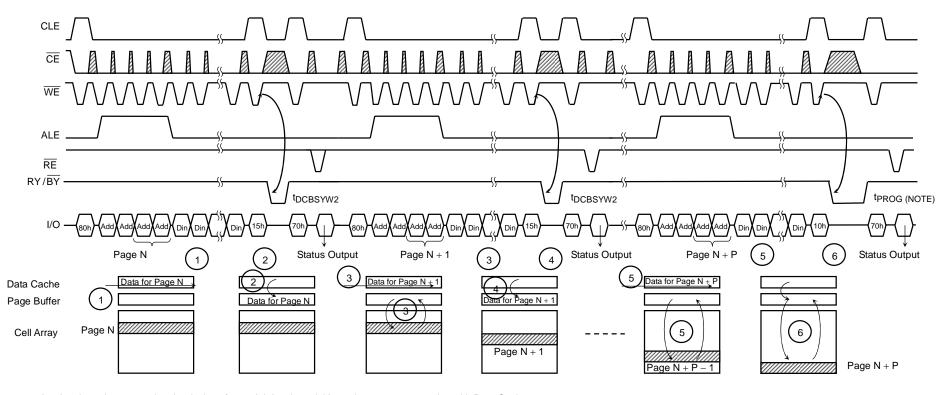
Auto Page Program Operation

The device carries out an Automatic Page Program operation when it receives a "10h" Program command after the address and data have been input. The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)



Random Column Address Change in Auto Page Program Operation

The column address can be changed by the 85h command during the data input sequence of the Auto Page Program operation.


the device is reached.

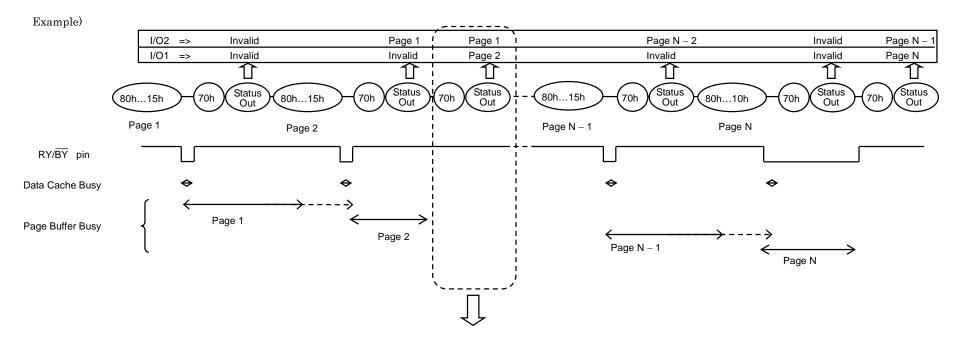
Two address input cycles after the 85h command are recognized as a new column address for the data input. After the new data is input to the new column address, the 10h command initiates the actual data program into the selected page automatically. The Random Column Address Change operation can be repeated multiple times within the same page.

Auto Page Program Operation with Data Cache

The device has an Auto Page Program with Data Cache operation enabling the high speed program operation shown below. When the block address changes this sequenced has to be started from the beginning.

Issuing the 15h command to the device after serial data input initiates the program operation with Data Cache

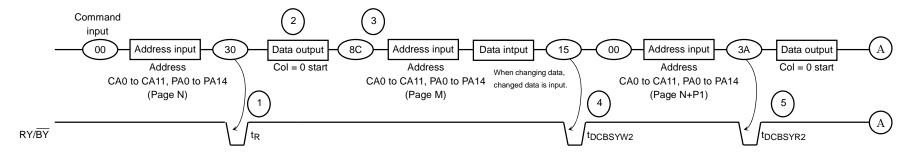
- 1 Data for Page N is input to Data Cache.
- 2 Data is transferred to the Page Buffer by the 15h command. During the transfer the Ready/Busy outputs Busy State (t_{DCBSYW2}).
- 3 Data is programmed to the selected page while the data for page N + 1 is input to the Data Cache.
- By the 15h command, the data in the Data Cache is transferred to the Page Buffer after the programming of page N is completed. The device output busy state from the 15h command until the Data Cache becomes empty. The duration of this period depends on timing between the internal programming of page N and serial data input for Page N + 1 (t_{DCBSYW2}).
- 5 Data for Page N + P is input to the Data Cache while the data of the Page N + P 1 is programmed.
- The programming with Data Cache is terminated by the 10h command. When the device becomes Ready, it shows that the internal programming of the Page N + P is completed. NOTE: Since the last page programming by the 10h command is initiated after the previous cache program, the tPROG during cache programming is given by the following; tpROG = tpROG for the last page + tpROG of the previous page (command input cycle + address input cycle + data input cycle time of the previous page)

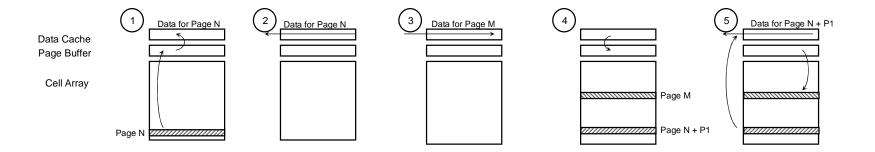

Pass/fail status for each page programmed by the Auto Page Programming with Data Cache operation can be detected by the Status Read operation.

- I/O1: Pass/fail of the current page program operation.
- I/O2: Pass/fail of the previous page program operation.

The Pass/Fail status on I/O1 and I/O2 are valid under the following conditions.

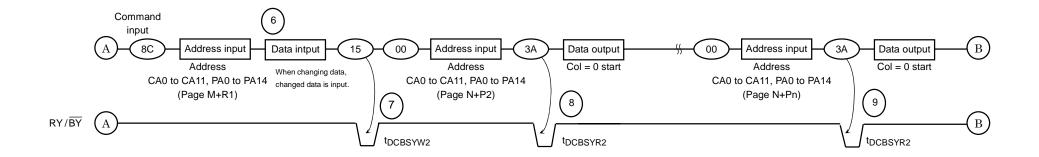
- Status on I/O1: Page Buffer Ready/Busy is Ready State.
 - The Page Buffer Ready/Busy is output on I/O6 by Status Read operation or RY/BY pin after the 10h command
- Status on I/O2: Data Cache Read/Busy is Ready State.

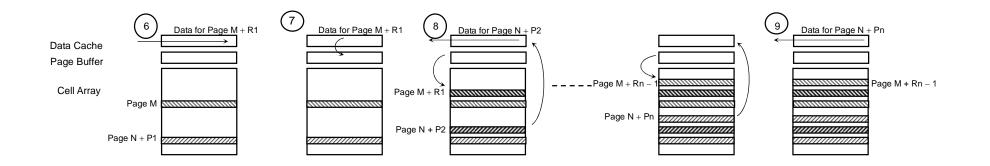

The Data Cache Ready/Busy is output on I/O7 by Status Read operation or RY/BY pin after the 15h command.

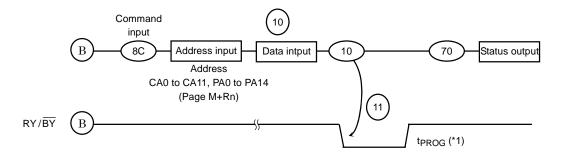


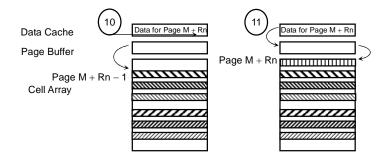
If the Page Buffer Busy returns to Ready before the next 80h command input, and if Status Read is done during this Ready period, the Status Read provides pass/fail for Page 2 on I/O1 and pass/fail result for Page1 on I/O2

Page Copy (2)


By using Page Copy (2), data in a page can be copied to another page after the data has been read out. The data which is read out on Page Copy (2) operation should be verified by ECC. When the block address changes (increments) this sequenced has to be started from the beginning.




Page Copy (2) operation is as following.

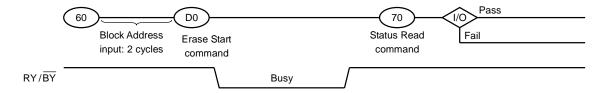

- 1 Data for Page N is transferred to the Data Cache.
- 2 Data for Page N is read out.
- 3 Copy Page address M is input and if the data needs to be changed, changed data is input.
- 4 Data Cache for Page M is transferred to the Page Buffer.
- 5 After the Ready state, Data for Page N + P1 is output from the Data Cache while the data of Page M is being programmed.

- 6 Copy Page address (M + R1) is input and if the data needs to be changed, changed data is input.
- 7 After programming of page M is completed, Data Cache for Page M + R1 is transferred to the Page Buffer.
- 8 By the 15h command, the data in the Page Buffer is programmed to Page M + R1. Data for Page N + P2 is transferred to the Data cache.
- 9 The data in the Page Buffer is programmed to Page M + Rn 1. Data for Page N + Pn is transferred to the Data Cache

- 10 Copy Page address (M + Rn) is input and if the data needs to be changed, changed data is input.
- 11 By issuing the 10h command, the data in the Page Buffer is programmed to Page M + Rn.
- (*1) Since the last page programming by the 10h command is initiated after the previous cache program, the t_{PROG} here will be expected as the following, t_{PROG} = t_{PROG} for the last page + tPROG of the previous page (command input cycle + address input cycle + data output / input cycle time of the previous page)

Data input is required only if previous data output needs to be altered.

If the data has to be changed, locate the desired address with the column address input after the 8Ch command, and change only the data that needs be changed.


If the data does not have to be changed, data input cycles are not required.

Make sure WP is held to High level when Page Copy (2) operation is performed.

Also make sure the Page Copy operation is terminated with 8Ch-10h command sequence

Auto Block Erase

The Auto Block Erase operation starts on the rising edge of $\overline{\text{WE}}$ after the Erase Start command "D0h" which follows the Erase Setup command "60h". This two-cycle process for Erase operations acts as an extra layer of protection from accidental erasure of data due to external noise. The device automatically executes the Erase and Verify operations.

ID Read

The device contains ID codes which can be used to identify the device type, the manufacturer, and features of the device. The ID codes can be read out under the following timing conditions:

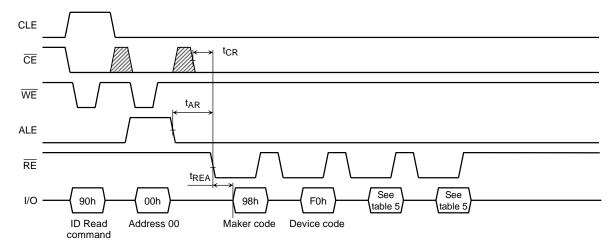


Table 5. Code table

	Description	I/O8	1/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	Hex Data
1st Data	Manufacture Code	1	0	0	1	1	0	0	0	98h
2nd Data	Device Code	1	1	1	1	0	0	0	0	F0h
3rd Data	Chip Number, Cell Type	_	_	_	_	_	_	_	_	See table
4th Data	Page Size, Block Size, Redundant Size, Organization	_	_				_			See table

3rd Data

	Description	I/O8	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
Internal Chip Number	1 2 4 8							0 0 1 1	0 1 0 1
Cell Type	2 level cell 4 level cell 8 level cell 16 level cell					0 0 1 1	0 1 0 1		
Reserved		0 or 1	0	0 or 1	0 or 1				

34

4th Data

	Description	I/O8	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
Page Size (without redundant area)	1 KB 2 KB 4 KB 8 KB							0 0 1 1	0 1 0 1
Block Size (without redundant area)	64 KB 128 KB 256 KB 512 KB			0 0 1 1	0 1 0 1				
Redundant area size (byte/512byte)	8 16 Reserved Reserved					0 0 1 1	0 1 0 1		
Organization	×8 ×16		0 1						
Reserved		0 or 1							

Status Read

The device automatically implements the execution and verification of the Program and Erase operations. The Status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass /fail) of a Program or Erase operation, and determine whether the device is in Protect mode. The device status is output via the I/O port using \overline{RE} after a "70h" command input. The Status Read can also be used during a Read operation to find out the Ready/Busy status.

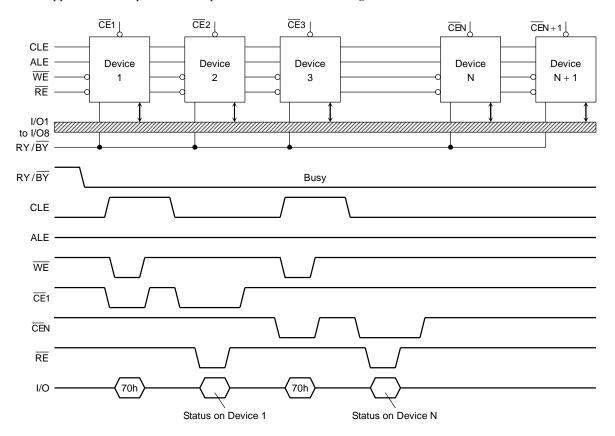
The resulting information is outlined in Table 6.

Table 6. Status output table

	Definition	Page Program Block Erase	Cache Program	Read Cache Read	
I/O1	Chip Status1 Pass: 0 Fail: 1	Pass/Fail	Pass/Fail	Invalid	
I/O2	Chip Status 2 Pass: 0 Fail: 1	Invalid	Pass/Fail	Invalid	
I/O3	Not Used	0	0	0	
I/O4	Not Used	0	0	0	
I/O5	Not Used	0	0	0	
I/O6	Page Buffer Ready/Busy Ready: 1 Busy: 0	Ready/Busy	Ready/Busy	Ready/Busy	
1/07	Data Cache Ready/Busy Ready: 1 Busy: 0	Ready/Busy	Ready/Busy	Ready/Busy	
I/O8	Write Protect Not Protected :1 Protected: 0	Write Protect	Write Protect	Write Protect	

The Pass/Fail status on I/O1 and I/O2 is only valid during a Program/Erase operation when the device is in the Ready state.

Chip Status 1:


During an Auto Page Program or Auto Block Erase operation this bit indicates the pass/fail result. During an Auto Page Programming with Data Cache operation, this bit shows the pass/fail results of the current page program operation, and therefore this bit is only valid when I/O6 shows the Ready state.

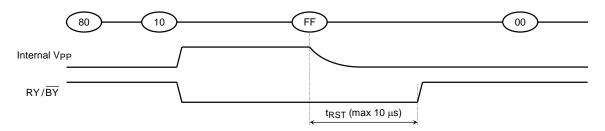
Chip Status 2:

This bit shows the pass/fail result of the previous page program operation during Auto Page Programming with Data Cache. This status is valid when I/O7 shows the Ready State.

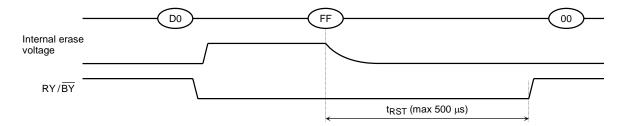
The status output on the I/O6 is the same as that of I/O7 if the command input just before the 70h is not 15h or 31h.

An application example with multiple devices is shown in the figure below.

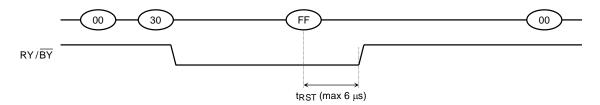
System Design Note: If the RY / \overline{BY} pin signals from multiple devices are wired together as shown in the diagram, the Status Read function can be used to determine the status of each individual device.

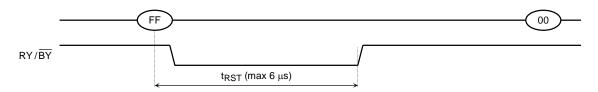

Reset

The Reset mode stops all operations. For example, in case of a Program or Erase operation, the internally generated voltage is discharged to 0 volt and the device enters the Wait state.

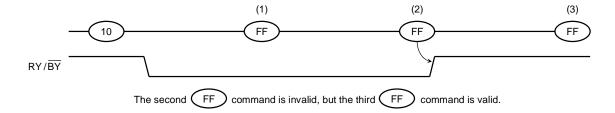

Reset during a Cache Program/Page Copy may not just stop the most recent page program but it may also stop the previous program to a page depending on when the FF reset is input.

The response to a "FFh" Reset command input during the various device operations is as follows:


When a Reset (FFh) command is input during programming

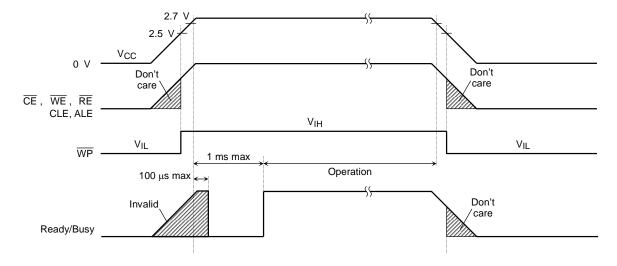

When a Reset (FFh) command is input during erasing


When a Reset (FFh) command is input during Read operation


When a Reset (FFh) command is input during Ready

When a Status Read command (70h) is input after a Reset

When two or more Reset commands are input in succession


APPLICATION NOTES AND COMMENTS

(1) Power-on/off sequence:

The timing sequence shown in the figure below is necessary for the power-on/off sequence.

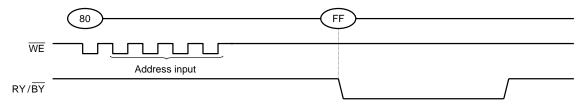
The device internal initialization starts after the power supply reaches an appropriate level in the power on sequence. During the initialization the device Ready/Busy signal indicates the Busy state as shown in the figure below. In this time period, the acceptable commands are FFh or 70h.

The WP signal is useful for protecting against data corruption at power-on/off.

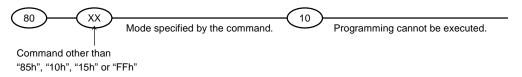
(2) Status after power-on

The following sequence is necessary because some input signals may not be stable at power-on.

(3) Prohibition of unspecified commands

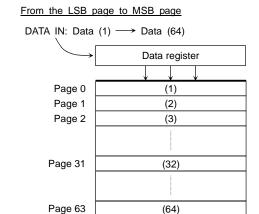

The operation commands are listed in Table 3. Input of a command other than those specified in Table 3 is prohibited. Stored data may be corrupted if an unknown command is entered during the command cycle.

(4) Restriction of commands while in the Busy state

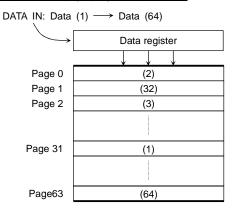

During the Busy state, do not input any command except 70h and FFh.

(5) Acceptable commands after Serial Input command "80h"

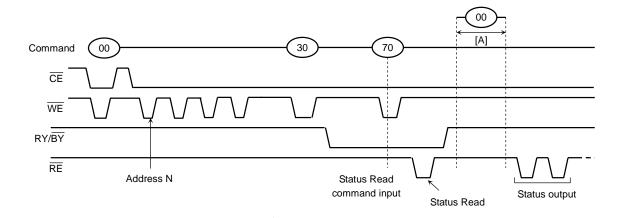
Once the Serial Input command "80h" has been input, do not input any command other than the Column Address Change in Serial Data Input command "85h", Auto Program command "10h", Auto Program with Data Cache Command "15h", or the Reset command "FFh".



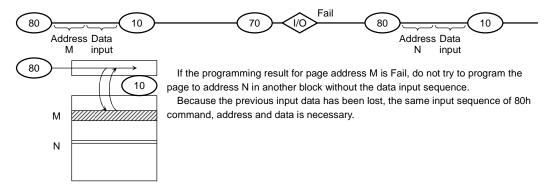
If a command other than "85h", "10h", "15h" or "FFh" is input, the Program operation is not performed and the device operation is set to the mode which the input command specifies.



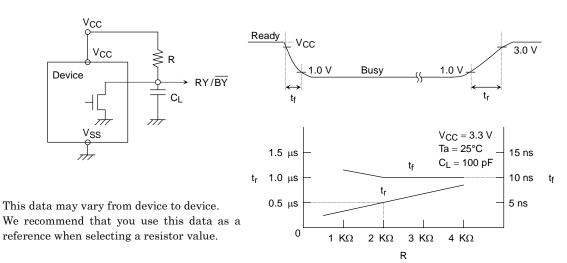
(6) Addressing for program operation


Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) page of the block. Random page address programming is prohibited.

Ex.) Random page program (Prohibition)

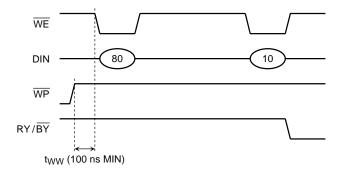


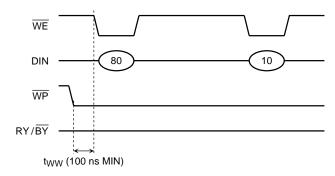
(7) Status Read during a Read operation


The device status can be read out by inputting the Status Read command "70h" in Read mode. Once the device has been set to Status Read mode by a "70h" command, the device will not return to Read mode unless the Read command "00h" is input during [A]. If the Read command "00h" is input during [A], Status Read mode is reset, and the device returns to Read mode. In this case, data output starts automatically from address N and address input is unnecessary

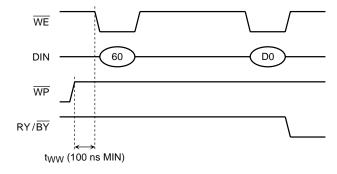
(8) Auto programming failure

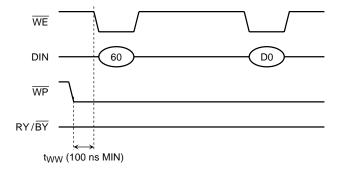
(9) RY / \overline{BY} : termination for the Ready/Busy pin (RY / \overline{BY})


A pull-up resistor needs to be used for termination because the RY/\overline{BY} buffer consists of an open drain circuit.

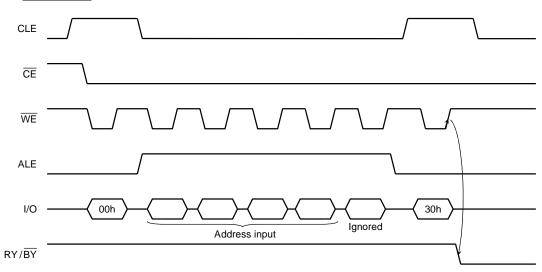

(10) Note regarding the \overline{WP} signal

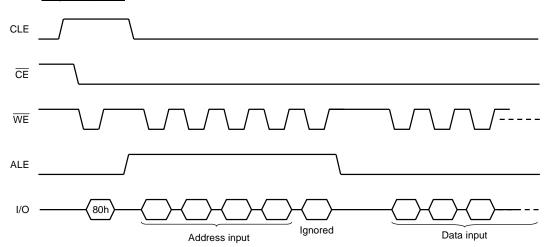
The Erase and Program operations are automatically reset when \overline{WP} goes Low. The operations are enabled and disabled as follows:


Enable Programming


Disable Programming

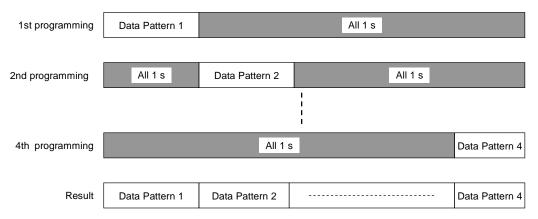
Enable Erasing


Disable Erasing

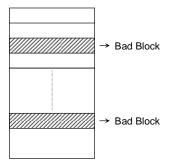

(11) When five address cycles are input

Although the device may read in a fifth address, it is ignored inside the chip.

Read operation



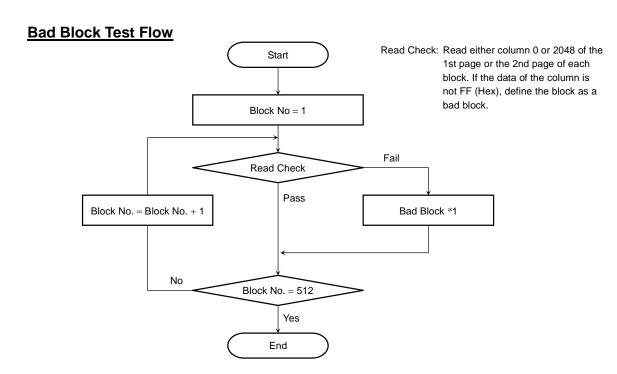
Program operation


(12) Several programming cycles on the same page (Partial Page Program)

Each segment can be programmed individually as follows:

(13) Invalid blocks (bad blocks)

The device occasionally contains unusable blocks. Therefore, the following issues must be recognized:


At the time of shipment, all data bytes in a valid block are FFh. For bad blocks, all bytes are not in the FFh state. Please do not perform an erase operation to bad blocks. It may be impossible to recover the bad block information if the information is erased.

Check if the device has any bad blocks after installation into the system. Refer to the test flow for bad block detection. Bad blocks which are detected by the test flow must be managed as unusable blocks by the system.

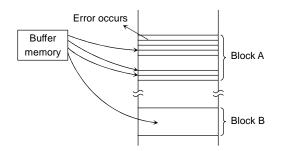
A bad block does not affect the performance of good blocks because it is isolated from the bit lines by select gates.

The number of valid blocks over the device lifetime is as follows:

	MIN	TYP.	MAX	UNIT
Valid (Good) Block Number	502		512	Block

*1: No erase operation is allowed to detected bad blocks

(14) Failure phenomena for Program and Erase operations

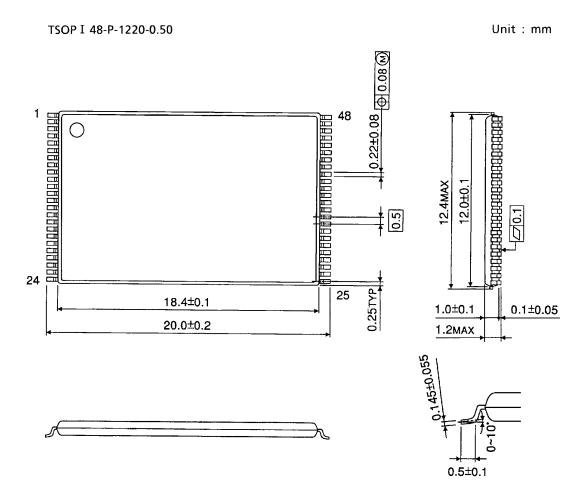

The device may fail during a Program or Erase operation.

The following possible failure modes should be considered when implementing a highly reliable system.

FAILURE MODE		DETECTION AND COUNTERMEASURE SEQUENCE		
Block	Erase Failure	Status Read after Erase → Block Replacement		
Page	Programming Failure	Status Read after Program → Block Replacement		
Single Bit	Programming Failure "1 to 0"	ECC		

- ECC: Error Correction Code. 1 bit correction per 528Bytes is necessary.
- Block Replacement

Program


When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using another appropriate scheme).

Erase

When an error occurs during an Erase operation, prevent future accesses to this bad block (again by creating a table within the system or by using another appropriate scheme).

(15) Do not turn off the power before write/erase operation is complete. Avoid using the device when the battery is low. Power shortage and/or power failure before write/erase operation is completed will cause loss of data and/or damage to data.

Package Dimensions

Weight: 0.53 g (typ.)

Revision History

Date	Rev.	Description
2008-07-25	1.00	Original version
2008-09-29	1.10	Deleted EDO Mode
2008-10-10	1.20	Changed the description of ICCS

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
 The information
 contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
 TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No
 license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances.
 - Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- The products described in this document are subject to foreign exchange and foreign trade control laws.