

3.3-V CAN TRANSCEIVER

FEATURES

- Bus-Pin Fault Protection Exceeds ±36 V
- **Bus-Pin ESD Protection Exceeds 16-kV Human** Body Model (HBM)
- **Compatible With ISO 11898**
- Signaling Rates⁽¹⁾ up to 1 Mbps .
- Extended -7-V to 12-V Common-Mode Range
- **High-Input Impedance Allows for 120 Nodes** .
- LVTTL I/Os Are 5-V Tolerant
- **Adjustable Driver Transition Times for** Improved Signal Quality
- Unpowered Node Does Not Disturb the Bus
- Low-Current Standby Mode . . . 200 µA Typical
- Power-Up/Down Glitch-Free Bus Inputs and Outputs
 - High Input Impedance With Low V_{CC}
 - Monolithic Output During Power Cycling
- Loopback for Diagnostic Functions Available
- DeviceNet[™] Vendor ID #806

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

APPLICATIONS

- **Down-Hole Drilling**
- **High Temperature Environments**
- **Industrial Automation**
 - DeviceNet[™] Data Buses
 - Smart Distributed Systems (SDS™)
- SAE J1939 Data Bus Interface
- NMEA 2000 Data Bus Interface
- ISO 11783 Data Bus Interface
- **CAN Data Bus Interface**

SUPPORTS EXTREME TEMPERATURE APPLICATIONS

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

- **Controlled Baseline**
- **One Assembly/Test Site**
- **One Fabrication Site**
- Available in Extreme (-55°C/210°C) Temperature Range⁽¹⁾
- **Extended Product Life Cycle**
- **Extended Product-Change Notification**
- **Product Traceability**
- Texas Instruments high temperature products utilize highly optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures.

DESCRIPTION/ORDERING INFORMATION

The SN65HVD233 is used in applications employing the controller area network (CAN) serial communication physical laver in accordance with the ISO 11898 standard, with the exception that the thermal shutdown is removed. As a CAN transceiver, the device provides transmit and receive capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.

operation especially Designed for in harsh environments, the device features cross wire, overvoltage, and loss-of-ground protection to ±36 V, with common-mode transient protection of ±100 V. This device operates over a -7-V to 12-V common-mode range with a maximum of 60 nodes on a bus.

If the common-mode range is restricted to the ISO 11898 standard range of -2 V to 7 V, up to 120 nodes may be connected on a bus. This transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.

(1) Custom temperature ranges available

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DeviceNet is a trademark of Open DeviceNet Vendor Association.

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

R_S (pin 8) provides for three modes of operation: high-speed, slope control, or low-power standby mode. The high-speed mode of operation is selected by connecting R_S directly to ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at R_S, since the slope is proportional to the pin's output current. Slope control is implemented with a resistor value of 10 kΩ to achieve a slew rate of ≈ 15 V/µs, and a value of 100 kΩ to achieve ≈ 2.0 V/µs slew rate. For more information about slope control, refer to the application information section.

The SN65HVD233 enters a low-current standby mode, during which the driver is switched off and the receiver remains active if a high logic level is applied to R_s . The local protocol controller reverses this low-current standby mode when it needs to transmit to the bus.

A logic high on the loopback (LBK, pin 5) of the SN65HVD233 places the bus output and bus input in a high-impedance state. The remaining circuit remains active and available for the driver to receiver loopback, self-diagnostic node functions without disturbing the bus.

AVAILABLE OPTIONS

PART NUMBER	LOW-POWER MODE	SLOPE CONTROL	DIAGNOSTIC LOOPBACK	AUTOBAUD LOOPBACK
SN65HVD233SJD	200-µA standby mode	Adjustable	Yes	No
SN65HVD233SKGDA	200-µA standby mode	Adjustable	Yes	No

PACKAGE (JD) ⁽²⁾	TOP-SIDE MARKING
SN65HVD233SJD	SN65HVD233SJD
PACKAGE (BARE DIE) ⁽²⁾	
SN65HVD233SKGDA	

ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTIONAL BLOCK DIAGRAM

TEXAS INSTRUMENTS

www.ti.com

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

BARE DIE INFORMATION

DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BOND PAD METALLIZATION COMPOSITION
15 mm	Silicon with backgrind	GND	Al-Si-Cu (0.5%)

Origin

Bond Pad Coordinates in Microns - Rev A

DISCRIPTION	PAD NUMBER	а	b	С	d
D	1	86.40	157.85	203.40	274.85
GND	2	1035.05	69.75	1150.05	184.75
GND	3	1168.15	69.75	1283.15	184.75
VCC	4	1572.05	51.85	1687.05	166.85
VCC	5	1711.95	51.85	1826.95	166.85
R	6	2758.85	237.65	2873.85	352.65
LBK	7	2774.25	1429.985	2889.25	1544.95
CANL	8	1549.90	1544.95	1664.90	1659.95
CANH	9	1351.45	1544.95	1466.45	1659.95
RS	10	83.50	1429.95	198.50	1544.95

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

DEVICE INFORMATION

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

www.ti.com

FUNCTION TABLES⁽¹⁾

(1) H = high level, L = low level, Z = high impedance, X = irrelevant, ? = indeterminate

	DRIVER								
INPUTS			OUTPUTS						
D	LBK	R _s	CANH	CANL	BUS STATE				
Х	Х	>0.75 V _{CC}	Z	Z	Recessive				
L	L or open	<0.22.1/	Н	L	Dominant				
H or open	Х	≤0.33 V _{CC}	Z	Z	Recessive				
Х	Н	≤0.33 V _{CC}	Z	Z	Recessive				

	RECEIVER										
	OUTPUT										
BUS STATE	$V_{ID} = V_{(CANH)} - V_{(CANL)}$	LBK	D	R							
Dominant	V _{ID} ≥ 0.9 V	L or open	Х	L							
Recessive	V _{ID} ≤ 0.5 V or open	L or open	H or open	Н							
?	0.5 V < V _{ID} < 0.9 V	L or open	H or open	?							
Х	Х	Ц	L	L							
Х	X		Н	Н							

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾ ⁽²⁾

over operating free-air temperature range (unless otherwise noted)

				VALUE	UNIT
V _{CC}	Supply voltage range			–0.3 to 7	V
	Voltage range at any bu	s terminal (CANH or CANL)		-36 to 36	V
	Voltage input range, trar	nsient pulse (CANH and CANL) three	ough 100 Ω (see Figure 8)	-100 to 100	V
VI	Input voltage range (D,	-0.5 to 7	V		
I _O	Receiver output current			-10 to 10	mA
		Liveran Dark Marial (LIDM) (3)	CANH, CANL, and GND	16	
	Electrostatic discharge	static discharge	All pins	3	kV
		Charged-Device Mode (CDM) ⁽⁴⁾	1		

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.

(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

			T _A = -55°C	to 210°C	
			MIN	MAX	UNIT
V _{CC}	Supply voltage		3	3.6	V
	Voltage at any bus terminal (separa	ately or common mode)	-7	12	V
VIH	High-level input voltage	D, LBK	2	5.5	V
VIL	Low-level input voltage	D, LBK	0	0.8	V
V _{ID}	Differential input voltage		6	6	V
	Resistance from R _S to ground		0	100	kΩ
V _{I(Rs)}	Input voltage at R _S for standby		0.75 V _{CC}	5.5	V
	High lovel output ourrent	Driver	-50		m 4
ЮН	High-level output current	Receiver	-10		ma
	Low lovel output ourrent	Driver		50	m 4
OL	Low-level output current	Receiver		10	ma
TJ	Operating junction temperature			212	°C
T _A	Operating free-air temperature ⁽¹⁾		-55	210	°C

(1) Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

www.ti.com

DRIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

DADAMETED		TEAT CONDITIONS	T _A = -	-55°C to '	125°C	Τ ₄	_ = 210°C	(1)			
	PARA	MEIER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
N/	Bus outpu	t voltage	CANH	$D = 0 V, R_S = 0 V,$	2.45		V _{CC}	2.45		V _{CC}	
V _{O(D)}	(dominant)	CANL	See Figure 2 and Figure 3	0.5		1.25	0.5		1.25	V
V	Bus outpu	t voltage	CANH	$D = 3 V, R_S = 0 V,$		2.3			2.3		V
vo	(recessive	e)	CANL	See Figure 2 and Figure 3		2.3			2.3		v
Differential output voltage		Itage	$D = 0 V, R_S = 0 V,$ See Figure 2 and Figure 3	1.5	2	3	1.4	1.75	3	M	
VOD(D)	(Dominan	t)	-	$D = 0 V, R_S = 0 V,$ See Figure 3 and Figure 4	1.1	2	3	1.1	1.47	3	v
V _{OD}	Differential output voltage (Recessive)		ltage	$D = 3 V, R_S = 0 V,$ See Figure 2 and Figure 3	-120		12	-120		12	mV
-	(Recessiv	e)		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2	V					
V _{OC(pp)}	Peak-to-peak common-mode output voltage		on-mode	See Figure 10		1			1		V
IIH	High-level input current D, LBK		D, LBK	D = 2 V	-30		30	-30		30	μA
IIL	Low-level current	input	D, LBK	D = 0.8 V	-30		30	-30		30	μA
				$V_{CANH} = -7 V$, CANL open, See Figure 13	-250			-250			
	Short aire	uit output o	urront	V _{CANH} = 12 V, CANL open, See Figure 13			1			1	~ ^
IOS	Short-circi	υπ ουτρυτ σ	urrent	$V_{CANL} = -7 V$, CANH open, See Figure 13	-1			-1			ma
				V _{CANL} = 12 V, CANH open, See Figure 13			250			250	
Co	Output ca	pacitance		See receiver input capacitance							
I _{IRs(s)}	Output capacitance R _S input current for standby		standby	R _S = 0.75 V _{CC}	-10			-10			μA
		Standby		$R_{S} = V_{CC}, D = V_{CC}, LBK = 0 V$		200	600		400	600	μA
I _{CC}	Supply	Dominant	:	D = 0 V, No load, LBK = 0 V, R _S = 0 V			6			6	m۸
	Surront	Recessive	Э	D =t V _{CC} , No load, LBK = 0 V, R _S = 0 V			6			6	ША

(1) Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}C$ but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.

Submit Documentation Feedback

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

DRIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	T _A = -	-55°C to '	125°C	Т	_A = 210°C	C ⁽¹⁾	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		R _S = 0 V, See Figure 5		35	85		50		
t _{PLH}	Propagation delay time,	R_S with 10 k Ω to ground, See Figure 5		70	125		75		ns
		R_S with 100 k Ω to ground, See Figure 5		500	870		500		
		R _S = 0 V, See Figure 5		70	120		70		
t _{PHL}	Propagation delay time, high-to-low-level output	R_S with 10 k Ω to ground, See Figure 5		130	180		130		ns
		R_S with 100 k Ω to ground, See Figure 5		870	1200		870		-
		R _S = 0 V, See Figure 5		35			9		
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	R_S with 10 k Ω to ground, See Figure 5		60			35		ns
		R_S with 100 k Ω to ground, See Figure 5		370			475		
t _r	Differential output signal rise time	$\mathbf{P} = 0.1/2$ See Figure 5	20		70	20		75	20
t _f	Differential output signal fall time	$R_{\rm S} = 0$ V, See Figure 5	18		70	20		75	ns
t _r	Differential output signal rise time	R_{S} with 10 k Ω to ground,	30		135	30		140	
t _f	Differential output signal fall time	See Figure 5	30		135	30		140	ns
t _r	Differential output signal rise time	R_{S} with 100 k Ω to ground,	250		1400	250		1400	
t _f	Differential output signal fall time	See Figure 5	350		1400	350		1400	115
t _{en(s)}	Enable time from standby to dominant	See Figure 9		0.6	1.5		0.6	1.5	μs

Minimum and maximum parameters are characterized for operation at T_A = 210°C but may not be production tested at that temperature. (1) Production test limits with statistical guardbands are used to ensure high temperature performance.

Table 1. THERMAL CHARACTERISTICS

	PARAMETERS	TEST CONDITIONS	MAX	UNIT
0	lunction to ambient thermal register as (1)	Low-K ⁽²⁾ board, no air flow	83.4	°C 11/
θ_{JA} θ_{JB}		High-K ⁽³⁾ board, no air flow	64.9	°C/W
θ_{JB}	Junction-to-board thermal resistance	High-K ⁽³⁾ board, no air flow	27.9	°C/W
θ_{JC}	Junction-to-case thermal resistance		6.49	°C/W
P _(AVG)	Average power dissipation	R_L = 60 Ω , R_S = 0 V, input to D a 1-MHz 50% duty cycle square wave, V_{CC} = 3.3 V, T_A = 25°C	114	mW

See TI literature number SZZA003 for an explanation of this parameter. (1)

(2) (3) JESD51-3 low effective thermal conductivity test board for leaded surface-mount packages.

JESD51-7 high effective thermal conductivity test board for leaded surface-mount packages.

RECEIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	DADAMETED		TEST CO	NDITIONS	T _A = -55°C to 125°C		T _A	= 210°C	; ⁽¹⁾		
	PARA	METER	IEST CO	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
$V_{\text{IT+}}$	Positive-	going input d voltage				620	900		600	900	mV
$V_{\text{IT}-}$	Negative threshold	-going input d voltage	LBK = 0 V, See Table	e 2	500	715		500	725		mV
V _{hys}	Hysteres (V _{IT+} – V	is voltage ′ı⊤–)				100			140		mV
V _{OH}	High-leve	el output voltage	I _O = -4 mA, See Figu	re 7	2.4			2.4			V
V _{OL}	Low-leve	el output voltage	I_{O} = 4 mA, See Figure	e 7			0.4			0.4	V
I,	Bus input current		CANH or CANL = 12 V		140		500	140		500	
			$\begin{array}{l} \text{CANH or} \\ \text{CANL} = 12 \text{ V}, \\ \text{V}_{\text{CC}} = 0 \text{ V} \end{array}$	Other bus pin = 0 V,	200		600	200		800	۵
			CANH or CANL = -7 V	$R_{\rm S} = 0 {\rm V},$	-610		-150	-610		-150	μΑ
			$\begin{array}{l} \mbox{CANH or} \\ \mbox{CANL} = -7 \ \mbox{V}, \\ \mbox{V}_{CC} = 0 \ \mbox{V} \end{array}$		-450		-130	-450		-130	
CI	Input cap (CANH c	oacitance or CANL)	Pin to ground, $V_1 = 0.4$ D = 3 V, LBK = 0 V	4 sin (4E6πt) + 0.5 V,		45			55		pF
C _{ID}	Differenti capacitar	ial input nce	Pin to pin, $V_1 = 0.4$ sir D = 3 V, LBK = 0 V	n (4E6πt) + 0.5 V,		15			15		pF
R _{ID}	Differenti resistanc	ial input ce			40		110	40		110	kΩ
R _{IN}	Input resistance (CANH or CANL)		D = 3 V, LBK = 0 V		20		51	18		51	kΩ
		Standby	$R_{S} = V_{CC}, D = V_{CC}, L$	BK = 0 V		200	600		400	600	μA
I _{CC}	Supply	Dominant	$D = 0 V$, No load, R_S	= 0 V, LBK = 0 V			6			6	~ ^
	Surrout	Recessive	$D = V_{CC}$, No load, R_S	= 0 V, LBK = 0 V			6			6	mA

(1) Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.

www.ti.com

RECEIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	T _A = -	T _A = -55°C to 125°C			T _A = 210°C ⁽¹⁾		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			35	60		50	60	ns
t _{PHL}	Propagation delay time, high-to-low-level output	See Figure 7		35	60		45	60	ns
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})			7			5		ns
t _r	Output signal rise time			2	6.5		6.5	8	ns
t _f	Output signal fall time			2	6.5		6.5	9	ns

(1) Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.

DEVICE SWITCHING CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	T _A = -55°C to 125°C			T _A = 210°C ⁽¹⁾			
		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _(LBK)	Loopback delay, driver input to receiver output	See Figure 12		7.5	15		12	15	ns
		R _S = 0 V, See Figure 11		70	135		90	135	
t _(loop1)	Total loop delay, driver input to receiver output, recessive to dominant	R_S with 10 k Ω to ground, See Figure 11		105	190		115	190	ns
		R_S with 100 k Ω to ground, See Figure 11		535	1000		430	1000	
		R _S = 0 V, See Figure 11		70	135		98	135	
t _(loop2)	Total loop delay, driver input to receiver output, dominant to	R_S with 10 k Ω to ground, See Figure 11		105	190		150	190	ns
	recessive	R_S with 100 kΩ to ground, 535 See Figure 11	1100		880	1200			

(1) Minimum and maximum parameters are characterized for operation at $T_A = 210^{\circ}$ C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance.

www.ti.com

A. See data sheet for absolute maximum and minimum recommended operating conditions.

B. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).

Figure 1. SN65HVD233SJD / SN65HVD233SKGDA Operating Life Derating Chart

www.ti.com

PARAMETER MEASUREMENT INFORMATION

Figure 3. Bus Logic State Voltage Definitions

Figure 4. Driver V_{OD}

- A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) \leq 125 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
- B. C_L includes fixture and instrumentation capacitance.

Figure 5. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 6. Receiver Voltage and Current Definitions

- A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) \leq 125 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
- B. C_L includes fixture and instrumentation capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

rable 2. 2. Stretendar inpat Foldage Throbhold Foot									
INP	UT	OU	TPUT	MEASURED					
V _{CANH}	V _{CANL}		V _{ID}						
–6.1 V	-7 V	L		900 mV					
12 V	11.1 V	L	N/	900 mV					
-1 V	-7 V	L	VOL	6 V					
12 V	6 V	L		6 V					
-6.5 V	-7 V	Н		500 mV					
12 V	11.5 V	Н		500 mV					
-7 V	-1 V	Н	V _{OH}	6 V					
6 V	12 V	Н		6 V					
Open	Open	Н		Х					

Table 2. Differential Input Voltage Threshold Test

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 8. Test Circuit, Transient Over Voltage Test

SN65HVD233-HT

NOTE: All VI input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

NOTE[:] All V_I input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

NOTE: All V₁ input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

Figure 11. t_(loop) Test Circuit and Voltage Waveforms

www.ti.com

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

NOTE: All V_I input pulses are supplied by agenerator having the following characteristics: t_r or $t_f \le 6$ ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.

Figure 13. Ios Test Circuit and Waveforms

TEXAS INSTRUMENTS

www.ti.com

The R Output State Does Not Change During Application of the Input Waveform.

NOTE: All input pulses are supplied by a generator with $f \le 1.5$ MHz.

Figure 14. Common-Mode Voltage Rejection

TYPICAL CHARACTERISTICS

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

APPLICATION INFORMATION

Diagnostic Loopback

The loopback (LBK) function of the SN65HVD233 is enabled with a high-level input to pin 5. This forces the driver into a recessive state and redirects the data (D) input at pin 1 to the received-data (R) output at pin 4. This allows the host controller to input and read back a bit sequence to perform diagnostic routines without disturbing the CAN bus. A typical CAN bus application is displayed in Figure 26.

If the LBK pin is not used, it may be tied to ground (GND). However, it is pulled low internally (defaults to a low-level input) and may be left open if not in use.

Figure 26. Typical SN65HVD233 Application

ISO 11898 Compliance of SN65HVD230 Family of 3.3-V CAN Transceivers

Introduction

Many users value the low power consumption of operating CAN transceivers from a 3.3-V supply. However, some are concerned about the interoperability with 5-V supplied transceivers on the same bus. This section analyzes this situation to address those concerns.

Differential Signal

CAN is a differential bus where complementary signals are sent over two wires, and the voltage difference between the two wires defines the logical state of the bus. The differential CAN receiver monitors this voltage difference and outputs the bus state with a single-ended output signal.

Figure 27. Typical SN65HVD230 Differential Output Voltage Waveform

The CAN driver creates the difference voltage between CANH and CANL in the dominant state. The dominant differential output of the SN65HVD230 is greater than 1.5 V and less than 3 V across a $60-\Omega$ load. The minimum required by ISO 11898 is 1.5 V and the maximum is 3 V. These are the same limiting values for 5-V supplied CAN transceivers. The bus termination resistors drive the recessive bus state and not the CAN driver.

A CAN receiver is required to output a recessive state with less than 500 mV and a dominant state with more than 900-mV difference voltage on its bus inputs. The CAN receiver must do this with common-mode input voltages from -2 V to 7 V. The SN65HVD230 family receivers meet these same input specifications as 5-V supplied receivers.

Common-Mode Signal

A common-mode signal is an average voltage of the two signal wires that the differential receiver rejects. The common-mode signal comes from the CAN driver, ground noise, and coupled bus noise. Obviously, the supply voltage of the CAN transceiver has nothing to do with noise. The SN65HVD230 family driver lowers the common-mode output in a dominant bit by a couple hundred millivolts from that of most 5-V drivers. While this does not fully comply with ISO 11898, this small variation in the driver common-mode output is rejected by differential receivers and does not affect data, signal noise margins, or error rates.

Interoperability of 3.3-V CAN in 5-V CAN Systems

The 3.3-V–supplied SN65HVD23x family of CAN transceivers are electrically interchangeable with 5-V CAN transceivers. The differential output is the same. The recessive common-mode output is the same. The dominant common-mode output voltage is a couple hundred millivolts lower than 5-V–supplied drivers, while the receivers exhibit identical specifications as 5-V devices.

Electrical interoperability does not assure interchangeability however. Most implementers of CAN buses recognize that ISO 11898 does not sufficiently specify the electrical layer and that strict standard compliance alone does not ensure interchangeability. This comes only with thorough equipment testing.

Bus Cable

ISO 11898 specifies a maximum bus length of 40 m and maximum stub length of 0.3 m with a maximum of 30 nodes. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires a transceiver with high input impedance, such as the SN65HVD233.

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

The standard specifies the interconnect to be a single twisted-pair cable (shielded or unshielded) with $120-\Omega$ characteristic impedance (Z₀). Resistors equal to the characteristic impedance of the line terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections.

Slope Control

The rise and fall slope of the SN65HVD233 driver output can be adjusted by connecting a resistor from R_s (pin 8) to ground (GND), or to a low-level input voltage (see Figure 28).

The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented with an external resistor value of 10 k Ω to achieve a \approx 15-V/µs slew rate, and up to 100 k Ω to achieve a \approx 2.0- V/µs slew rate (see Figure 29). Typical driver output waveforms with slope control are displayed in Figure 30.

Figure 28. Slope Control/Standby Connection to DSP

Figure 29. SN65HVD233 Driver Output Signal Slope vs Slope Control Resistance Value

SLLS933A-NOVEMBER 2008-REVISED NOVEMBER 2008

Figure 30. Typical SN65HVD233 250-kbps Output Pulse Waveforms With Slope Control

STANDBY

If a high-level input (>0.75 V_{CC}) is applied to R_s, the circuit enters a low-current, *listen-only* standby mode, during which the driver is switched off and the receiver remains active. The local controller can reverse this low-power standby mode when the rising edge of a dominant state (bus differential voltage >900 mV typical) occurs on the bus.

Texas **FRUMENTS** www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD233DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD234DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD235DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

7-Nov-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65HVD233DR	SOIC	D	8	2500	340.5	338.1	20.6
SN65HVD234DR	SOIC	D	8	2500	340.5	338.1	20.6
SN65HVD235DR	SOIC	D	8	2500	340.5	338.1	20.6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated