PD-9.1068

IRF740LC

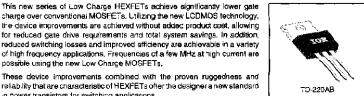
International IOR Rectifier

HEXFET® Power MOSEET

- Ultra Low Gate Charge
- Reduced Gate Drive Requirement.
- Enhanced 30V Vos Rating
- Reduced Ciss, Coss, Crss.

Description

Extremely High Frequency Operation


possible using the new Low Charge MOSFETs.

in power transistors for switching applications.

Repetitive Avalanche Rateri

$$V_{DSS} = 400V$$

 $R_{DS(on)} = 0.55\Omega$
 $I_D = 10A$

Absolute Maximum Ratings

	Parameter	Max	Units
c @ Tc ≈ 25°C	Continuous Drain Current, VGS @ 10 V	10	
lp 🕲 Tc = 100°C	Continuous Drain Current, VDB @ 10 V	6.3	A
IDM	Fulsed Drain Current @	32	
PD @ Tc = 25°C	Power Dissipation	125	W
	Linear Derating Factor	1.0	WPC
Ves	Gate-to-Source Vollage	±33	V
EAS	Single Pulse Avalanche Energy @	520	ការ
IAR .	Avalanche Current ©	10	A
EAR	Recetitive Avalanche Energy ©	13	സി
dv/dt	Peak Diode Recovery dv/dt 🔅	4.0	V/ns
TJ	Operating Junction and	-55 to +150	
Tsta	Storage Temporature Range		:C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	·
	Mounting Torque, 6-32 or M3 screw	10 lbf+in (1.1 N+m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Jnits
Rac	Junction-to-Case			1.0	
Recs	Case-to-Sink, Flat, Greased Surface		0.50		CW
Rau	Junction-to-Ambient			62	·

Document Number: 90084

www.vishay.com

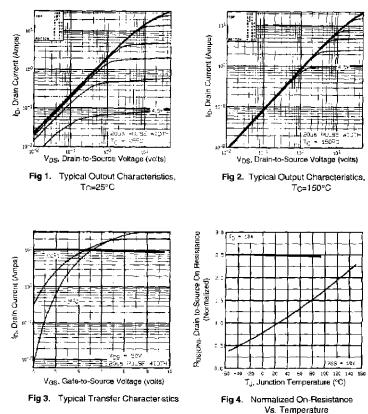
IOR

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V _{(BR)OSS}	Drain-to-Source Breakdown Voltage	400	-	-	V	V _{GS} =0V, I _D = 250µA
ΔV _{IBRIDSS} /ΔTJ	Breakdown Voltage Temp. Coefficient	-	0.76	_	v,∾c	Reference to 25°C, Ig= 1mA
Rosion	Static Dra n-to-Source On-Resistance	i —	_	0.55	Ω	VGS=10V, Ip=6.0A @
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	۷	Vps=Vgs, ip= 250LA
çıs.	Forward Transconductance	3.0	. —	_	S	Vps=50V. lp=6.0A €
1	Basia ta Gauna anata Quant			25		Vos=400V, VG3=0V
C68	Drain-to-Source Leaxage Current			250	βų	. V05=320V, VG5=0V, T,=125°C
I	Gate-to-Source Forward Leakage	· _		100		V66=20V
655	Gate-to-Source Feverse Leakage	_	-	-100	nA	V _{GS} ≖-20V
G,	Total Gate Charge		-	39	_	In=10A
C _{os}	Gate-to-Source Charge	·	-	10	nC	Vps=320V
Q.,	Gate-to-Orain (Miller) Charge		_	19		Vas=10V See Fig. 6 and 13 @
[d(m)	Turn-On Delay Time	· _	11	—		Vop=200V
ե	Rise Time	· _	31	· _	- rs	I _D =10A
(deam)	Tum-Off Delay Time	—	25			R _G =9.1Ω
tı 🛛	Fall Time	. —	20			R ₀ =20Ω See Figure 10 @
Lo	Internal Drain Inductance		4.5	· _	• nH	Between lead, 6 mm (0.25in.)
Ls	Internal Source Inductance	-	7.5	_		from package and center of die contact
Cian	Input Capacitance	.	1100			VGS=0V
Coss	Cutput Capacitance		190	_	сF	Vos= 25V
C ₇₅₅	Reverse Transfer Capacitance		18	_	-	√≂1.0MHz. See Figure 5

Source-Drain Ratings and Characteristics

	Parameter	Min	⊺ур.	Max.	Unita	i Test Conditions
ls.	Continuous Source Current (Body Diode)		_	10		MOSFET symbol
^I SM	Pulsed Source Current (Body Diode) ①	_	_	32	A	integral reverse
Vsb	Diode Forward Voltage		_	2.0	٧	T_=25°C, Is=10A, Vos=0V ④
եր	Reverse Recovery Time		380	570	rs.	T,⊨25°C, I⊫10A
Q _r	Reverse Recovery Charge	_	2.8	4.2	μĊ	dl/dt=100A/µs ⊛
tor	Forward Tum-On Time	Intrinsi	s tum-or	n time Is	neglegit	e (tum-on is dominated by Ls+Lo)


Notes:

2

- C Repetitive rating; pulse width timited by max. junction temperature (See Figure 11)
- © Vod=50V, starting TJ=25°C, L=9.1mH Rg=25Ω, Ias=10A (See Figure 12)
- isos10A, dl/dls120A/µs, VodSV(8R)oss, TJS150°C
- \circledast Pulse width \leq 300 $\mu s;$ duty cycle $\leq \!\! 2\%.$


IOR

IRF740LC

va. rempetatu

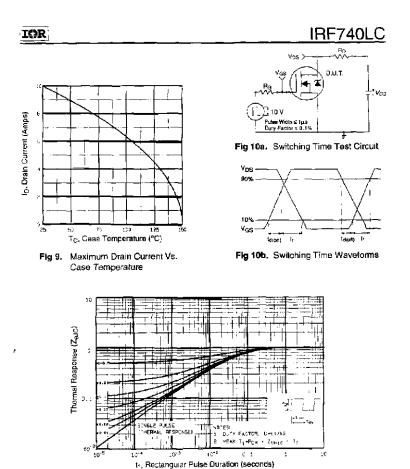


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

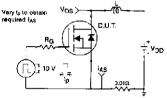


Fig 12a. Unclamped Inductive Test Circuit

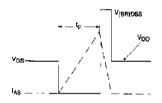


Fig 12b. Unclamped Inductive Waveforms

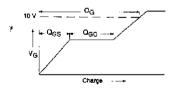
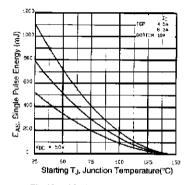
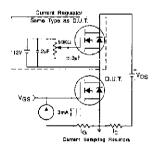




Fig 13a. Basic Gate Charge Waveform

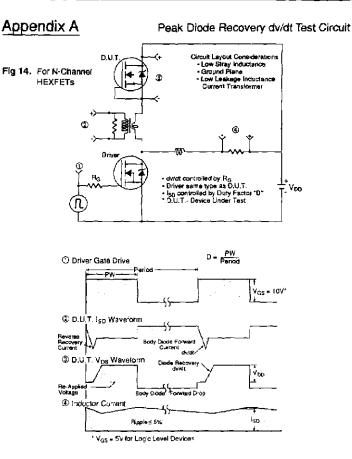
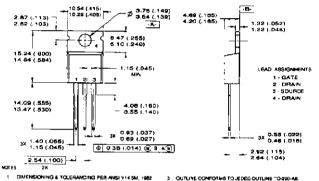

I?R

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit Appendix B: Package Outline Mechanical Drawing Appendix C: Part Marking Information

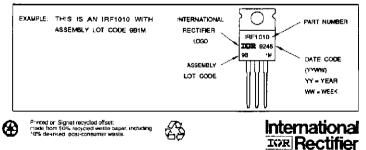


IOR

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)


CONTROLLING & ROLEHANCING PER ANSI VIN SM, 1983
CONTROLLING DIMENSION : INCH.

OUTLINE CONFORMS TO JEDEG OUTLINE TO 220-AB.
HEATSKIK & LEAD MEASUREMENTS DO NOT MICLUDE BURRS.

Part Marking Information

Appendix C

TO-220AB

WORLD HEADOLMATERS: 233 Names St., El Segundo Cambria: 90246, Tel (310) 322-3331, Tw.: 4720403 LINOPEAN HEADOLMATERS: Head Orgen, Orget, Surrey RHS (68) England, RF: (8883) 7(325, Tel: 9829)

IR CAMADe: Yon theminy GL, Manhana, Cenerol 397 33.1, Be (446) CT6-MBY IR CAMADAN'I's Sandburgennase 157. D-6380 Said Hornburg, Sei 572 37064 IN TALL'I Val Lyone 49 3007 Boogen, Roma, Birchell (2014) BRAN RAR BAR Birl Buderg, San Hendersburg Schnen, Sorbura-Au, Solyo 17 Jacon, Be (63) 883 0641 IR SOUTHEAST Adjus, T 19 Mindler Roza, Mark 1947 Formar, Berguere Andre Tar, Bala Said Said,

Sales Offices, Agents and Datributers in Major Cities Throughout the Warld,

Printed in U.S.A. 2/94 5m Document Number: 90084

www.vishay.com 8

IOR

Appendix B

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.