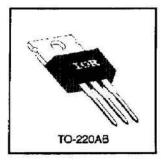


IRF840LCPbF

HEXFET® Power MOSFET

- Ultra Low Gate Charge
- Reduced Gate Drive Requirement
- Enhanced 30V Vgs Rating
- Reduced Ciss, Coss, Crss
- Extremely High Frequency Operation
- Repetitive Avalanche Rated
- Lead-Free



Description

This new series of Low Charge HEXFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing the new LCDMOS technology, the device improvements are achieved without added product cost, allowing for reduced gate drive requirements and total system savings. In addition, reduced switching losses and improved efficiency are achievable in a variety of high frequency applications. Frequencies of a few MHz at high current are possible using the new Low Charge MOSFETs.

These device improvements combined with the proven ruggedness and reliability that are characteristic of HEXFETs offer the designer a new standard in power transistors for switching applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
lo @ Tc = 25°C	Continuous Drain Current, VGS @ 10 V	8.0	
o Ø Tc = 100°C	Continuous Drain Current. VGS @ 10 V	5.1	A
MC	Pulsed Drain Current ①	28	
Po @ Tc = 25°C	Power Dissipation	125	W
200	Linear Derating Factor	1.0	W/°C
Vos	Gate-to-Source Voltage	=30	V
Eas ,	Single Pulse Avalanche Energy @	510	mJ
AR	Avalanche Current ①	8.0	A
EAR	Repetitive Avalanche Energy © 13		Lm L
dv/dt	Peak Dioce Recovery dv/dt ③	3.5	V/ns
T.j Tstg	Operating Junction and Storage Temperature Range	-55 to +150	°c
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf-in (1.1 N-m)	

Thermal Resistance

Document Number: 91067

-(0)	Parameter	Min.	Тур.	Max.	Units
Reuc	Junction-to-Case	_		1.0	T.
Recs	Case-to-Sink, Flat, Greased Surface	-	0.50		°C/W
ROM	Junction-to-Ambient	8		62	-19

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Test Conditions	
Vienos	Drain-to-Source Breakdown Voltage	500			٧	V _{GS} =0V, I _D = 250μA	
ΔV _{BR)DSS} /ΔTJ	Breakdown Voltage Temp. Coefficient	_	0.63		V/°C	Reference to 25°C, Ip= ImA	
Rosioni	Static Drain-to-Source On-Resistance	1 -	I =	0.85	Ω	VGS=10V. ID=4.8A @	
Vas(h)	Gate Threshold Voltage	2.0	_	4.0	V	Vos=Vgs, lo= 250µA	
Qrs .	Forward Transconductance	4.0			S	Vos=50V, 10=4.8A ®	
loss	Drain-to-Source Leakage Current	=	Ξ	25 2 50	μА	V _{DS} =500V, V _{GS} =0V V _{DS} =400V, V _{GS} =0V, T _J =125°C	
	Gate-to-Source Forward Leakage	T-	_	100	nA	V _{GS} =20V	
less	Gate-to-Source Reverse Leakage	_		-100	"	Vas=-20V	
Q ₀	Total Gate Charge	j		39		lo=8.0A	
Q _{cs}	Gale-to-Source Charge	i =		10	าต	Vos=40CV	
Q _{od}	Gate-to-Drain ("Miller") Charge		-	19		Vgs=10V See Fig. 5 and 13 8	
t _{dian)}	Turn-On Delay Time		12	_	.!	V _{DD} =250V	
t	Rise Time	L-	25	_	ns .	In=8.0A	
to(otr)	Turn-Off Delay Time	_	27			R _G =9.1Ω	
¥	Fall Time	_	19	_		Ro=30Ω See Figure 10 @	
Lo	Internal Drain Inductance	-	4.5	_	· nH	Between lead, 6 mm (0.25in.)	
Ls	Internal Source Inductance	_	7.5	_		from package and center of die contact	
Ciss Input Capacitance -			1100			V _{GS} =0V	
Cass	Output Capacitance		170		٥F	V _{DS} = 25V	
Cres	Reverse Transfer Capacitance		18		1	'-1.0MHz See Figure 5	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
ls	Continuous Source Current (Body Diode)	_	-	8.0		MOSFET symbol showing the integral reverse p-n junction diode.	
IsM	Pulsed Source Current (Body Diode) ①	-	_	28	A		
VsD	Diode Forward Voltage		_	2.0	V	T_=25°C, Is=8.0A, VGS=0V @	
1,,	Reverse Recovery Time		490	740	ns	T.=25°C. I==8.DA	
Q _{rr}	Reverse Recovery Charge	_	3.0	4.5	μC	di/dt=100A/us ®	
lon	Forward Turn-On Time	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+Ln)					

Notes:

- Repetitive rating; pulse width limited by max, junction temperature (See Figure 11)
- ③ Isp≤8.0A, di/dt≤100A/µs, Vop≤V(BR)Dss. TJ≤150°C
- ② VDD=50V, starting T_J=25°C, L=14mH Rg=25Ω, las=8.0A (See Figure 12)
- Pulse width ≤ 300 µs; duty cycle ≤2%.

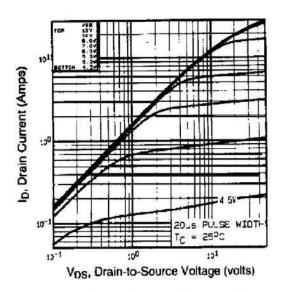


Fig 1. Typical Output Characteristics. Tc=25°C

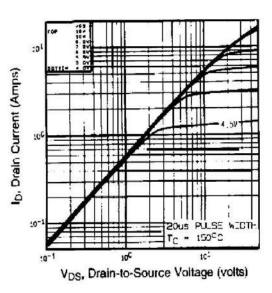


Fig 2. Typical Output Characteristics, Tc=150°C

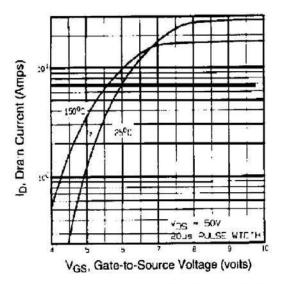


Fig 3. Typical Transfer Characteristics

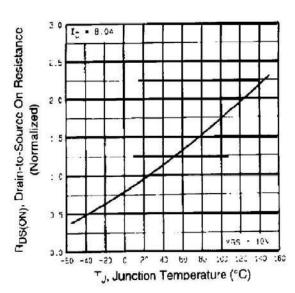


Fig 4. Normalized On-Resistance Vs. Temperature

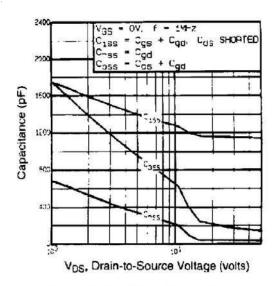


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

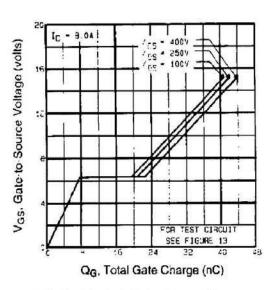


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

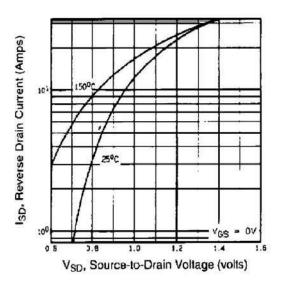


Fig 7. Typical Source-Drain Diode Forward Voltage

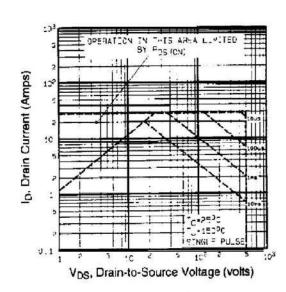


Fig 8. Maximum Safe Operating Area

IRF840LCPbF

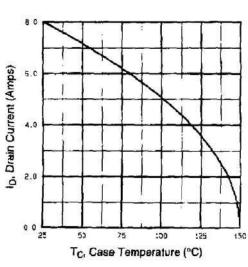


Fig 9. Maximum Drain Current Vs. Case Temperature

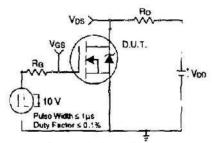


Fig 10a. Switching Time Test Circuit

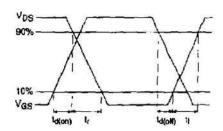


Fig 10b. Switching Time Waveforms

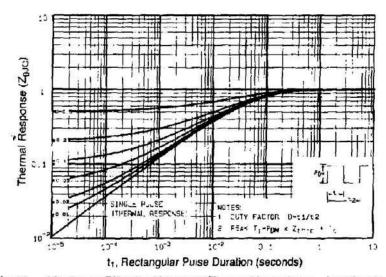


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

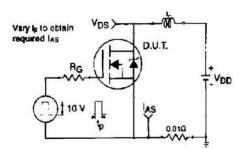


Fig 12a. Unclamped Inductive Test Circuit

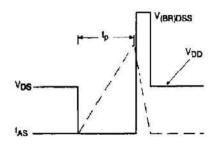


Fig 12b. Unclamped Inductive Waveforms

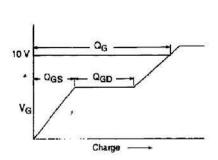


Fig 13a. Basic Gate Charge Waveform

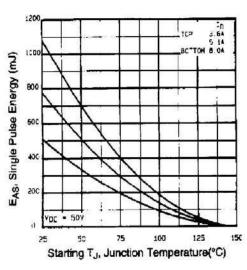
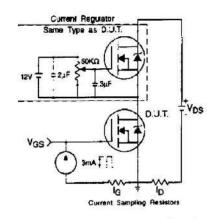
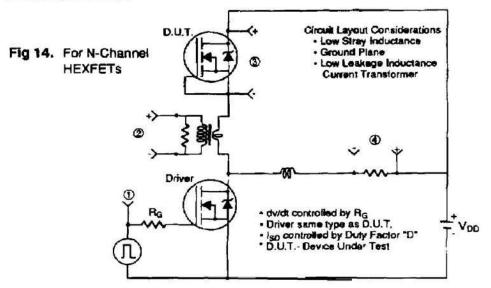
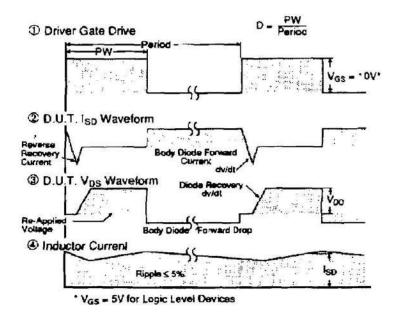


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

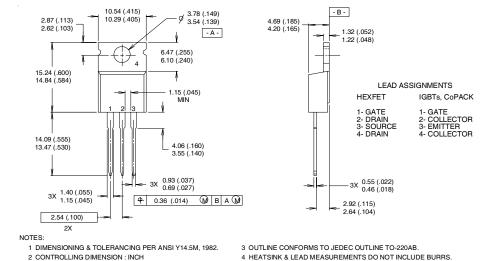



Fig 13b. Gate Charge Test Circuit


Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit

Appendix B: Package Outline Mechanical Drawing

Appendix A


Peak Diode Recovery dv/dt Test Circuit

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

INTERNATIONAL
RECTIFIER
LOGO
IOR 719C

ASSEMBLY
LOT CODE

IRF1010
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Fax: (310) 252-790

12/03

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07