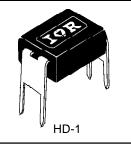

International IOR Rectifier HEXFET[®] Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- For Automatic Insertion
- End Stackable
- Fast Switching
- Ease of paralleling
- Simple Drive Requirements

IRFD214

PD -9.1271


 $R_{DS(on)} = 2.0\Omega$ $I_{\rm D} = 0.45 {\rm A}$

 $V_{DSS} = 250V$

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low onresistance and cost-effectiveness.

The 4-pin DIP package is a low-cost machine-insertable case style which can be stacked in multiple combinations on standard 0.1 inch pin centers. The dual drain serves as a thermal link to the mounting surface for power dissipation levels up to 1 watt.

Absolute Maximum Ratings

	U			
	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10 V	0.45		
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10 V	0.29	A	
I _{DM}	Pulsed Drain Current ①	3.6		
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	1.0	W	
	Linear Derating Factor	0.0083	W/°C	
V _{GS}	Gate-to-Source Voltage	±20	V	
E _{AS}	Single Pulse Avalanche Energy ②	57	mJ	
I _{AR}	Avalanche Current ①	0.45	A	
E _{AR}	Repetitive Avalanche Energy ①	0.10	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	4.8	V/ns	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		

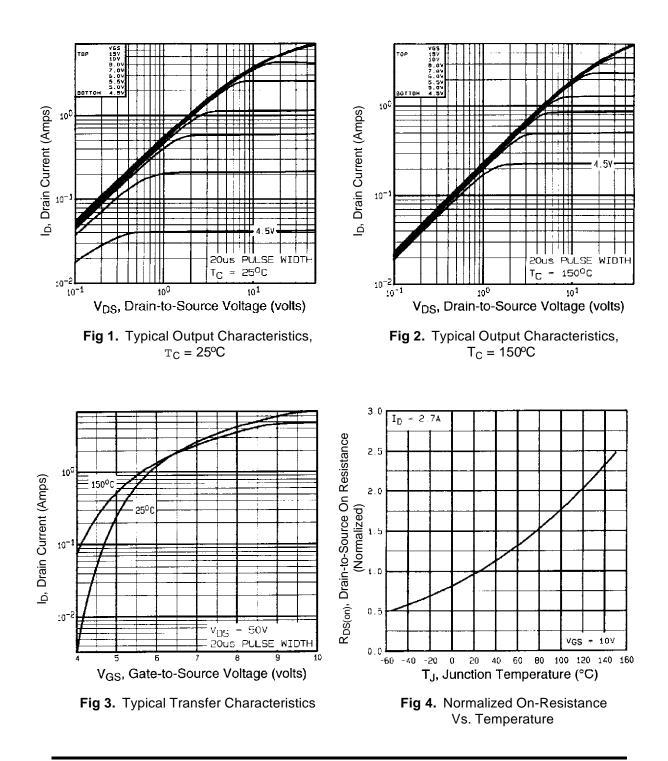
Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient	_	_	120	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

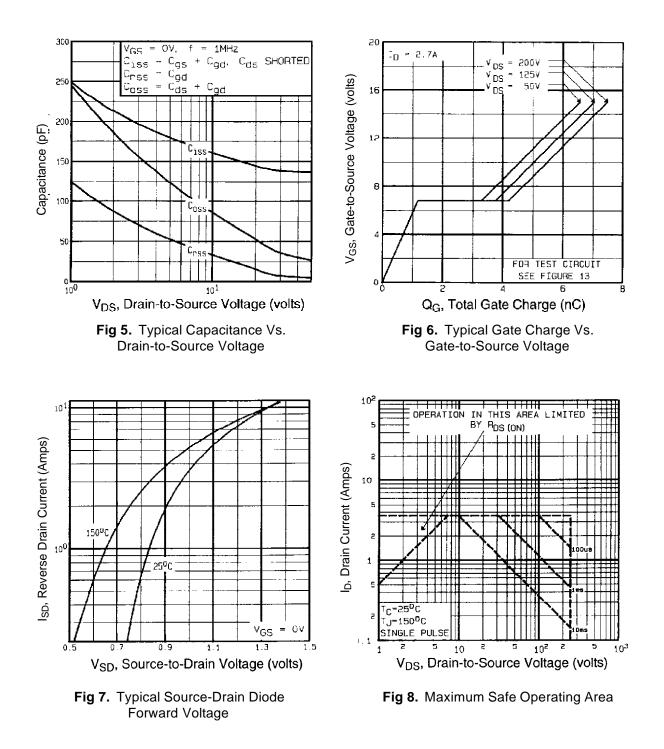
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	250	—	—	V	$V_{GS} = 0V, ID = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.39	—	V/°C	Reference to 25° C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	—	—	2.0	Ω	V _{GS} = 10.0V, I _D = 0.27A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
g fs	Forward Transconductance	0.90		_	S	V _{DS} = 50V, I _D = 1.6A
I _{DSS}	Drain-to-Source Leakage Current			25		$V_{DS} = 250V, V_{GS} = 0V$
		_	—	250	μA	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_	—	100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -20V
Qg	Total Gate Charge	—	—	8.2		I _D = 2.7A
Q _{gs}	Gate-to-Source Charge	—	—	1.8	nC	V _{DS} = 200V
Q _{gd}	Gate-to-Drain ("Miller") Charge	—	—	4.5		V_{GS} = 10V, See Fig. 6 and 13 ④
t _{d(on)}	Turn-On Delay Time		7.0	_		V _{DD} = 125V
tr	Rise Time		7.6	_	ns	I _D = 2.7A
t _{d(off)}	Turn-Off Delay Time		16	_		$R_{G} = 24\Omega$
t _f	Fall Time		7.0	_		$R_D = 45\Omega$, See Fig. 10 ④
L _D	Internal Drain Inductance		4.0	_	nH	Between lead, p
LS	Internal Source Inductance	—	6.0	—		6mm (0.25in.)
						from package
						and center of
						die contact
Ciss	Input Capacitance		140	_		$V_{GS} = 0V$
Coss	Output Capacitance	—	42	_	pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	—	9.6	—		f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions								
Is	Continuous Source Current			- 0.45		MOSFET symbol								
	(Body Diode)	_	_		А	showing the								
I _{SM}	Pulsed Source Current												A	integral reverse
	(Body Diode) ①	_		3.6		p-n junction diode.								
V _{SD}	Diode Forward Voltage	_	_	2.0	V	$T_J = 25^{\circ}C, I_S = 0.45A, V_{GS} = 0V$ (4)								
t _{rr}	Reverse Recovery Time	_	190	390	ns	$T_J = 25^{\circ}C, I_F = 2.7A$								
Q _{rr}	Reverse RecoveryCharge	_	0.64	1.3	μC	di/dt = 100A/µs ④								
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)												

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\$ I_{SD} \leq 2.7A, di/dt \leq 65A/µs, V_{DD} \leq V_{(BR)DSS}, T_{J} \leq 150°C
- 0 V_{DD} = 50V, starting T_J = 25°C, L = 28mH R_G = 25 Ω , I_{AS} = 1.8A. (See Figure 12)
- ④ Pulse width $\leq 300 \mu s;$ duty cycle \leq 2%.


I\$R

IRFD214

www.vishay.com 3

I\$R

Document Number: 90163

I C R

IRFD214

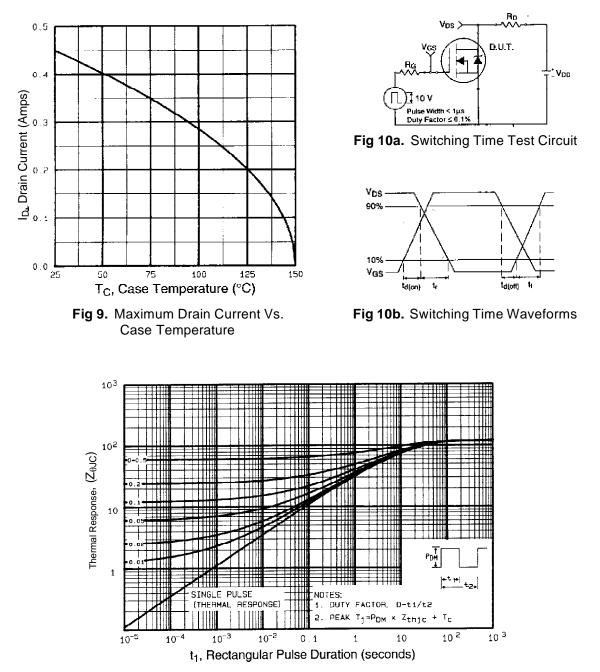


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFD214

I\$R

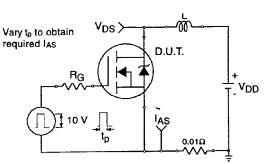
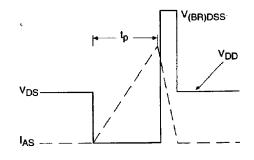
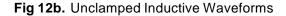




Fig 12a. Unclamped Inductive Test Circuit

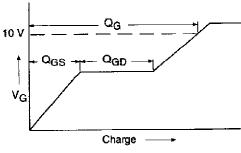
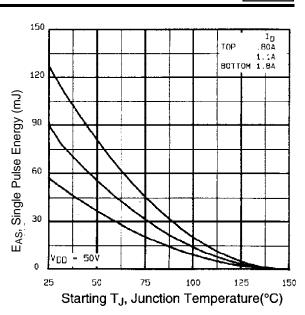
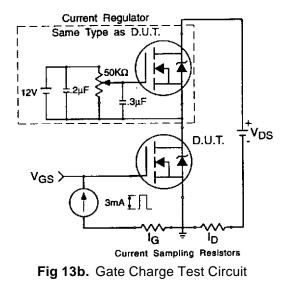
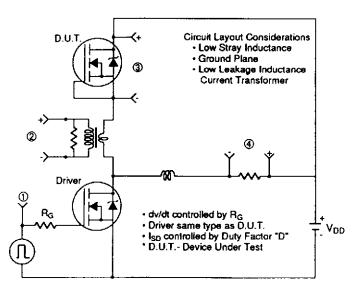
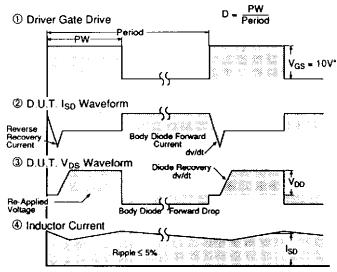




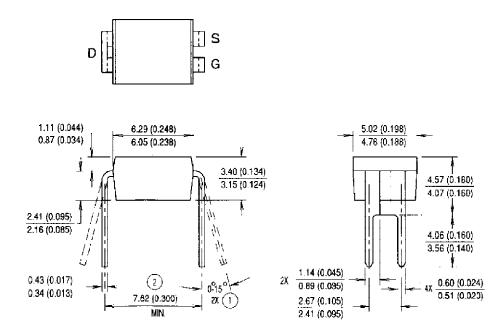
Fig 13a. Basic Gate Charge Waveform




Document Number: 90163

dv/dt Test Circuit

Fig 14. For N-Channel HEXFETs


Peak Diode Recovery Test Circuit

* V_{GS} = 5V for Logic Level Devices

IRFD214

Package Outline

 WORLD HEADQUARTERS:
 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

 EUROPEAN HEADQUARTERS:
 Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: (44) 0883 713215

 IR CANADA:
 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 3L1, Tel: (905) 475 1897
 IR GERMANY:

 Saalburgstrasse
 157, 61350 Bad Homburg Tel: 6172 37066
 IR ITALY:
 Via Liguria 49, 10071 Borgaro, Torino Tel: (39)

 1145 10111
 IR FAR EAST:
 K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo 171 Tel: (03)3983 0641

 IR SOUTHEAST ASIA:
 315 Outram Road, #10-02 Tan Boon Liat Building, 0316 Tel: 65 221 8371

Data and specifications subject to change without notice.

Document Number: 90163

www.vishay.com 8

I\$R

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.