IRLI520G

Thermal Resistance

Tste

Reuc

Raia

Max.

4.1

65

1379

I _D @ T _C = 100°C	Continuous Drain
DM	Pulsed Drain Curr

Third Generation HEXFETs from International Rectifier provide the desig with the best combination of fast switching, ruggedized device design,
on-resistance and cost-effectiveness.
The TO-220 Fullpak eliminates the need for additional insulating bardwar

Storage Temperature Range

Junction-to-Case

Junction-to-Ambient

Soldering Temperature, for 10 seconds

Parameter

Mounting Torque, 6-32 or M3 screw

TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing.

Absolute Maximum Ratings						
Parameter	Max.	U				
Continuous Drain Current, VGS @ 5.0 V	7.2					
Continuous Drain Current, VGS @ 5.0 V	5.1					
Pulsed Drain Current ①	29					
Power Dissipation	37	١				
Linear Derating Factor	0.24	W				
Gate-to-Source Voltage	±10					
Single Pulse Avalanche Energy @	170	n				
Avalanche Current D	7.2					
Repetitive Avalanche Energy ①	3.7	n				
Peak Diode Recovery dv/dt ③	5.5	V,				
Operating Junction and	-55 to +175					
	Parameter Continuous Drain Current, VGS @ 5.0 V Continuous Drain Current, VGS @ 5.0 V Pulsed Drain Current ① Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ② Avalanche Current ① Repetitive Avalanche Energy ① Peak Diode Recovery dv/dt ③	Parameter Max. Continuous Drain Current, V _{GS} @ 5.0 V 7.2 Continuous Drain Current, V _{GS} @ 5.0 V 5.1 Pulsed Drain Current ① 29 Power Dissipation 37 Linear Derating Factor 0.24 Gate-to-Source Voltage ±10 Single Pulse Avalanche Energy ② 170 Avalanche Current ① 7.2 Repetitive Avalanche Energy ① 3.7 Peak Diode Recovery dv/dt ③ 5.5				

Absolute Maximum Ratings

	$\mathbf{R}_{\mathrm{DS(on)}} = 0.27\Omega$
	l _D = 7.2A
anar	
gner , low	

300 (1.6mm from case)

10 lbf+in (1.1 N+m)

Typ,

Min.

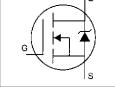
 $V_{DSS} = 100V$

HEXEET[®] Power MOSEET

- Isolated Package
- High Voltage Isolation= 2.5KVRMS (5)
- Sink to Lead Creepage Dist = 4.8mm
- Logic-Level Gate Drive
- RDS(on) Specified at VGS=4V & 5V
- Fast Switching
- Ease of Paralleling

Description

e.	TOR MM
	TO-220 FULLPAK


nits А

w //°C v тJ А пJ (/ns

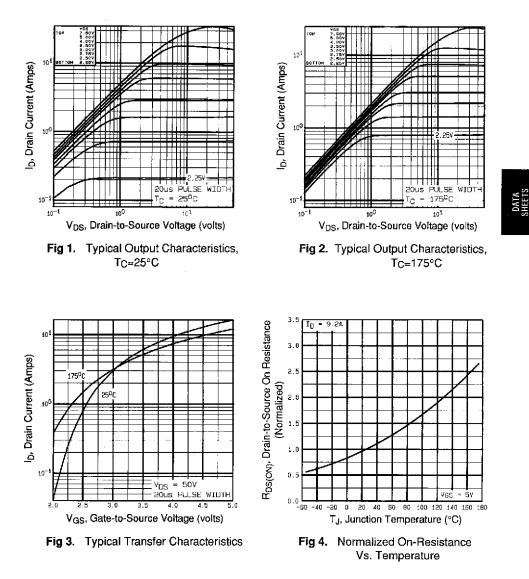
°C

Units

°C/W

D

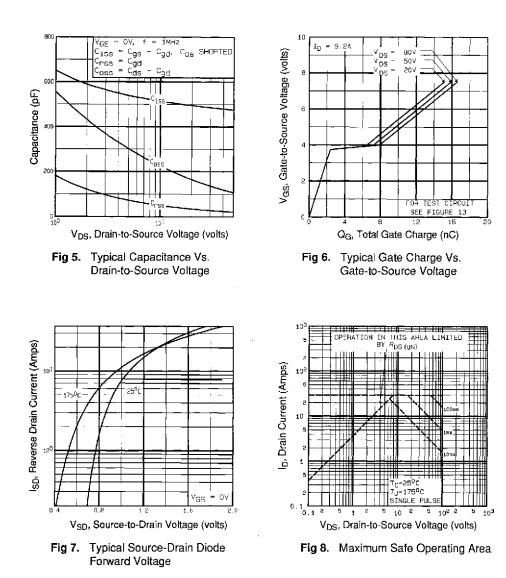
Electrical Characteristics	ø	T _J = 25°C (unless	otherwise specified)
----------------------------	---	-------------------------------	----------------------

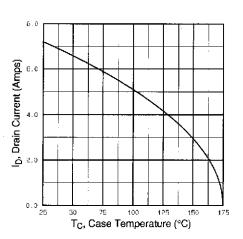

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V(BB)DSS	Drain-to-Source Breakdown Voltage	100	—	—	V	V _{GS} =0V, I _D = 250μA
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient	_	0.12	_	V/°C	Reference to 25°C, I _D = 1mA
	Static Drain-to-Source On-Besistance	_	—	0.27	Ω	V _{GS} =5.0V, I _D =4.3A ④
Ros(on)	Static Dram-to-Source On-Resistance	_	-	0.38	22	V _{GS} =4.0V, I _D =3.6A ④
V _{GS(th)}	Gate Threshold Voltage	1.0	_	2.0	V	$V_{DS}=V_{GS}$, $I_D=250\mu A$
g _{fs}	Forward Transconductance	3.3	1	—	S	V _{DS} =50V, I _D =4.3A ④
	Durin to Source Lookage Current	·	_	25	uА	V _{DS} =100V, V _{GS} =0V
loss	Drain-to-Source Leakage Current			250	μA	V _{DS} =80V, V _{GS} =0V, T _J =150°C
1	Gate-to-Source Forward Leakage	-	-	100	nA	V _{GS} =10V
lass	Gate-to-Source Reverse Leakage		-	-100		V _{GS} =-10V
Qg	Total Gate Charge	-	-	12		Ip=9.2A
Q _{gs}	Gate-to-Source Charge			3.0	nC	V _{DS} =80V
Qgd	Gate-to-Drain ("Miller") Charge	—	—	7.1		V _{GS} =5.0V See Fig. 6 and 13 @
t _{d(an)}	Turn-On Delay Time	-	9.8	-		V _{DD} =50V
tr	Rise Time	-	64		ns	I _D =9.2A
td(off)	Turn-Off Delay Time	-	21	_]	R ₆ =9.0Ω
tı	Fall Time	-	27	—		R _D =5.2Ω See Figure 10 €
Lo	Internal Drain Inductance		4.5	_	nH	Between lead, 6 mm (0.25in.) from package
Ls	Internal Source Inductance	_	7.5			and center of
Ciss	Input Capacitance		490	—		V _{GS} =0V
Coss	Output Capacitance	_	150	—	рF	V _{DS} = 25V
Crss	Reverse Transfer Capacitance		30	—] 	∫=1.0MHz See Figure 5
С	Drain to Sink Capacitance		12		pF	f=1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
ls	Continuous Source Current (Body Diode)	-		7.2	A	MOSFET symbol showing the
ISM	Pulsed Source Current (Body Diode) ①	-	-	29		integral reverse
VSD	Diode Forward Voltage		_	2.5	V	TJ=25°C, Is=7.2A, VGS=0V ④
t _{rr}	Reverse Recovery Time	_	130	190	ΠS	TJ=25°C, ł⊧=9.2A
Q _{rr}	Reverse Recovery Charge	_	0.83	1.0	μC	di/dt≕100A/μs ⊛
ton	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is neglegible (turn-on is dominated by $L_{S^+}L_D)$			

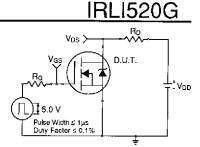
Notes:

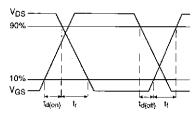

- ① Repetitive rating; pulse width limited by max, junction temperature (See Figure 11)
- ② V_{DD}=25V, starting T_J=25°C, L=4.9mH R_G=25Ω, I_{AS}=7.2A (See Figure 12)
- ④ Pulse width \leq 300 μ s; duty cycle \leq 2%.



Document Number: 90397

1381


IRL1520G



K2R

Fig 9. Maximum Drain Current Vs. Case Temperature

DATA SHEETS

Fig 10b. Switching Time Waveforms

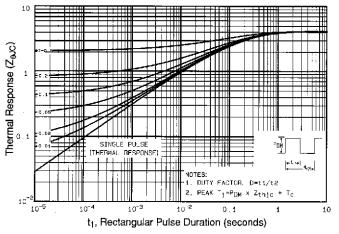


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRLI520G

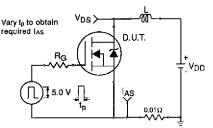


Fig 12a. Unclamped Inductive Test Circuit

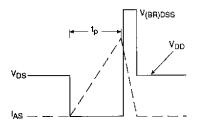


Fig 12b. Unclamped Inductive Waveforms

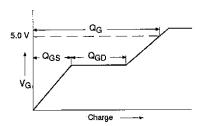


Fig 13a. Basic Gate Charge Waveform

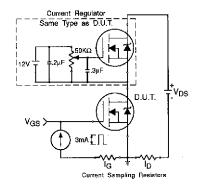
Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1505

Appendix B: Package Outline Mechanical Drawing - See page 1510

Appendix C: Part Marking Information – See page 1517

International IOR Rectifier

1384


400 251 25 50 75 100 125 150 175 Starting T_J, Junction Temperature(°C)

500

E_{AS}, Single Pulse Energy (mJ)

ά

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

ці А.9.5

тор 5.1A BOTTOM 7.2A

Fig 13b. Gate Charge Test Circuit

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.