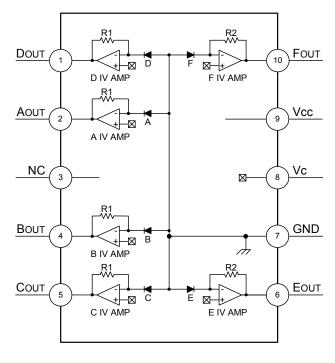
CAPELLA MICROSYSTEMS



880 East Arques Avenue, Sunnyvale, CA 94085-4536 USA • 408.328.8360 • FAX.408.328.8361

CM1212 Integrated PD+TIA

DESCRIPTION

The Capella CM1212 PDIC is a low voltage integrated photodiode and transimpedence amplifier (TIA) for use as the photodetector in CD optical pickups. The built-in TIA has low output impedance for stability. The CM1212 can also be used in quadruple-speed drives because the photodiode and TIA can operate at typical speeds of 8MHz.

R1 = $88K\Omega$, R2 = $182k\Omega$ A~F Photodiodes

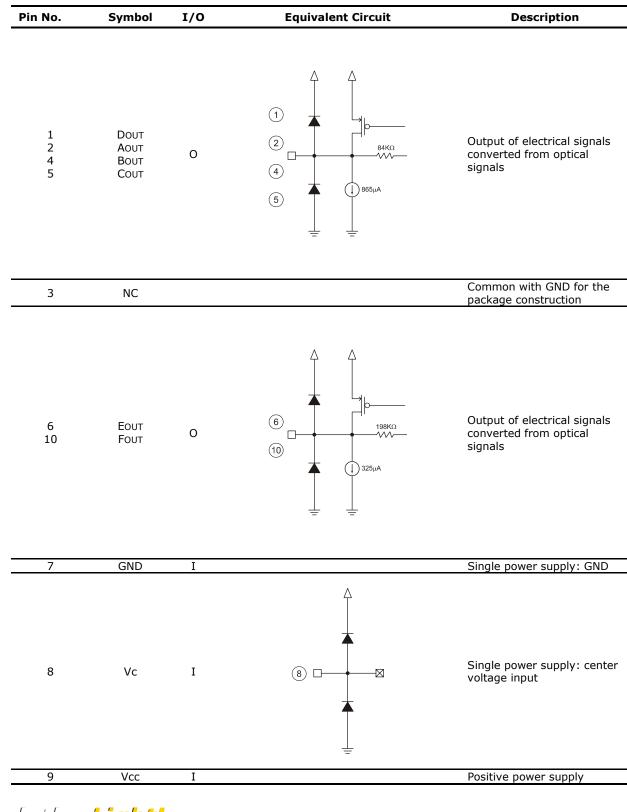
Revision: 0.2

FEATURES

- Low voltage operation (2.5V ~ 5.5V)
- Built-in TIA (current-to-voltage conversion circuit)
- High PD sensitivity
- Recommended Diode for CD applications is an IR laser diode $(\lambda = 780 \text{ nm})$
- Supports Focus Servo (Astigmatism method) and Tracking servo (Three beam method)

APPLICATIONS

 Optical pickups for VideoCD-players, CD-ROM, CD-MP3 players, and CD-Audio


Date: 20-Feb-2002

DISCLAIMER

Capella Microsystems Inc. reserves the right to make changes in specifications or discontinue this product at any time without notice. Please contact Capella Microsystems Inc. for possible updates before starting a design. Capella Microsystems Inc. products are not designed for use in life support applications. Any parties who use these products in such applications do so at their own risk and agree to fully indemnify Capella Microsystems Inc. for any damages resulting from such improper usage or sale.

CM1212 Pin Descriptions

cmi

<u>Catch the **Light**</u> www.capellamicro.com

Absolute Maximum Ratings (Ta = 25°C)

Description	Symbol	Value	Unit	
Power Supply Voltage	Vcc	7.0	V	
Operating Temperature	Topr	-20 ~ +75	°C	
Storage Temperature	Tstg	-40 ~ +85	°C	
Allowable Power Dissipation	PD	200	mW	

Operating Conditions

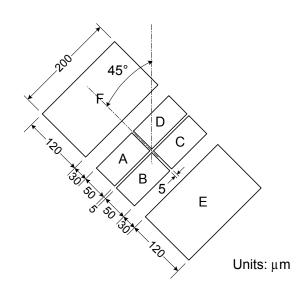
Description	Signal	Condition	Min	Тур	Max	Unit
Supply Voltage (* Note 1)	Vcc	-	2.5	5.0	5.5	V
Reference Voltage (* Note 2)	Vc	Vcc/2	1.25	2.5	2.75	V

Electrical & Optical Characteristics

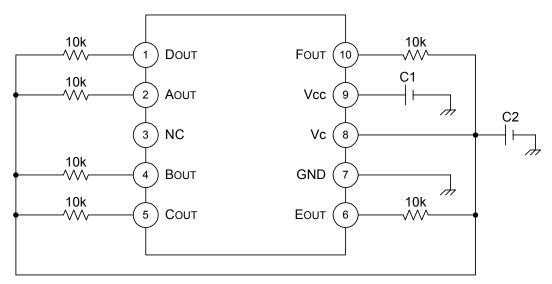
			()	/cc = 5	SV, Vs	= 2.5V	, Ta = 25°C)
Description	Signal	Condition	Min	Тур	Max	Unit	Applicable to
Current Consumption	Icc	(*Note 3)	-	6.0	8.0	mA	Vcc
Output Offset Voltage	Voff	Offset voltage with Respect to Vc (*Note 3)	-15	0	+15	mV	Αουτ ~ Γουτ
Output Offset △Vo Voltage Difference		(A+B) – (C+D) (*Note 3)	-20	0	+20	mV	Aout ~ Dout
	Woff	(A+D) – (B+C) (*Note 3)	-20	0	+20	mV	Aout ~ Dout
		(A+C) - (B+D) (*Note 3)	-20	0	+20	mV	Aout ~ Dout
		(E - F) (*Note 3)	-15	0	+15	mV	Eout ~ Fout
Output Voltage (A-D)	Vo	Po = $10\mu W$, λ =780nm	290	370	450	mV	Aout ~ Dout
Output Voltage (E-F)	Vo	Po = $10\mu W$, λ =780nm	610	770	930	mV	Eout ~ Fout
Max. Output Voltage (A-D)	Vomax	Po = 100μW, λ=780nm	4.0	4.2	-	V	Aout ~ Dout
Max. Output Voltage (E-F)	Vomax	Po = 100μW, λ=780nm	4.0	4.2	-	V	Eout ~ Fout
Cutoff Frequency (A-D)	fc	100KHz, -3dB	6.0	8.0	-	MHz	Aout ~ Dout
Cutoff Frequency (E-F)	fc	10KHz, -3dB	100	400		KHz	Εουτ ~ Γουτ

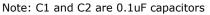
* Note 1: The CM1212 is based on a single power supply

* Note 2: Vc must be able to sink / source ±500µA


* Note 3: Dark Condition. There is no light incident on the photodiodes

* Note 4: The output voltage and the output offset voltage are with respect to Vc


* Note 5: The maximum output voltage is with respect to GND


* Note 6: The output voltage parameters and the frequency characteristics are guaranteed by design

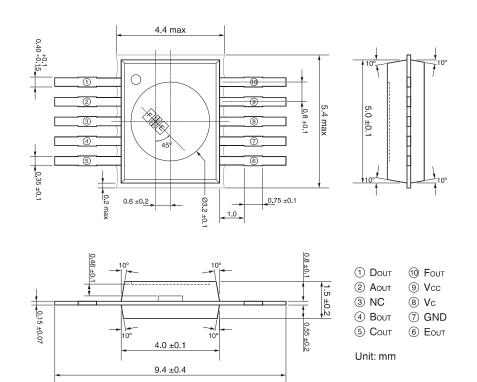
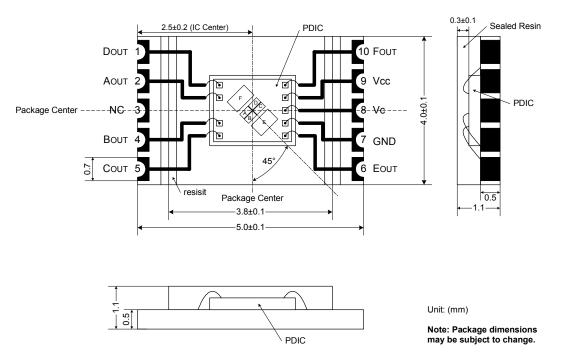


Figure 3: CM1212 Test Measurement Circuit Diagram


ida 🗢 📙 👩 Int vw.capellamicro.com

CM1212 — Integrated PD+TIA

ida Ciant (= 1 (- / 1 ww.capellamicro.com