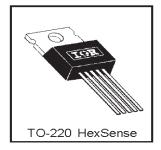

PD-96010B

International **TOR** Rectifier

HEXFET[®] Power MOSFET

- Dynamic dv/dt Rating
- Current Sense
- 175°C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Lead-Free



IRCZ24PbF

Description

Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device, low on-resistance and cost-effectiveness.

The HEXSence device provides an accurate fraction of the drain current through the additional two leads to be used for control or protection of the device. These devices exhibit similar electrical and thermal characteristics as their IRF-series equivalent part numbers. The provision of a kelvin source connection effectively eliminates problems of common source inductance when the HEXSence is used as a fast, high-current switch in non current-sensing applications.

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	A	
I _{DM}	Pulsed Drain Current ①	68		
P _D @T _C =25°C	Power Dissipation	60	W	
	Linear Derating Factor	0.40	W/°C	
V _{GS}	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	6.0	mJ	
d∨/dt	Peak Diode Recovery dv/dt ③	4.5	A	
TJ	Operating Junction and	-55 to + 175		
T _{STG} Storage Temperature Range			°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)]	
	Mounting Torque, 6-32 or screw	10 lbf•in (1.1 N•m)		

Absolute Maximum Ratings

Thermal Resistance

	Parameter	Min.	Max.	Units	
R _{BJC}	Junction-to-Case	_		2.5	
R _{OCS}	Case-to-Sink, Flat, Greased Surface	—	0.50	—	°C/W
Reja	Junction-to-Ambient	_	—	62	

** When mounted on FR-4 board using minimum recommended footprint. For recommended footprint and soldering techniques refer to application note #AN-994.

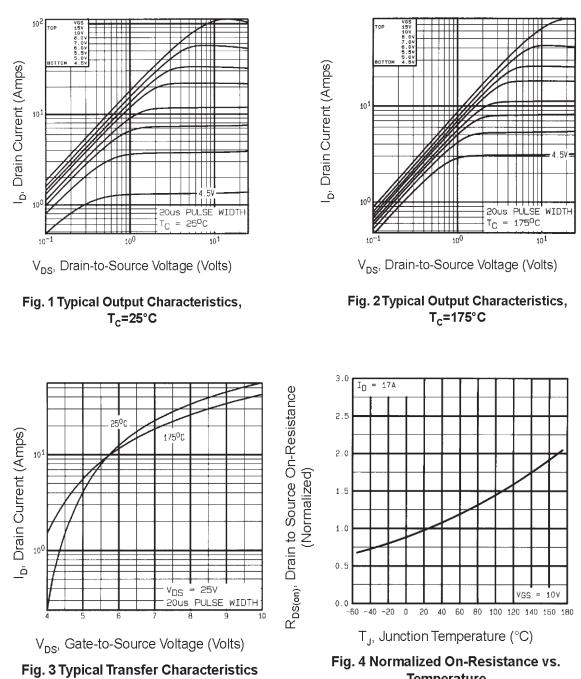
Parameter		Min.	Тур.	Max.	Units	Conditions	
V(BR)DSS	Drain-to-Source Breakdown Voltage	60		—	V	$V_{GS} = 0V$, $I_{D} = 250 \mu A$	
ΔV _{(BR)DSS} /ΔT	Breakdown Voltage Temp. Coefficient		0.061		V/°C	Reference to 25°C, $I_D = 1mA$	
RDS(ON)	Static Drain-to-Source On-Resistance			0.10	Ω	V _{GS} = 10V, I _D = 10A④	
VGS(th)	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	
g fs	Forward Transconductance	5.8			S	V _{DS} = 25V, I _D = 10A	
IDSS	Drain-to-Source Leakage Current			25 250		V _{DS} = 60V, V _{GS} = 0V V _{DS} = 48V, V _{CS} = 0V, T _J = 150°C	
	Gate-to-Source Forward Leakage			100		$V_{GS} = 20V$	
GSS	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V	
Qu	Total Gate Charge			24		I _D = 17A	
Q _{gs}	Gate-to-Source Charge			6.3	nC	V _{DS} = 48V	
Q _{gd}	Gate-to-Drain ("Miller") Charge			9.0		V_{GS} = 10V, See Fig. 6 and 13 \circledast	
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 30V	
t _r	Rise Time		59			I _D = 17A	
t _{d(off)}	Turn-Off Delay Time		25			$R_G = 18\Omega$	
t _f	Fall Time		38			R _D = 1.7Ω, See Fig. 10 ⊛	
L _D	Internal Drain Inductance		4.5		- nH	Between lead, 6 mm (0.25 in.) from package	
L _c	Internal Source Inductance		7.5			and center of die contact	
Cies	Input Capacitance		720			V _{GS} = 0V	
COBS	Output Capacitance		360		рF	V _{DS} = 25V	
Crss	Reverse Transfer Capacitance		75			f = 1.0MHz, See Fig. 5	
r	Current Sensing Ratio	740		820		I _D = 17A, V _{GS} = 10V	
Coss	Output Capacitance of Sensing Cells		14		pF	V _{GS} = 0V. V _{DS} = 25V. <i>f</i> = 1.0MHz	

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions				
ls	Continuous Source Current		17			MOSFET symbol				
	(Body Diode)			- 17		showing the				
I _{SM}	Pulsed Source Current								A	integral reverse 🔍 🛄 🕇
	(Body Diode) ①	ly Diode) ①		68	68	p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.5	V	$T_{ m J}$ = 25°C, $I_{ m S}$ = 17A, $V_{ m GS}$ = 0V \circledast				
trr	Reverse Recovery Time		87	180	ns	T _J = 25°C, I _F = 17A				
Qrr	Reverse Recovery Charge		0.29	0.60	nC	di/dt = 100A/µs ⊛				
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)								

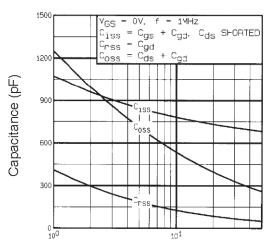
Notes:

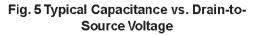

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) 3 I_{SD} \leq 17A, di/dt \leq 140A/µs, $V_{DD} \leq$ $V_{(BR)DSS},$ $T_{\rm J} \leq$ 175°C

 $\textcircled{tr} V_{DD}$ = 25V, starting T_ = 25°C, L = 0.024mH R_G = 25 $\Omega,~I_{AS}$ = 17A. (See Figure 12)

④ Pulse width \leq 300µs; duty cycle \leq 2%.

Document Number: 91012

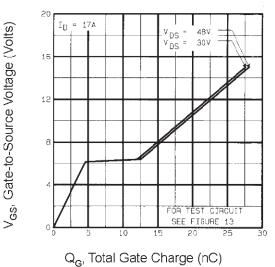
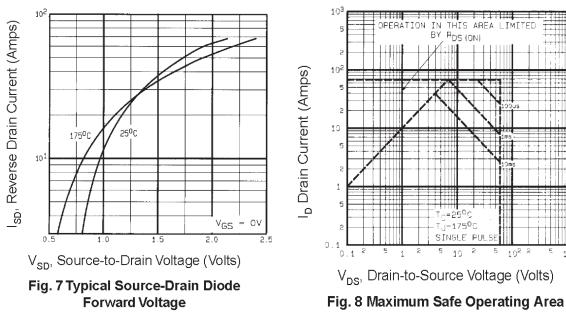

International **ICR** Rectifier

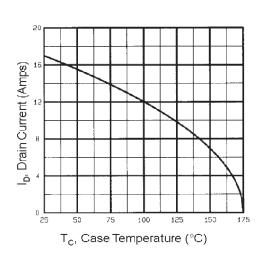

Temperature

Document Number: 91012

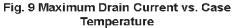
International **TOR** Rectifier

V_{DS}, Drain-to-Source Voltage (Volts)


Fig. 6 Typical Gate Charge vs. Gate-to-Source Voltage

Document Number: 91012


www.vishay.com 4

5 10⁵

International

ICR Rectifier

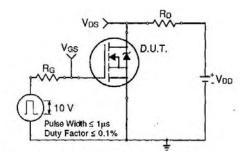


Fig 10a. Switching Time Test Circuit

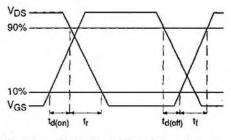


Fig 10b. Switching Time Waveforms

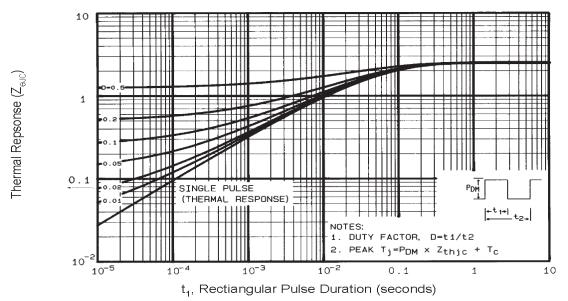
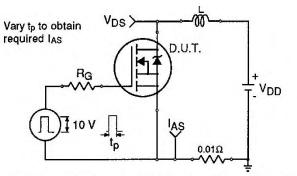
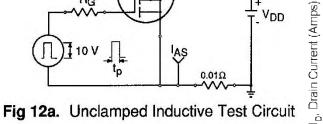


Fig. 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case


Document Number: 91012


International **TOR** Rectifier

І_Ш 6.9А

175

FOP 12A 80TTOM 17A

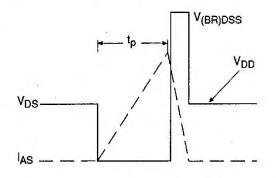
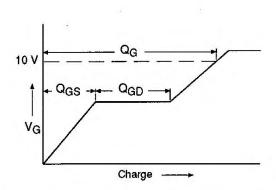
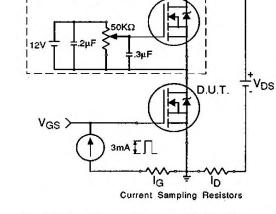
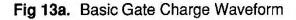
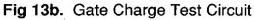






Fig 12b. Unclamped Inductive Waveforms

Document Number: 91012

www.vishay.com 6

Current Regulator Same Type as D.U.T.

20

16

12

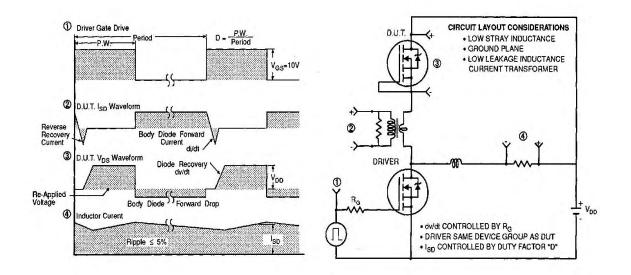
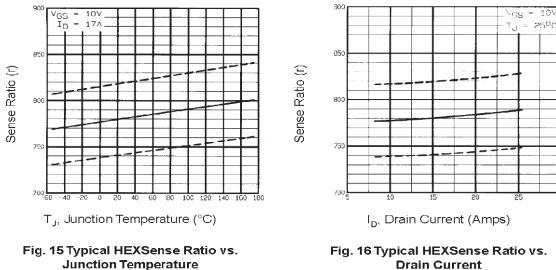
8

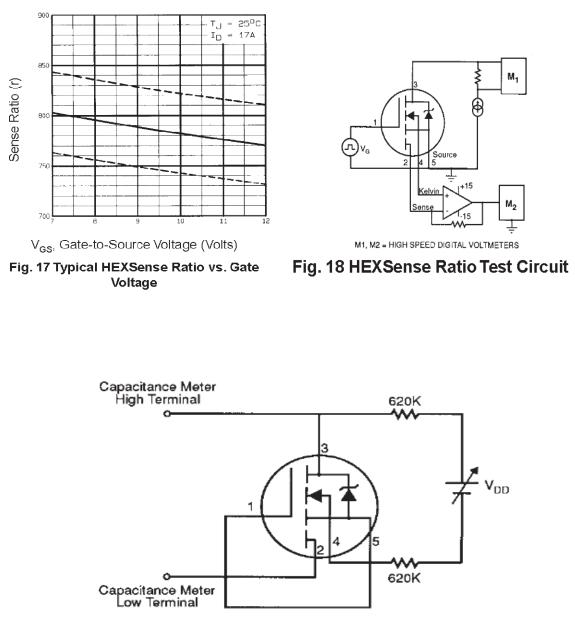
4

¢

voo' 251

International **TER** Rectifier

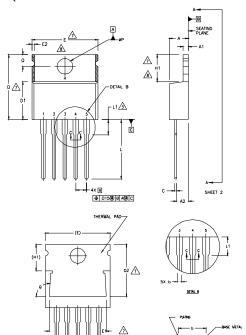

Fig 14. Peak Diode Recovery dv/dt Test Circuit

Junction Temperature

Document Number: 91012

International

Fig. 19 HEXSense Sensing Cell Output Capacitance Test Circuit


Document Number: 91012

International **TOR** Rectifier

IRCZ24PbF

HexsenseTO-220 5L Package Outline

(Dimensions are shown in millimeters (inches)

NOTES: DIMENSIONING AND TOLERANCING PER ASME Y14,5 M- 1994.

- 2
- 3 4

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994. DIMENSIONS ARE SHOWN IN INCHES MILLIMETERS]. LEAD DIMENSION AND FINISH UNCONTROLLED IN L1. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED. 005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. DIMENSION 1 & c1 APPLY TO BASE METAL ONLY. CONTROLLING DIMENSION : INCHES. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,1,1,D2 & E1 DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.

SYMBOL	BOL MILLIMETERS		INC		
	MIN.	MAX.	MIN.	MAX.	NOTES
A	3.56	4.82	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.04	2.92	.080	.115	
b	0.64	0.88	.025	.035	
b1	0.64	0,84	.025	.033	5
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	12.19	12.88	.480	.507	7
E	9.66	10.66	.380	.420	4,7
E1	8.38	8.89	.330	.350	7
е	1.70	BSC	.067	.067 BSC	
H1	5.85	6.55	.230	.270	7,8
L	13.47	14.09	.530	.555	
L1	-	6,35	-	.250	3
øР	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	
ø	90'-	-93*	90'-	-93*	
			1		1 I

Hexsense TO-220 5L Part Marking Information

EXAMPLE: THIS IS AN IRC640 ()WITH ASSEMBLY LOT CODE 1789 PART NUMBER INTERNATIONAL IRC640 RECTIFIER ASSEMBLED ON WW 19, 1997 TOR 7190 LOGO IN THE ASSEMBLY LINE "C" 89 DATE CODE YEAR 7 = 1997 ASSEMBLY Note: "P" in assembly line position WEEK 19 LOT CODE indicates "Lead-Free LINE C

Data and specifications subject to change without notice.

International **IOR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 02/05

> www.vishay.com 9

Document Number: 91012

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.