

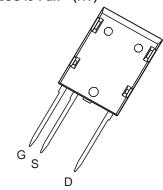
Advance Technical Information

Polar[™] Power MOSFET HiPerFET[™]

IXFL32N120P

N-Channel Enhancement Mode

Avalanche Rated Fast Intrinsic Diode



Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	1200	V	
V_{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	1200	V	
V _{GSS}	Continuous	± 30	V	
V _{GSM}	Transient	$\pm~40$	V	
I _{D25}	T _c = 25°C	24	А	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	100	Α	
I _A	$T_{c} = 25^{\circ}C$	16	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	2	J	
dV/dt	$I_{_{S}} \le I_{_{DM}}, \ V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	20	V/ns	
$\overline{P_{D}}$	T _C = 25°C	520	W	
T		-55 +150	°C	
\mathbf{T}_{JM}		150	°C	
T_{stg}		-55 +150	°C	
T _L	Maximum lead temperature for soldering	300	°C	
$\mathbf{T}_{\mathtt{SOLD}}$	Plastic body for 10s	260	°C	
V _{ISOL}	50/60 Hz, RMS, 1 minute	2500	V~	
	$I_{ISOL} \le 1 \text{mA}$ $t = 1 \text{s}$	3000	V~	
F _c	Mounting force	40120/4.527	N/lb.	
Weight		8	g	

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, unless otherwise specified)$ Min.		racteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 3mA$	1200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	3.5		6.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			± 300	nA
I _{DSS}	$V_{DS} = V_{DSS}$			50	μА
	$V_{GS} = 0V$ $T_J = 125^{\circ}C$			5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 16A, \text{ Note } 1$			340	mΩ

 $V_{DSS} = 1200V$ $I_{D25} = 24A$ $R_{DS(on)} \le 340m\Omega$ $t_{rr} \le 300ns$

ISOPLUS i5-Pak™ (HV)

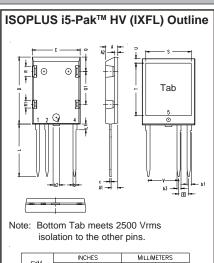
G = GateS = Source D = Drain

Features

- UL recognized package
- Silicon chip on Direct-Copper-Bond substrate
- High power dissipation
- Isolated mounting surface
- 2500V electrical isolation
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- Fast intrinsic diode

Advantages

- Easy to mount
- Space savings
- High power density


Applications:

- High Voltage Switched-mode and resonant-mode power supplies
- High Voltage Pulse Power Applications
- High Voltage Discharge circuits in Lasers Pulsers, Spark Igniters, RF Generators
- High Voltage DC-DC converters
- High Voltage DC-AC inverters

Symbol	Test Conditions		Characteristic Values		
$(T_J = 25^{\circ}C u)$	nless otherwise specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 20V, I_{D} = 16A, Note 1$	17	28	S	
C _{iss}			21	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1100	pF	
C _{rss}			77	pF	
R_{Gi}	Gate input resistance		0.84	Ω	
t _{d(on)}	Resistive Switching Times		70	ns	
t,	•		62	ns	
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 16A$		88	ns	
t,	$R_{_{\rm G}} = 1\Omega$ (External)		58	ns	
Q _{g(on)}			360	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 16A$		130	nC	
Q_{gd}			160	nC	
R _{thJC}				0.24 °C/W	
\mathbf{R}_{thCS}			0.15	°C/W	

Source-Drain Diode T ₁ = 25°C unless otherwise specified)	Characteristic Values Min. Typ. Max.
I_s $V_{GS} = 0V$	32 A
I _{sm} Repetitive, pulse width limited	by T _{JM} 128 A
V_{SD} $I_F = I_S$, $V_{GS} = 0V$, Note 1	1.5 V
t_{rr} $I_{E} = 20A, -di/dt = 100A/\mu s$	300 ns
Q_{RM} $V_{R} = 100V, V_{GS} = 0V$	1.9 μC
L H GS	15 A

0.44	INCHES		MILLIMETERS		
SYM	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5.21	
A1	.102	.118	2.59	3.00	
A2	.046	.055	1.17	1.40	
b	.045	.055	1.14	1.40	
ь1	.063	.072	1.60	1.83	
b2	.100	.110	2.54	2.79	
b3	.058	.068	1.47	1.73	
С	.020	.029	0.51	0.74	
D	1.020	1.040	25.91	26.42	
E	.770	.799	19.56	20.29	
е	.150 BSC		3.81 BSC		
L	.780	.820	19.81	20.83	
L1	.080	.102	2.03	2.59	
Q	.210	.235	5.33	5.97	
Q1	.490	.513	12.45	13.03	
R	.150	.180	3.81	4.57	
R1	.100	.130	2.54	3.30	
S	.668	.690	16.97	17.53	
T	.801	.821	20.34	20.85	
U	.065	.080	1.65	2.03	
٧	.440	.460	11.18	11.68	

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.