

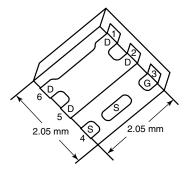
Vishay Siliconix

N-Channel 200-V (D-S) MOSFET

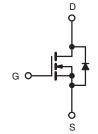
PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)		
200	1.38 at V _{GS} = 4.5 V	2.6			
	1.50 at V _{GS} = 2.5 V	2.5	5 nC		
	3.50 at V _{GS} = 1.8 V	0.5			

FEATURES

- Halogen-free
- TrenchFET® Power MOSFET
- New Thermally Enhanced PowerPAK® SC-70 Package


Boost Converter for Portable Devices


- Small Footprint Area
- Low On-Resistance


APPLICATIONS

PowerPAK SC-70-6L-Single

Ordering Information: SiA456DJ-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V_{DS}	200	V	
Gate-Source Voltage		V_{GS}	± 16		
	T _C = 25 °C		2.6		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	I _D	2.1	1	
Continuous Drain Current (1) = 130 °C)	T _A = 25 °C		1.1 ^{b, c}	1	
	T _A = 70 °C		0.9 ^{b, c}	Α	
Pulsed Drain Current		I _{DM}	2		
Continuous Source-Drain Diode Current	T _C = 25 °C		3.6		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	2.9 ^{b, c}		
	T _C = 25 °C	P _D	19		
Maximum Power Dissipation	T _C = 70 °C		12	w	
	T _A = 25 °C		3.5 ^{b, c}	7 "	
	T _A = 70 °C		2.2 ^{b, c}		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	
Soldering Recommendations (Peak Temperature) ^{d, e}			260	1	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R_{thJA}	28	36	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	5.3	6.5		

Notes:

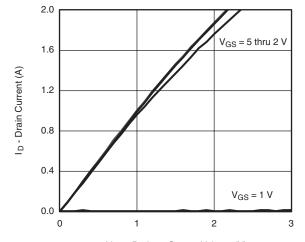
- a. $T_C = 25$ °C.
- b. Surface Mounted on 1" x 1" FR4 board.
- d. See Solder Profile (http://www.vishay.com/ppg?73257). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- Maximum under Steady State conditions is 80 °C/W.

SiA456DJ

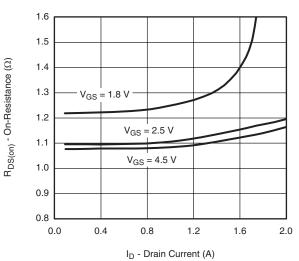
Vishay Siliconix

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static	<u> </u>						
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	200			V	
V _{DS} Temperature Coefficient ΔV		1 050 4		265		14/00	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	- I _D = 250 μA		- 3.5		mV/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	0.6		1.5	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 16 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 200 V, V _{GS} = 0 V			1	μΑ	
		V _{DS} = 200 V, V _{GS} = 0 V, T _J = 55 °C			10		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	2			Α	
	2(6)	V _{GS} = 4.5 V, I _D = 0.75 A		1.08	1.38	†	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 2.5 V, I _D = 0.5 A		1.12	1.5	Ω	
		V _{GS} = 1.8 V, I _D = 0.1 A		1.2	3.5	1	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 4 \text{ V}, I_{D} = 0.75 \text{ A}$		5		S	
Dynamic ^b		-		l	l		
Input Capacitance	C _{iss}			350		pF	
Output Capacitance	C _{oss}	V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz		12			
Reverse Transfer Capacitance	C _{rss}	30 00		6			
·		V _{DS} = 100 V, V _{GS} = 10 V, I _D = 1.1 A		9.5	14.5	nC	
Total Gate Charge	Q_g	V _{DS} = 100 V, V _{GS} = 4.5 V, I _D = 1.1 A		5	7.5		
Gate-Source Charge	Q_{gs}			0.7			
Gate-Drain Charge	Q _{gd}			1.7			
Gate Resistance	R_{g}	f = 1 MHz		2		Ω	
Turn-On Delay Time	t _{d(on)}			10	15		
Rise Time	t _r	V 400 V D 444 C		25	40	-	
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = 100 \text{ V}, R_L = 111 \Omega$ $I_D \cong 0.9 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$		30	45		
Fall Time	t _f	1D = 0.3 A, VGEN - 4.3 V, Fig - 1 32		20	30		
Turn-On Delay Time	t _{d(on)}			5	10	ns -	
Rise Time	t _r	V = 100 V B = 111 C		20	30		
Turn-Off Delay Time	t _{d(off)}	V_{DD} = 100 V, R _L = 111 Ω $I_{D} \cong 0.9$ A, V_{GEN} = 10 V, R _a = 1 Ω		16	25		
Fall Time	t _f	1D = 0.0 / 1, VGEN = 10 V, 1 · g = 1 11		12	20		
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			3.6	Α	
Pulse Diode Forward Current	I _{SM}				2		
Body Diode Voltage	V_{SD}	$I_S = 0.9 \text{ A}, V_{GS} = 0 \text{ V}$		0.8	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}			40	80	ns	
Body Diode Reverse Recovery Charge	verse Recovery Charge Q_{rr} $I_F = 0.9 \text{ A, dl/dt} = 100 \text{ A/µs, T}_{.l} = 25 ^{\circ}\text{C}$			40	80	nC	
Reverse Recovery Fall Time	t _a	- 1 _F = 0.9 A, αι/αι = 100 A/μs, 1 _J = 25 C		21		ns	
Reverse Recovery Rise Time	t _b			19			

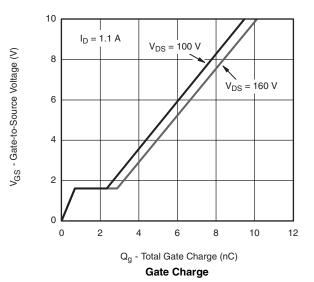
Notes:


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 % b. Guaranteed by design, not subject to production testing.

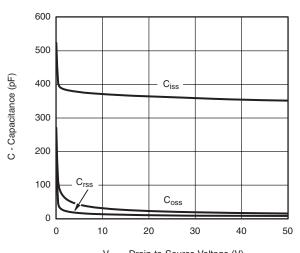

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

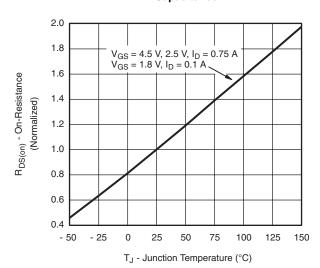


 V_{DS} - Drain-to-Source Voltage (V)

Output Characteristics

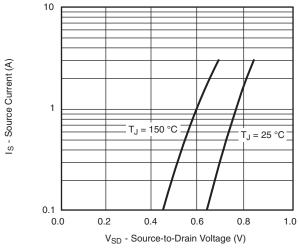


On-Resistance vs. Drain Current and Gate Voltage

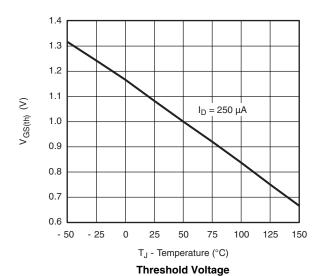

 V_{GS} - Gate-to-Source Voltage (V)

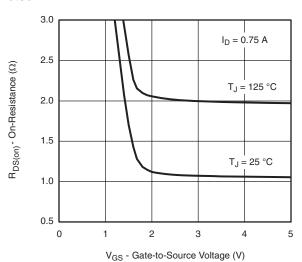
 V_{DS} - Drain-to-Source Voltage (V)

Capacitance

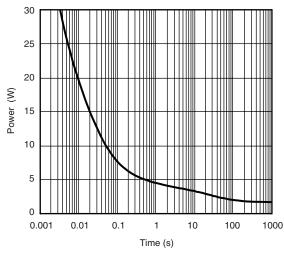

On-Resistance vs. Junction Temperature

SiA456DJ

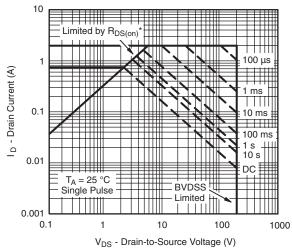

Vishay Siliconix


VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

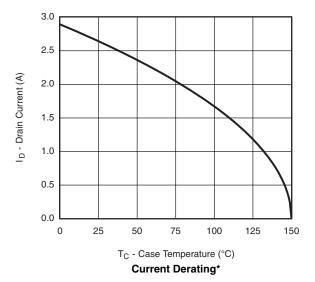


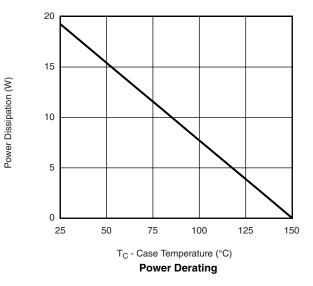
Source-Drain Diode Forward Voltage



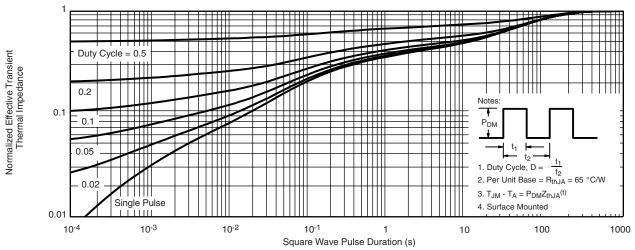
On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power (Junction-to-Ambient)


* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified


Safe Operating Area, Junction-to-Ambient

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


 $^{^*}$ The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package

SiA456DJ

Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?68642.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05