

Vishay General Semiconductor

High-Voltage Surface Mount Schottky Rectifier

High Barrier Technology for Improved High Temperature Performance

DO-214AB (SMC)

PRIMARY CHARACTERISTICS				
I _{F(AV)}	3.0 A			
V_{RRM}	90 V, 100 V			
I _{FSM}	100 A			
V _F	0.65 V			
I _R	20 μΑ			
T _J max.	175 °C			

FEATURES

- · Low profile package
- · Ideal for automated placement
- Guardring for overvoltage protection
- · Low power losses, high efficiency
- Low forward voltage drop
- · Low leakage current
- · High surge capability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Solder dip 260 °C 40 s
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in low voltage high frequency inverters, freewheeling, dc-to-dc converters, and polarity protection applications.

MECHANICAL DATA

Case: DO-214AB (SMC)

Epoxy meets UL 94V-0 flammability rating

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD22-B102

E3 suffix for consumer grade, meets JESD 201 class 1A whisker test, HE3 suffix for high reliability grade (AEC Q101 qualified), meets JESD 201 class 2 whisker test

Polarity: Color band denotes the cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	SS3H9 SS3H10		UNIT	
Device marking code		MS9 MS10			
Maximum repetitive peak reverse voltage	V_{RRM}	90	100	V	
Working peak reverse voltage	V_{RWM}	90	100	V	
Maximum DC blocking voltage	V_{DC}	90	100	V	
Maximum average forward rectified current at: T _L = 115 °C	I _{F(AV)}	3.0		Α	
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	100		А	
Peak repetitive reverse surge current at t _p = 2.0 μs, 1 kHz	I _{RRM}	1.0		Α	
Critical rate of rise of reverse voltage	dV/dt	10 000		V/µs	
Operating junction and storage temperature range	T _J , T _{STG}	- 65 to + 175		°C	

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	TEST CO	NDITIONS	SYMBOL	SS3H9 SS3H10		UNIT	
Maximum instantaneous forward voltage (1)	$I_F = 3.0 \text{ A}$ $I_F = 3.0 \text{ A}$	T _J = 25 °C T _J = 125 °C	V_{F}	0.8 0.65		V	
Maximum reverse current at rated V _R ⁽²⁾		T _J = 25 °C T _J = 125 °C	I _R	20 4		μA mA	

Notes:

(1) Pulse test: 300 µs pulse width, 1 % duty cycle

(2) Pulse test: Pulse width \leq 40 ms

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)					
ARAMETER SYMBOL SS3H9		SS3H10	UNIT		
Typical thermal resistance, junction to lead at T _L = 25 °C	$R_{ heta JL}$	20		°C/W	
Typical thermal resistance, junction to ambient (1)	$R_{\theta JA}$	50		C/VV	

Note:

(1) Units mounted on P.C.B. with 0.55 x 0.55" (14 x 14 mm) copper pad areas

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
SS3H9-E3/57T	0.235	57T	850	7" diameter plastic tape and reel		
SS3H9-E3/9AT	0.235	9AT	3500	13" diameter plastic tape and reel		
SS3H9HE3/57T ⁽¹⁾	0.235	57T	850	7" diameter plastic tape and reel		
SS3H9HE3/9AT ⁽¹⁾	0.235	9AT	3500	13" diameter plastic tape and reel		

Note:

(1) Automotive grade AEC Q101 qualified

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

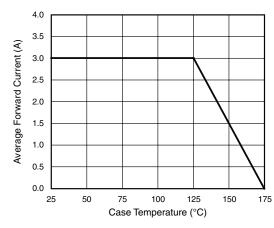


Figure 1. Forward Current Derating Curve

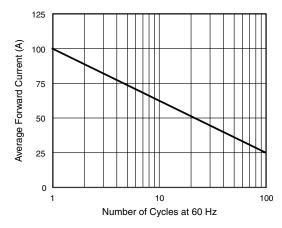


Figure 2. Maximum Non-Repetitive Peak Forward Surge Current

Vishay General Semiconductor

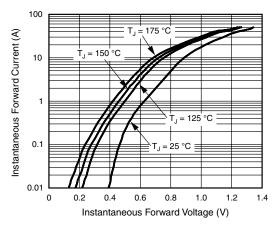


Figure 3. Typical Instantaneous Forward Characteristics

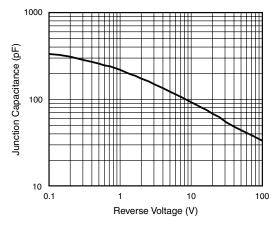


Figure 5. Typical Junction Capacitance

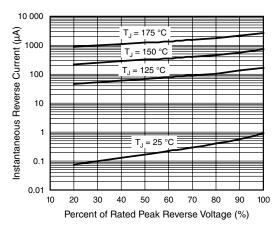


Figure 4. Typical Reverse Characteristics

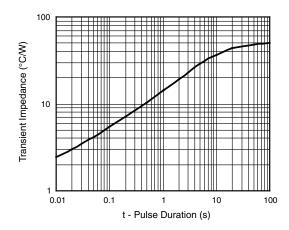
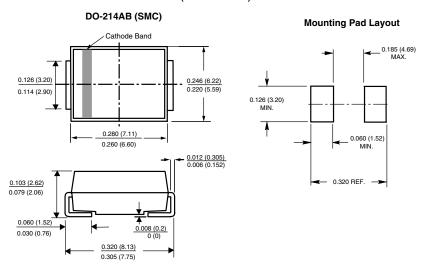



Figure 6. Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com