
ASMT-YTBO-Oxxxx PLCC-6 Surface Mount Tricolor LED

Data Sheet

Description

This family of SMT LEDs packaged in the form of PLCC-6 with separate heat path for each LED dice, enabling it to be driven at higher current. This SMT LEDs have high brightness and reliability performance and are designed to work under a wide range of environmental conditions. This high reliability feature makes them ideally suited to be used under exterior and interior full color signs application conditions.

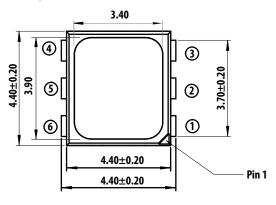
To facilitate easy pick & place assembly, the LEDs are packed in EIA-compliant tape and reel. Every reel will be shipped in single intensity and color bin; except red color to provide close uniformity.

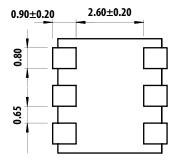
These LEDs are compatible with reflow soldering process.

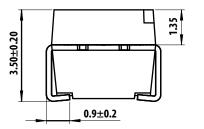
This super wide viewing angle at 115° together with the built in reflector pushing up the intensity of the light output makes these LED suitable to be used in the interior electronics signs. The black top surface of the LED provides better contrast enhancement especially in the full color sign application.

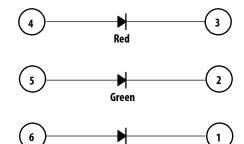
Features

- Industry Standard PLCC-6 package (Plastic Leaded Chip Carrier) with individual addressable pin-out for higher flexibility of driving configuration
- High reliability LED package with silicone encapsulation
- High brightness using AllnGaP and InGaN dice technologies
- Wide viewing angle at 115°
- Compatible with reflow soldering process
- JEDEC MSL 2a


Applications


• Indoor and outdoor full color display


CAUTION:LEDs are Class 1C ESD sensitive. Please observe appropriate precautions during handling and processing. Please refer to Avago Application Note AN-1142 for additional details.



Package Dimensions

Blue

Notes:

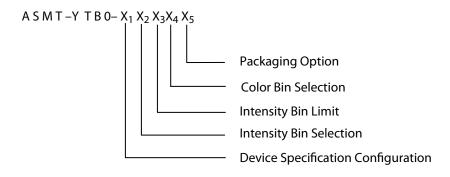
- All Dimensions are in millimeters
 Tolerance = ±0.2 mm unless otherwise specified
- 3. Terminal Finish: Ag plating
- 4. Encapsulantion material: silicone resin

Lead	Lead Configuration				
1	Cathode	Blue			
2	Cathode	Green			
3	Cathode	Red			
4	Anode	Red			
5	Anode	Green			
6	Anode	Blue			

Figure 1. Package drawing.

Table 1. Device Selection Guide

Part Number	Color 1	Color 2	Color 3
ASMT-YTB0-0xxxx	AllnGaP Red	InGaN Green	InGaN Blue


	Color 1 - Red			Color 2 - Green			Color 3 - Blue		
	Min. lv @	20mA	Typ. lv @20mA	Min. lv (@ 20mA	Typ. lv @ 20mA	Min. lv @	@ 20mA	Typ. lv @ 20mA
Part Number	Bin ID	(mcd)	(mcd)	Bin ID	(mcd)	(mcd)	Bin ID	(mcd)	(mcd)
ASMT-YTB0-0AA02	U1	450	648	V2	900	1243	S2	224	238

Notes:

1. The luminous intensity IV, is measured at the mechanical axis of the LED package. The actual peak of the spatial radiation pattern may not be aligned with this axis.

2. Tolerance = $\pm 12 \%$

Part Numbering System

Table 2. Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Red	Green & Blue	Unit	
50	30	mA	
100	100	mA	
120	117	mW	
	4V ^[3]	V	
	125	°C	
- 4	0 to + 110 ^[4]	°C	
- 4	40 to + 110	°C	
	50 100 120 - 44	50 30 100 100 120 117 4V ^[3]	50 30 mA 100 100 mA 120 117 mW 4V ^[3] V 125 °C -40 to + 110 ^[4] °C

Note:

1. Derate linearly as shown in Figure 5a & 5b.

2 Duty Factor = 0.5%, Frequency = 500Hz

3. Driving the LED in reverse bias condition is suitable for short term only

4 Refer to Figure 5a and figure 5b for more information

Table 3. Optical Characteristics ($T_A = 25^{\circ}C$)

	Dominant Wavelength, λ _d (nm) ^[5]		Peak Wavelength <i>,</i> λ _p (nm)	Viewing Angle 2θ½ ^[6] (Degrees)	Luminous Efficac ηv ^[7] (lm/W)	Luminous Efficiency η _e (Im/W)	Total Flux / Luminous Intensity ^[8] Φ _V / I _V (Im/cd)	
Color	Min	Тур.	Мах	Тур.	Тур.	Тур.	Тур.	Тур.
Red	618	621	628	629	115	200	40	2.60
Green	525	528	535	521	115	530	50	2.60
Blue	465	470	475	465	115	70	10	2.60

Notes:

5. The dominant wavelength is derived from the CIE Chromaticity Diagram and represents the perceived color of the device.

6. $\theta_{\frac{1}{2}}$ is the off axis angle where the luminous intensity is $\frac{1}{2}$ the peak intensity

7. Radiant intensity, le in watts / steradian, may be calculated from the equation $le = l_V / \eta_V$, where l_V is the luminous intensity in candelas and η_V is the luminous efficacy in lumens / watt.

8. Φ_V is the total luminous flux output as measured with an integrating sphere at mono pulse condition.

Table 4. Electrical	Characteristics	$(T_A = 25^{\circ}C)$
----------------------------	------------------------	-----------------------

	Forward V _F (V) ^[1]	Forward Voltage, V _F (V) ^[1]			Reverse Voltage V _R @ 10µA
Color	Min	Тур.	Max.	Min.	Min.
Red	1.80	2.10	2.40	4	-
Green	2.80	3.20	3.90	-	4
Blue	2.80	3.20	3.90	-	4

Note:

1. Tolerance \pm 0.1V.

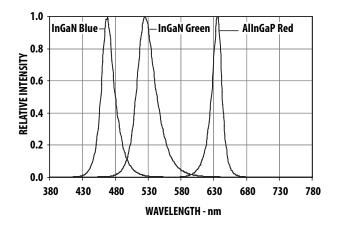


Figure 2. Relative intensity vs. wavelength

Figure 3. Forward current vs. forward voltage

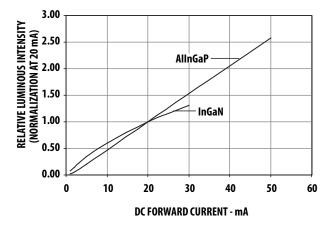


Figure 4. Relative Intensity vs. forward current

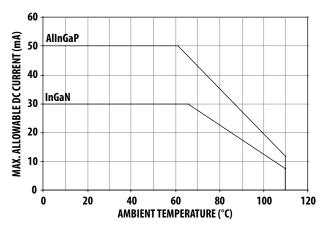
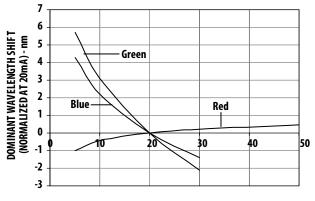



Figure 5a. Maximum forward current vs. ambient temperature. Derated based on TJMAX = 125°C.(3 chips)

FORWARD CURRENT - mA

Figure 6. Dominant wavelength shift (normalized at 20mA)

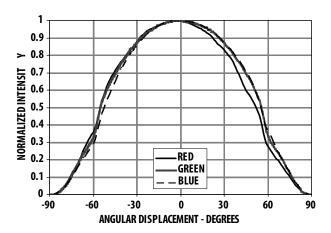


Figure 7b. Radiation Pattern for X axis

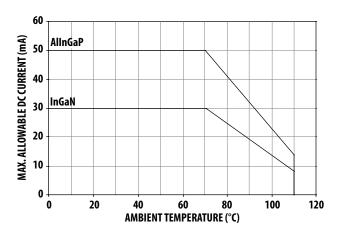


Figure 5b. Maximum forward current vs. ambient temperature. Derated based on $T_JMAX = 125^{\circ}C$. (single chip)

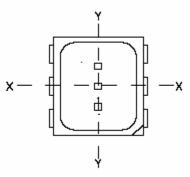


Figure 7a. Component Axis for Radiation Patterns

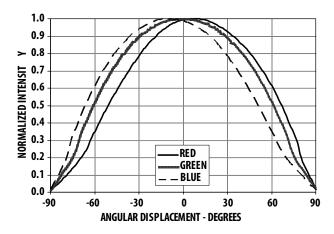
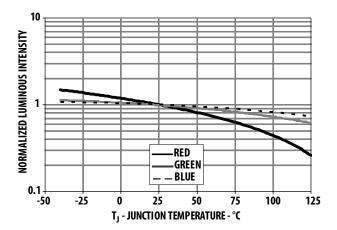
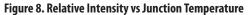




Figure 7c. Radiation Pattern for Y axis

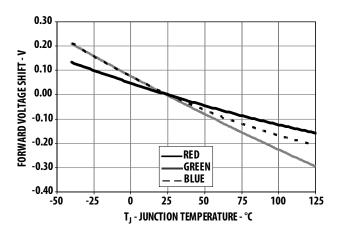


Figure 9. Forward Voltage vs Junction Temperature

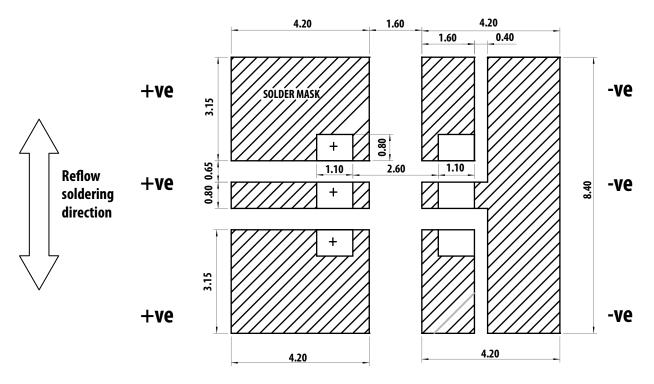
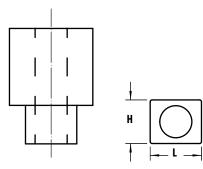



Figure 10. Recommended soldering land pattern.

Dimension of LxH should be > 3.7mm x 3.4mm

Figure 11. Recommended pick and place nozzle tip

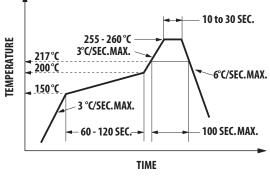


Figure 12. Recommended leaded reflow soldering profile

Figure 13. Recommended Pb-free reflow soldering profile.

Note:

For detail information on reflow soldering of Avago surface mount LEDs, do refer to Avago Application Note AN 1060 Surface Mounting SMT LED Indicator Components

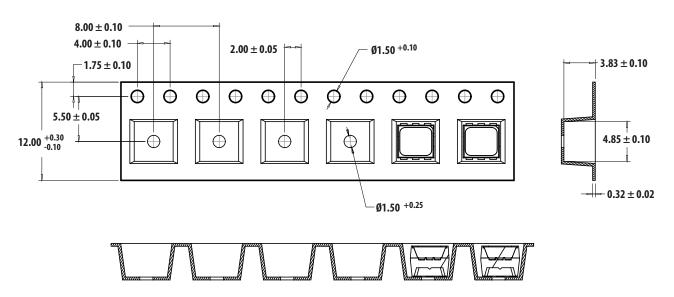
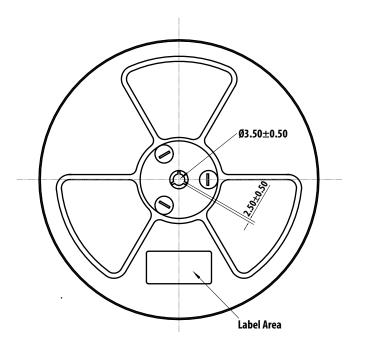



Figure 14. Carrier Tape Dimension

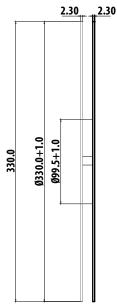


Figure 15. Reel Dimension

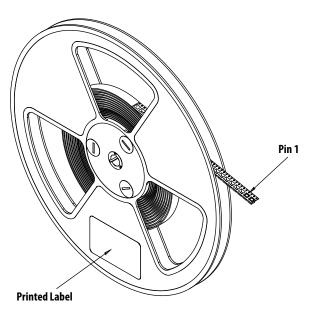


Figure 16. Reeling Orientation

Intensity Bin Select (X₂, X₃)

Individual reel will contain parts from 1 half bin only

	Min	lv Bin (Minimum	ntensity Bin)
X ₂	Red	Green	Blue
0	0	0	0
А	U1	V2	S2

		Number of Half bi	n from X ₂
X ₃	Red	Green	Blue
0	0	0	0
А	4	4	4

Note: 0 represents no maximum bin limit

Color Bin Select (X₄)

Individual Reel will contain part from 1 full bin only

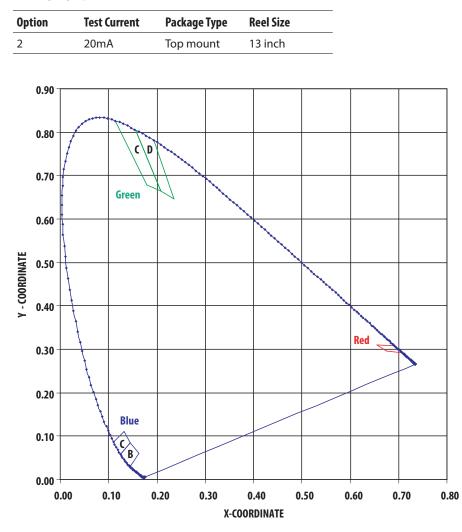
		Color Bin Combi	nations
X ₄	Red	Green	Blue
0	Full distribution	C & D	B & C

Intensity Bin Limits

Bin ID	Min (mcd)	Max (mcd)
S2	224.0	285.0
T1	285.0	355.0
T2	355.0	450.0
U1	450.0	560.0
U2	560.0	715.0
V1	715.0	900.0
V2	900.0	1125.0
W1	1125.0	1400.0
W2	1400.0	1800.0
X1	180.0	2240.0

Tolerance of each bin limit \pm 12%

Color Bin Limits


Red	Min (nm)	Max (nm)
Full distribution	618.0	628.0

Green	Min (nm)	Max (nm)
С	525.0	530.0
D	530.0	535.0

Blue	Min (nm)	Max (nm)
В	465.0	470.0
С	470.0	475.0

Tolerance of each bin limit is $\pm 1 \text{ nm}$

Packaging Option (X₅)

Handling Precaution

The encapsulation material of the product is made of silicone for better reliability of the product. As silicone is a soft material, please do not press on the silicone or poke a sharp object onto the silicone. These might damage the product and cause premature failure. During assembly of handling, the unit should be held on the body only. Please refer to Avago Application Note AN 5288 for detail information.

Moisture Sensitivity

This product is qualified as Moisture Sensitive Level 2a per Jedec J-STD-020. Precautions when handling this moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 Handling of Moisture Sensitive Surface Mount Devices for details.

A. Storage before use

- Unopen moisture barrier bag (MBB) can be stored at <40°C/90%RH for 12 months. If the actual shelf life has exceeded 12 months and the HIC indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating.
- It is not recommended to open the MBB prior to assembly (e.g. for IQC).

B. Control after opening the MBB

- The humidity indicator card (HIC) shall be read immediately upon opening of MBB.
- The LEDs must be kept at <30°C / 60%RH at all time and all high temperature related process including soldering, curing or rework need to be completed within 672 hours.

C. Control for unfinished reel

• For any unuse LEDs, they need to be stored in sealed MBB with desiccant or desiccator at <5%RH.

D. Control of assembled boards

• If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at <5%RH to ensure no LEDs have exceeded their floor life of 672 hours

E. Baking is required if:

- "10%" or "15%" HIC indicator turns pink
- The LEDs are exposed to condition of >30°C / 60% RH at any time.
- The Led floor life exceeded 672hrs.

Recommended baking condition: 60±5°C for 20hrs.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

