

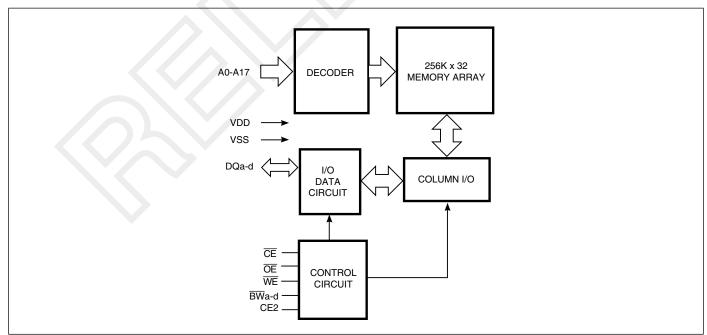
8Mb LOW VOLTAGE, ULTRA LOW POWER PSEUDO CMOS STATIC RAM

ADVANCED INFORMATION SEPTEMBER 2007

FEATURES

- High-speed access time: 55ns
- · CMOS low power operation
 - mW (typical) operating
 - μW (typical) CMOS standby
- · Single power supply
 - 1.7V--1.95V VDD (66WV25632ALL) (70ns)
 - 2.5V--3.6V VDD (66WV25632BLL) (55ns)
- Three state outputs
- Data control for upper and lower bytes
- Industrial temperature available
- Lead-free available

DESCRIPTION


The *ISSI* IS66WV25632ALL/BLL is a high-speed, 8M bit static RAMs organized as 256K words by 32 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When $\overline{\text{CS1}}$ is HIGH (deselected) or when CS2 is LOW (deselected) or when $\overline{\text{CS1}}$ is LOW, CS2 is HIGH and both $\overline{\text{LB}}$ and $\overline{\text{UB}}$ are HIGH, the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable $\overline{\text{(WE)}}$ controls both writing and reading of the memory. A data byte allows Upper Byte $\overline{\text{(UB)}}$ and Lower Byte $\overline{\text{(LB)}}$ access.

The IS66WV25632ALL/BLL is packaged in 90-ball mini BGA (8mm x 13mm). The device is also available for die sales.

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2006 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PIN CONFIGURATION

PACKAGE CODE: B 90 BALL FBGA (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)

1 2 3 4 5 6 7 8 9
A B D01 D00 VSS VDD D031 D03 C D027 D028 VDD VSS D03 D04 D027 D028 VDD C VSS D03 D04 D027 D028 VDD C D026 D05 D026 D025 VDD C VSS D06 D05 D026 D025 VDD C C VSS BWa A3 A4 BWWd VDD C C C C C C C C C C C C C C C C C C

PIN DESCRIPTIONS

A0-A18	Address Inputs
DQx	Data I/O
CE, CE2	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
BWx (x=a-d)	Byte Write Control
VDD	Power
Vss	Ground
NC	No Connection

TRUTH TABLE

CE	CE2	ŌĒ	WE	BWa	BWb	BWc	BWd	DQ0-7	DQ 8-15	DQ 16-23	DQ 24-31	Mode	Power
Н	Χ	Χ	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	High-Z	High-Z	Power Down	(IsB)
Χ	L	Χ	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	High-Z	High-Z	Power Down	(IsB)
L	Н	L	Н	L	L	L	L	Data Out	Data Out	Data Out	Data Out	Read All Bits	(Icc)
L	Н	L	Н	L	Н	Н	Н	Data Out	High-Z	High-Z	High-Z	Read Byte a Bits Only	(Icc)
L	Н	L	Н	Н	L	Н	Н	High-Z	Data Out	High-Z	High-Z	Read Byte b Bits Only	(Icc)
L	Н	L	Н	Н	Н	L	Н	High-Z	High-Z	Data Out	High-Z	Read Byte c Bits Only	(Icc)
L	Н	L	Н	Н	Н	H	L	High-Z	High-Z	High-Z	Data Out	Read Byte d Bits Only	(Icc)
L	Н	Χ	L	L	L	L	L	Data In	Data In	Data In	Data In	Write All Bits	(Icc)
L	Н	Χ	L	L	Н	Н	Н	Data In	High-Z	High-Z	High-Z	Write Byte a Bits Only	(Icc)
L	Н	X	L	Н	L	Н	Н	High-Z	Data In	High-Z	High-Z	Write Byte b Bits Only	(Icc)
L	Н	Х	L	Н	Н	L	Н	High-Z	High-Z	Data In	High-Z	Write Byte c Bits Only	(Icc)
L	Н	X	L	Н	Н	Н	L	High-Z	High-Z	High-Z	Data In	Write Byte d Bits Only	(Icc)
L	Н	Н	Н	X	Х	Х	X	High-Z	High-Z	High-Z	High-Z	Selected, Outputs Disabled	(Icc)

OPERATING RANGE (VDD)

Range	Ambient Temperature	(70ns)	(55ns)	(70ns)
Commercial	0°C to +70°C	1.7V - 1.95V	2.5V - 3.6V	
Industrial	-40°C to +85°C	1.7V - 1.95V	2.5V - 3.6V	
Automotive	-40°C to +105°C			2.5V-3.6V

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD+0.3	V
TBIAS	Temperature Under Bias	-40 to +85	°C
V _{DD}	VDD Related to GND	-0.2 to +3.8	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions VDD	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA 1.7-1.9	95V 1.4	_	V
		loh = -1 mA 2.5-3.	6V 2.2	_	V
Vol	Output LOW Voltage	IoL = 0.1 mA 1.7-1.9	95V —	0.2	V
		IoL = 2.1 mA 2.5-3.	6V —	0.4	V
ViH	Input HIGH Voltage	1.7-1.9	95V 1.4	V _{DD} + 0.2	V
		2.5-3.	6V 2.2	$V_{DD} + 0.3$	V
$V_{IL}^{(1)}$	Input LOW Voltage	1.7-1.9	95V -0.2	0.4	V
		2.5-3.	6V –0.2	0.6	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	-1	1	μA
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, Outputs Di	isabled -1	1	μA

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} V_{IL} (min.) = -1.0V for pulse width less than 10 ns.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit	
CIN	Input Capacitance	$V_{IN} = 0V$	8	pF	_
Соит	Input/Output Capacitance	Vout = 0V	10	pF	

Note:

ACTEST CONDITIONS

Parameter	1.7V-1.95V (Unit)	2.5V-3.6V (Unit)	
Input Pulse Level	0.4V to V _{DD} -0.2	0.4V to VDD-0.3V	
Input Rise and Fall Times	5 ns	5ns	
Input and Output Timing and Reference Level	VREF	VREF	
Output Load	See Figures 1 and 2	See Figures 1 and 2	

	1.7V - 1.95V	2.5V - 3.6V
R1(Ω)	3070	1029
R2(Ω)	3150	1728
VREF	0.9V	1.4V
Vтм	1.8V	2.8V

ACTEST LOADS

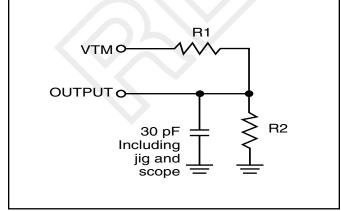


Figure 1

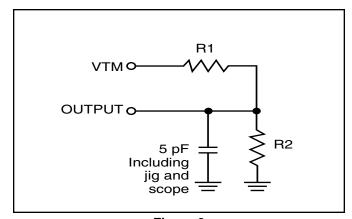


Figure 2

^{1.} Tested initially and after any design or process changes that may affect these parameters.

1.7V-1.95V POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		Max. 70ns	Unit
Icc	VDD Dynamic Operating Supply Current	VDD = Max., IOUT = 0 mA, f = fMAX All Inputs 0.4V or VDD - 0.2V	Com. Ind. Auto. typ. ⁽¹⁾	20 25 30	mA
Icc1	Operating Supply Current	$\frac{V_{DD} = Max., \overline{CS1} = 0.2V}{\overline{WE} = V_{DD} - 0.2V}$ $CS2 = V_{DD} - 0.2V, f = 1_{MHZ}$	Com. Ind.	4 4 10	mA
IsB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} &V_{DD} = Max., \\ &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &\overline{CS1} = V_{IH} \text{ , } CS2 = V_{IL}, \\ &f = 1 \text{ MHz} \end{aligned}$	Com. Ind. Аито.	0.6 0.6 1	mA
	OR				
	ULB Control	$\frac{V_{DD}}{CS1} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}, \overline{I}$			
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{\text{V}_{\text{DD}} = \text{Max.},}{\text{CS1}} \geq \text{V}_{\text{DD}} - 0.2\text{V},\\ & \text{CS2} \leq 0.2\text{V},\\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{DD}} - 0.2\text{V}, \text{ or}\\ & \text{V}_{\text{IN}} \leq 0.2\text{V}, \text{ f} = 0 \end{split}$	Com. Ind. Auto. typ. ⁽¹⁾	150 180 200	μΑ
	OR				
	ULB Control	$\begin{aligned} &V_{DD} = Max., \ \overline{CS1} = V_{IL}, \ CST \\ &\underline{V_{IN}} \geq V_{DD} - 0.2V, \ or \ V_{IN} \leq \\ &\overline{UB} / \overline{LB} = V_{DD} - 0.2V \end{aligned}$			

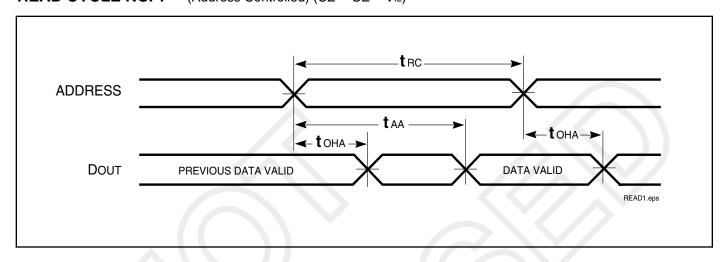
Note:.

^{1.} Typical values are measured at $V_{DD} = 1.8V$, $T_A = 25$ °C and not 100% tested.

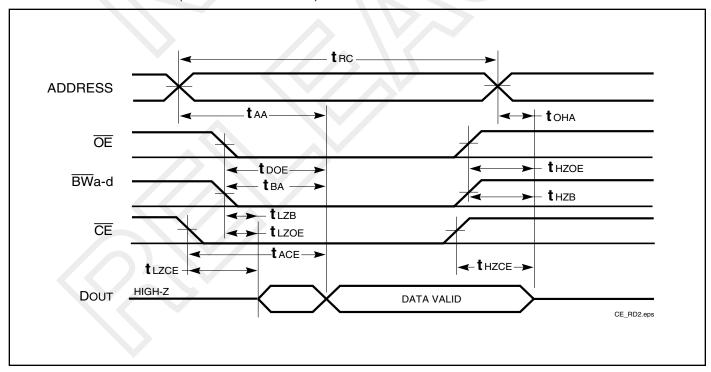
2.5V-3.6V POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		Max. 55ns	Unit
Icc	VDD Dynamic Operating	V _{DD} = Max.,	Com.	25	mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	28	
		All Inputs 0.4V	Auto.	35	
		or V _{DD} – 0.3V	typ. ⁽²⁾	15	
Icc1	Operating Supply	$V_{DD} = Max., \overline{CS1} = 0.2V$	Com.	5	mA
	Current	$\overline{\text{WE}} = \text{V}_{DD} - 0.2\text{V}$	Ind.	5	
		$CS2 = V_{DD} - 0.2V, f = 1M$	нz A uто.	10	
Is _B 1	TTL Standby Current	VDD = Max.,	Com.	0.6	mA
	(TTL Inputs)	VIN = VIH or VIL	Ind.	0.6	
		$\overline{CS1} = V_{IH}$, $CS2 = V_{IL}$,	Auto.	1	
		f = 1 MHz			
	OR				
	ULB Control	$\frac{V_{DD} = Max., V_{IN} = V_{IH} \text{ or } V_{IN}}{CS1} = V_{IL}, f = 0, \overline{UB} = V_{II}$			
IsB2	CMOS Standby	V _{DD} = Max.,	Com.	150	μA
	Current (CMOS Inputs)	$\overline{\text{CS1}} \geq V_{\text{DD}} - 0.2V$,	Ind.	180	·
		$CS2 \leq 0.2V$,	Auto.	200	
		$V_{IN} \ge V_{DD} - 0.2V$, or $V_{IN} \le 0.2V$, $f = 0$	typ. ⁽²⁾	75	
	OR				
	ULB Control	$\begin{aligned} &V_{DD} = Max., \ \overline{CS1} = V_{IL} \\ &\underline{V_{IN}} \geq V_{DD} - 0.2V, \ or \ V_{IN} \\ &\overline{UB} \ / \ \overline{LB} = V_{DD} - 0.2V \end{aligned}$			

At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
 Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.


READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		55 n	S	70 ns	3	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	55	_	70	_	ns
taa	Address Access Time	_	55	_	70	ns
tона	Output Hold Time	10	_	10	_	ns
tacs1/tacs2	CS1/CS2 Access Time	_	55	_	70	ns
t DOE	OE Access Time	_	25		35	ns
thzoe(2)	OE to High-Z Output	_	20	_	25	ns
tLZOE ⁽²⁾	OE to Low-Z Output	5	_	5		ns
thzcs1/thzcs2(2)	CS1/CS2 to High-Z Output	0	20	0	25	ns
tLZCS1/tLZCS2 ⁽²⁾	CS1/CS2 to Low-Z Output	10	_	10		ns
tва	LB, UB Access Time	_	55		70	ns
tнzв	LB, UB to High-Z Output	0	20	0	25	ns
t LZB	LB, UB to Low-Z Output	0		0	_	ns

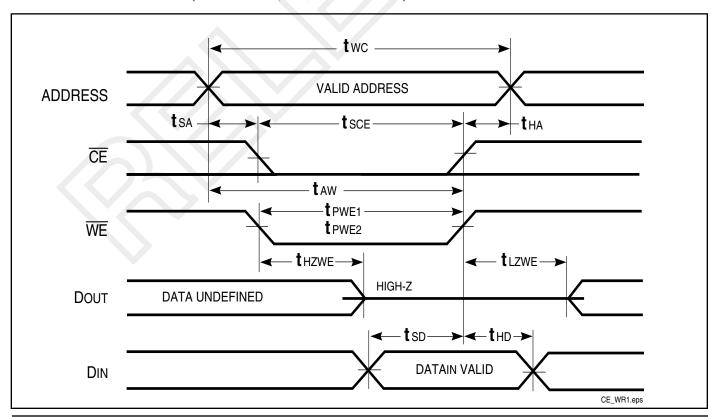

Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.
 Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$)

READ CYCLE NO. 2^(1,3) (\overline{CE} and \overline{OE} Controlled)

- 1. $\overline{\text{WE}}$ is HIGH for a Read Cycle.
- The device is continuously selected. OE, CE = VIL.
 Address is valid prior to or coincident with CE LOW transitions.

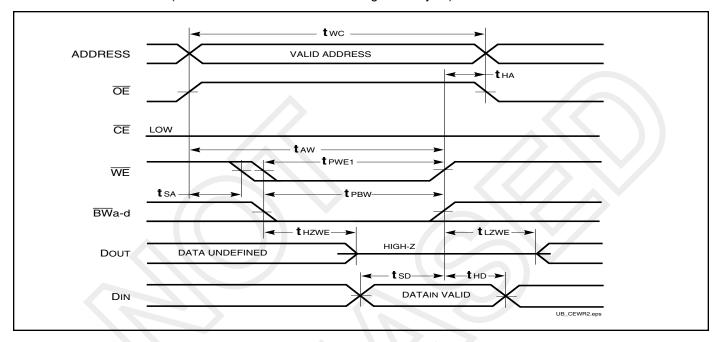
WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

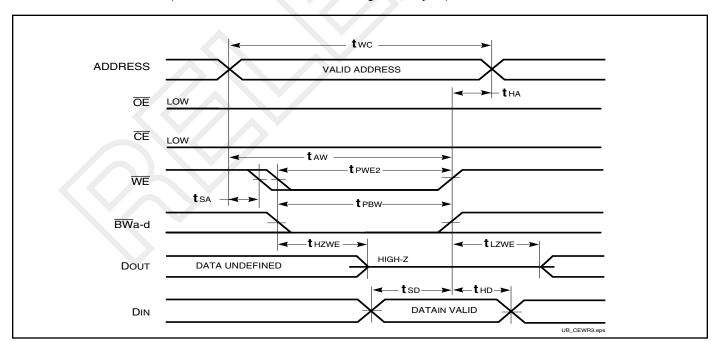

		55 ns		70 n	ıs	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	55	_	70	_	ns
tscs1/tscs	s2 CS1/CS2 to Write End	45	_	60	_	ns
taw	Address Setup Time to Write End	45	_	60	_	ns
tha	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0		ns
t PWB	LB, UB Valid to End of Write	45	_	60		ns
tpwE ⁽⁴⁾	WE Pulse Width	45	_	60		ns
t sD	Data Setup to Write End	25	_	30	_	ns
t HD	Data Hold from Write End	0	_	0		ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	20		30	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	5		5	-	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1. ___
- 2. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 3. Tested with the load in Figure 2. Transition is measured ± 100 mV from steady-state voltage. Not 100% tested.
- 4. tpwe > thzwe + tsp when OE is LOW.

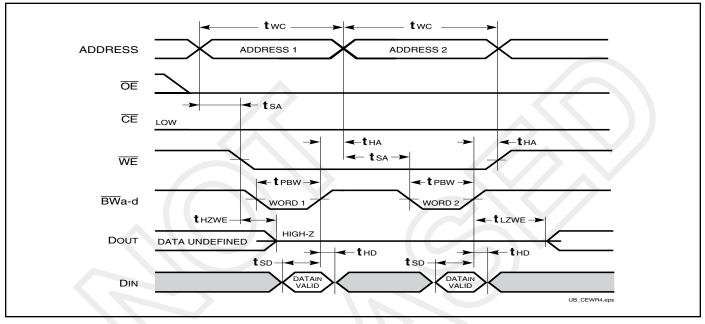
AC WAVEFORMS

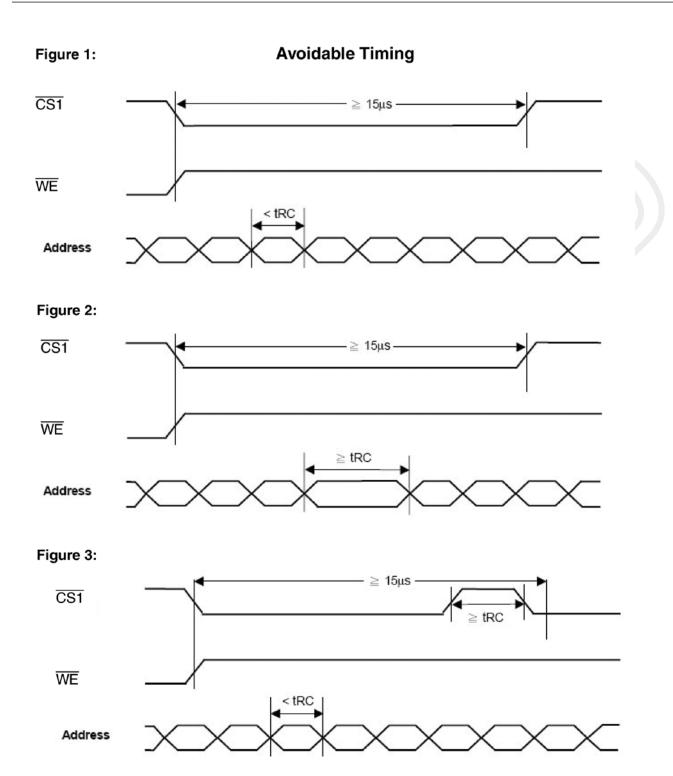

WRITE CYCLE NO. $1^{(1,2)}$ (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)



AC WAVEFORMS

WRITE CYCLE NO. 2 (WE Controlled. OE is HIGH During Write Cycle) (1,2)


WRITE CYCLE NO. 3 (WE Controlled. OE is LOW During Write Cycle) (1)


AC WAVEFORMS

WRITE CYCLE NO. 4 (Byte Controlled, Back-to-Back Write) (1,3)

- 1. The internal Write time is defined by the overlap of and $\overline{\text{WE}} = \text{LOW}$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The t_{SA} , t_{HA} , t_{SD} , and t_{HD} timing is referenced to the rising or falling edge of the signal that terminates the Write.
- 2. Tested with \overline{OE} HIGH for a minimum of 4 ns before \overline{WE} = LOW to place the I/O in a HIGH-Z state.
- 3. WE may be held LOW across many address cycles and the BWa-d pins can be used to control the Write function.

Please avoid address change for less than tRC during the cycle time longer than 15 μs (Figure 1). Figure 2 & 3 provide work around solution for this issue.

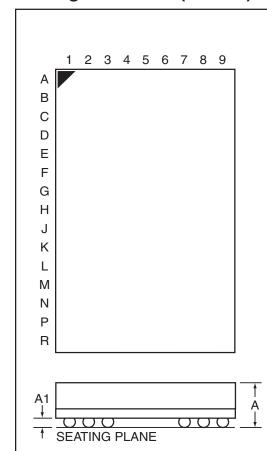
IS66WV25632ALL

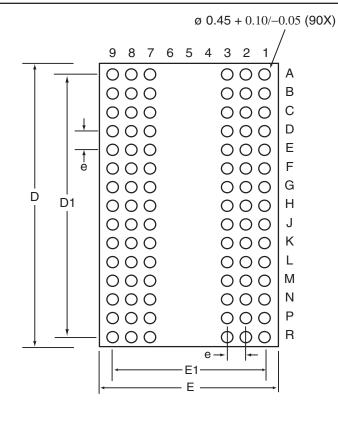
Industrial Range: -40°C to +85°C Voltage Range: 1.7V to 1.95V

Speed (ns)	Order Part No.	Package
70	IS66WV25632ALL-70BLI	mini BGA (8mm x 13mm), Lead-free

IS66WV25632BLL

Commercial Range: 0°C to +70°C Voltage Range: 2.5V to 3.6V


Speed (ns)	Order Part No.	Package	
55	IS66WV25632BLL-55BLI	mini BGA (8mm x 13mm), Lead-free	



PACKAGING INFORMATION

Mini Ball Grid Array

Package Code: B (90-Ball)

Notes:

- 1. Controlling dimensions are in millimeters.
- 2. 0.8 mm Ball Pitch

mBGA - 8mm x 13mm

MILLIMETERS				INCHES			
Sym.	Min.	Тур.	Max.	Min.	Тур.	Max.	
N0. Leads		90					
Α	_	_	1.45	_	_	0.057	
A1	0.25	_	0.40	0.01	_	0.016	
D	12.90	13.00	13.10	0.508	0.512	0.516	
D1	_	11.20	_	_	0.441	_	
E	7.90	8.00	8.10	0.311	0.315	0.319	
E1	_	6.40	_	_	0.252	_	
е	_	0.80	_	_	0.031	_	

Copyright © 2005 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.