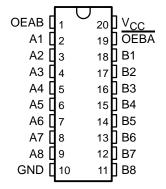
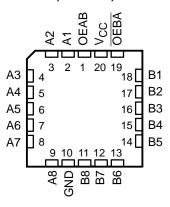
SCLS149C - DECEMBER 1982 - REVISED DECEMBER 2002

- Wide Operating Voltage Range of 2 V to 6 V
- High-Current 3-State Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 8 ns
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Lock Bus-Latch Capability
- True Logic


description/ordering information

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control-function implementation allows for maximum flexibility in timing.


The 'HC623 devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic levels at the output-enable (OEAB and OEBA) inputs.

OEAB and OEBA disable the device so that the buses are effectively isolated. The dual-enable configuration gives the transceivers the capability to store data by simultaneously enabling OEAB and OEBA. Each output reinforces its input in this transceiver configuration. When both OEAB and OEBA are enabled and all other data sources to the two sets of bus lines are in the high-impedance state, both sets of bus lines (16 total) remain at their last states. The 8-bit codes appearing on the two sets of buses are identical.

SN54HC623...J OR W PACKAGE SN74HC623...DW, N, OR NS PACKAGE (TOP VIEW)

SN54HC623 . . . FK PACKAGE (TOP VIEW)

ORDERING INFORMATION

TA	T _A PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74HC623N	SN74HC623N
4000 +- 0500	COIC DW	Tube	SN74HC623DW	110000
–40°C to 85°C	SOIC – DW	Tape and reel	SN74HC623DWR	HC623
	SOP - NS	Tape and reel	SN74HC623NSR	HC623
	CDIP – J	Tube	SNJ54HC623J	SNJ54HC623J
–55°C to 125°C	CFP – W	Tube	SNJ54HC623W	SNJ54HC623W
	LCCC – FK	Tube	SNJ54HC623FK	SNJ54HC623FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

INP	UTS	ODEDATION
OEBA	OEAB	OPERATION
L	L	B data to A bus
Н	Н	A data to B bus
Н	L	Isolation
L	Н	B data to A bus, A data to B bus

logic diagram (positive logic)

To Seven Other Transceivers

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		–0.5 V t	to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see	ee Note 1)	±2	20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _C	C) (see Note 1)	±2	20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})		±3	35 mA
Continuous current through V _{CC} or GND		±7	'0 mA
Package thermal impedance, θ _{JA} (see Note 2)	: DW package	58	3°C/W
	N package		9°C/W
	NS package	60)°C/W
Storage temperature range, T _{sto}			150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			SN	SN54HC623		SN	174HC62	23	LINIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		2	5	6	2	5	6	V
		V _{CC} = 2 V	1.5			1.5			
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 6 V	4.2		ih	4.2			
		V _{CC} = 2 V		Ş	0.5			0.5	
VIL	Low-level input voltage	V _{CC} = 4.5 V		24	1.35			1.35	V
		VCC = 6 V		6	1.8			1.8	
٧ı	Input voltage		0 2	5	VCC	0		VCC	V
VO	Output voltage		0) The state of the	VCC	0		VCC	V
		V _{CC} = 2 V	Q		1000			1000	
Δt/Δν	Input transition rise/fall time	V _{CC} = 4.5 V			500			500	ns
		VCC = 6 V			400			400	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

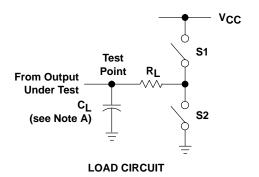
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST COMPITIONS		.,	Т	A = 25°C	;	SN54H	IC623	SN74HC623		
PARAMETER		TEST CONDITIONS		vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
				2 V	1.9	1.998		1.9		1.9		
			$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		4.4		
۷он		VI = VIH or VIL		6 V	5.9	5.999		5.9		5.9		V
			$I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84		
			$I_{OH} = -7.8 \text{ mA}$	6 V	5.48	5.8		5.2	!h	5.34		
		VI = VIH or VIL		2 V		0.002	0.1		0.1		0.1	
			I _{OL} = 20 μA	4.5 V		0.001	0.1	4	0.1		0.1	
VOL				6 V		0.001	0.1	, A	0.1		0.1	V
			IOL = 6 mA	4.5 V		0.17	0.26	20	0.4		0.33	
	=		$I_{OL} = 7.8 \text{ mA}$	6 V		0.15	0.26	O _V	0.4		0.33	
IJ	OEAB or OEBA	V _I = V _{CC} or 0		6 V		±0.1	±100	7	±1000		±1000	nA
loz	A or B	VO = VCC or 0		6 V		±0.01	±0.5		±10		±5	μΑ
Icc	_	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160		80	μΑ
Ci	OEAB or OEBA			2 V to 6 V		3	10		10		10	pF

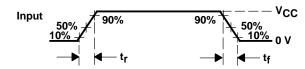
switching characteristics over recommended operating free-air temperature range, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

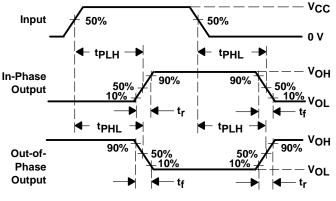
	FROM	то		TA	T _A = 25°C		SN54H	IC623	SN74H	C623	
PARAMETER	(INPUT)	(OUTPUT)	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		29	105		160		130	
t _{pd}	A or B	B or A	4.5 V		10	21		32		26	ns
·			6 V		8	18		27		22	
			2 V		112	210		315		265	
t _{en}	OEBA	Α	4.5 V		27	42		63		53	ns
			6 V		20	36		54		45	
			2 V		40	150		225		190	
^t dis	OEBA	А	4.5 V		18	30		45		38	ns
				6 V		16	26	.<	38		32
			2 V		112	210	Ź	315		265	
t _{en}	OEAB	В	4.5 V		27	42	200	63		53	ns
			6 V		20	36	D.	54		45	
			2 V		40	150		225		190	
t _{dis}	OEAB	В	4.5 V		18	30		45		38	ns
			6 V		16	26		38		32	
			2 V		20	60		90		75	
t _t		A or B	4.5 V		8	12		18		15	ns
			6 V		6	10		15		13	

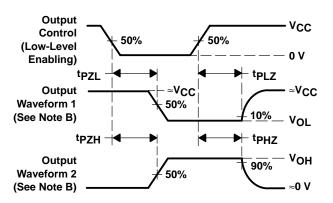
switching characteristics over recommended operating free-air temperature range, C_L = 150 pF (unless otherwise noted) (see Figure 1)


	FROM	то		T,	\ = 25°C	;	SN54H	C623	SN74H	IC623		
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
			2 V		44	135		200		170		
^t pd	A or B	B or A	4.5 V		14	27		40		34	ns	
•			6 V		11	23		34		29		
	 OEBA		2 V		130	270		405		335		
		A	4.5 V		31	54		81		67	ns	
			6 V		23	46	Q	69		56		
t _{en}			2 V		130	270	, '0,	405		335		
	OEAB	В	В	4.5 V		31	54	^l q _C	81		67	ns
			6 V		23	46	40	69		56		
	t		2 V		45	210		315		265		
t _t		A or B	A or B	A or B	4.5 V		17	42		63		53
			6 V		13	36		53		45		

operating characteristics, $T_A = 25^{\circ}C$


PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance per transceiver	No load	40	pF


PARAMETER MEASUREMENT INFORMATION



PARAI	METER	RL	CL	S1	S2
	tPZH	1 k Ω	50 pF	Open	Closed
^t en	tPZL	1 K22	or 150 pF	Closed	Open
٠	tPHZ	1 k Ω	50 pF	Open	Closed
^t dis	tPLZ	1 K22	50 pr	Closed	Open
t _{pd} or t _t			50 pF or 150 pF	Open	Open

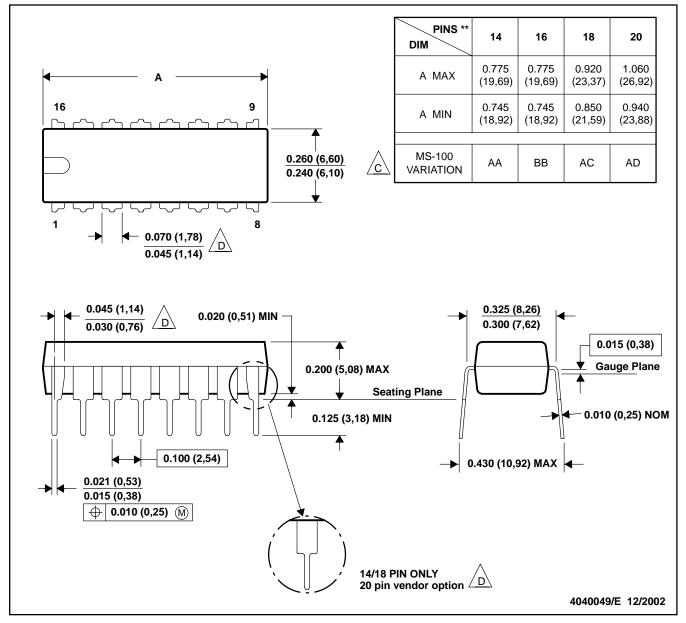
VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{O} = 50 \Omega$, $t_{f} = 6 \text{ ns}$.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.


Figure 1. Load Circuit and Voltage Waveforms

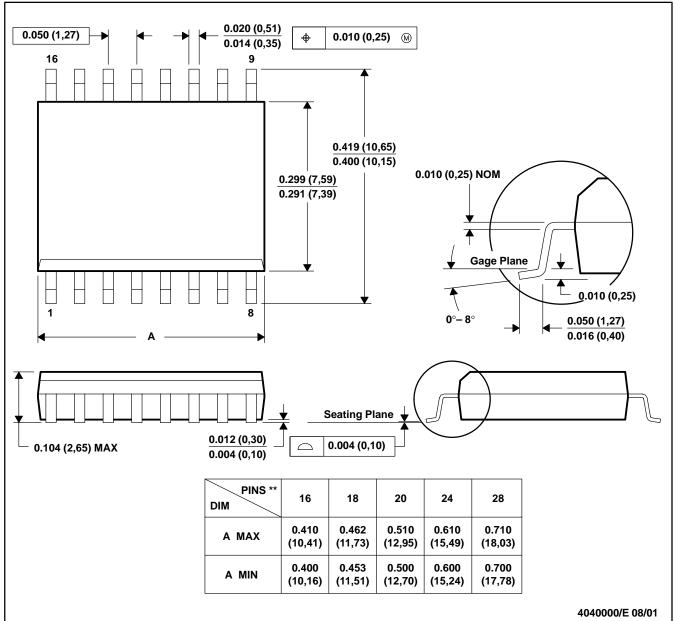
N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

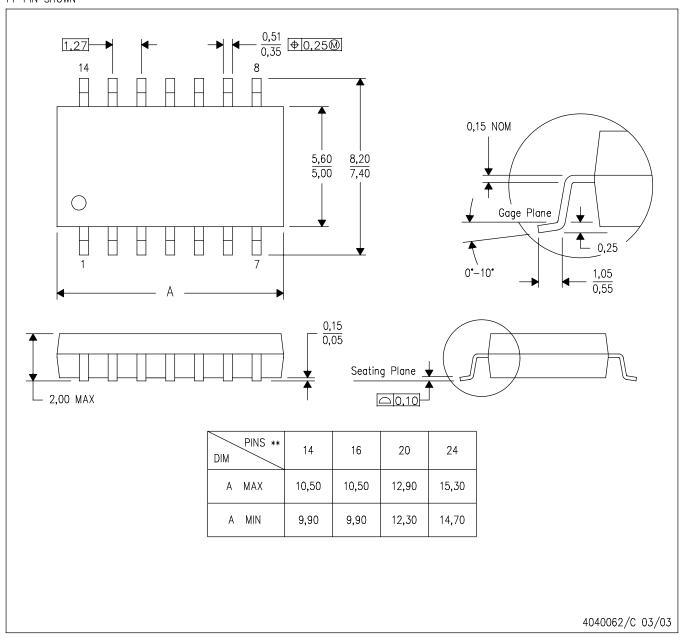

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PINS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013

14-PIN SHOWN

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated