

PRELIMINARY

Data Sheet

May 3, 2004

FN7332

700MHz Slew Enhanced VFA

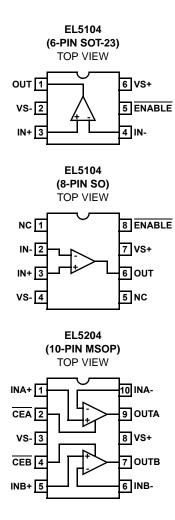
élantec.

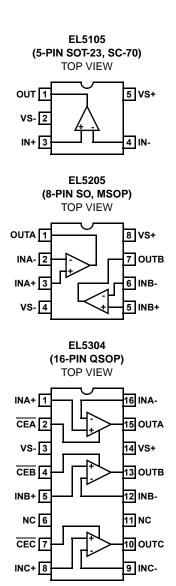
The EL5104, EL5105, EL5204, EL5205, and EL5304 represent high-speed voltage feedback amplifiers

based on the current feedback amplifier architecture. This gives the typical high slew rate benefits of a CFA family along with the stability and ease of use associated with the VFA type architecture. This family is available in single, dual, and triple versions, with 200MHz, 400MHz, and 700MHz versions. These are all available in single, dual and triple versions. This family operates on single 5V or ±5V supplies from minimum supply current. The EL5104 and EL5204 also feature an output enable function, which can be used to put the output in to a high-impedance mode. This enables the outputs of multiple amplifiers to be tied together for use in multiplexing applications.

Ordering Information

PART				
NUMBER	PACKAGE	TAPE & REEL	PKG. DWG. #	
EL5104IS	8-Pin SO	-	MDP0027	
EL5104IS-T7	8-Pin SO	7"	MDP0027	
EL5104IS-T13	8-Pin SO	13"	MDP0027	
EL5104IW-T7	6-Pin SOT-23	7" (3K pcs)	MDP0038	
EL5104IW-T7A	6-Pin SOT-23	7" (250 pcs)	MDP0038	
EL5105IC-T7	5-Pin SC-70	7" (3K pcs)	P5.049	
EL5105IC-T7A	5-Pin SC-70	7" (250 pcs)	P5.049	
EL5105IW-T7	5-Pin SOT-23	7" (3K pcs)	MDP0038	
EL5105IW-T7A	5-Pin SOT-23	7" (250 pcs)	MDP0038	
EL5204IY	10-Pin MSOP	-	MDP0043	
EL5204IY-T7	10-Pin MSOP	7"	MDP0043	
EL5204IY-T13	10-Pin MSOP	13"	MDP0043	
EL5205IS	8-Pin SO	-	MDP0027	
EL5205IS-T7	8-Pin SO	7"	MDP0027	
EL5205IS-T13	8-Pin SO	13"	MDP0027	
EL5205IY	8-Pin MSOP	-	MDP0043	
EL5205IY-T7	8-Pin MSOP	7"	MDP0043	
EL5205IY-T13	8-Pin MSOP	13"	MDP0043	
EL5304IU	16-Pin QSOP	-	MDP0040	
EL5304IU-T7	16-Pin QSOP	7"	MDP0040	
EL5304IU-T13	16-Pin QSOP	13"	MDP0040	


Features


- · Specified for 5V or ±5V applications
- Power-down to 17μA
- -3dB bandwidth = 700MHz
- ±0.1dB bandwidth = 45MHz
- Low supply current = 9.5mA
- Slew rate = 3000V/µs
- Low offset voltage = 10mV max
- Output current = 160mA
- A_{VOL} = 1400
- Diff gain/phase = 0.01%/0.02°C

Applications

- Video amplifiers
- · PCMCIA applications
- A/D drivers
- · Line drivers
- Portable computers
- · High speed communications
- · RGB applications
- · Broadcast equipment
- · Active filtering

Pinouts

EL5104, EL5105, EL5204, EL5205, EL5304

Absolute Maximum Ratings (T_A = 25°C)

Supply Voltage between V _S + and GND	Storage Temperature Range65°C to +150°C
Input Voltage	Ambient Operating Temperature Range40°C to +85°C
Differential Input Voltage	Operating Junction Temperature
Maximum Output Current	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

DC Electrical Specifications $V_S = \pm 5V$, GND = 0V, $T_A = 25$ °C, $V_{CM} = 0V$, $V_{OUT} = 0V$, $V_{ENABLE} = GND$ or OPEN, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
V _{OS}	Offset Voltage	EL5104, EL5105, EL5204, EL5205	-10	3	10	mV
		EL5304	-18	5	18	mV
TCV _{OS}	Offset Voltage Temperature Coefficient	Measured from T _{MIN} to T _{MAX}		10		μV/°C
IB	Input Bias Current	V _{IN} = 0V		8	30	μA
Ios	Input Offset Current	V _{IN} = 0V		4	15	μA
TCI _{OS}	Input Bias Current Temperature Coefficient	Measured from T _{MIN} to T _{MAX}		50		nA/°C
PSRR	Power Supply Rejection Ratio		60	70		dB
CMRR	Common Mode Rejection Ratio	V _{CM} from -3V to +3V	56	62		dB
CMIR	Common Mode Input Range	Guaranteed by CMRR test	-3		+3	V
R _{IN}	Input Resistance	Common mode	50	120		ΚΩ
C _{IN}	Input Capacitance	SO package		1		pF
I _{S,ON}	Supply Current - Enabled		8.5	9.5	11	mA
I _{S,OFF}	Supply Current - Shut Down	V _S +		0	10	μA
		V _S -		17	70	μA
PSOR	Power Supply Operating Range		4		13.2	V
AVOL	Open Loop Gain	$R_L = 1k\Omega$ to GND	55	65		dB
		$R_L = 150\Omega$ to GND		60		dB
V _{OP}	Positive Output Voltage Swing	$R_L = 150\Omega$ to 0V	3.6	3.8		V
V _{ON}	Negative Output Voltage Swing	$R_L = 150\Omega$ to 0V		-3.8	-3.6	٧
l _{OUT}	Output Current	$R_L = 10\Omega$ to 0V	±90	±160		mA
V _{IH-EN}	ENABLE pin Voltage for Power Up		(V _S +) -2.5		(V _S +) -1.0	V
V _{IL-EN}	ENABLE pin Voltage for Shut Down				0.5	V

Closed Loop AC Electrical Specifications $V_S = +5V$, GND = 0V, $T_A = 25^{\circ}C$, $V_{CM} = +1.5V$, $V_{OUT} = +1.5V$, $V_{CLAMP} = +5V$, $V_{ENABLE} = +5V$, $A_V = +1$, A

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
BW	-3dB Bandwidth (V _{OUT} = 200mV _{P-P})	$V_S = \pm 5V, A_V = 1, R_F = 0\Omega$		700		MHz
SR	Slew Rate	$R_L = 150\Omega$, $V_{OUT} = -2.5V$ to +2.5V	2000	3000	5000	V/µs
t_{R},t_{F}	Rise Time, Fall Time	±0.1V step		0.4		ns
os	Overshoot	±0.1V step		10		%
t _{PD}	Propagation Delay	±0.1V step		0.4		ns
t _S	0.1% Settling Time	$V_S = \pm 5V$, $R_L = 500\Omega$, $A_V = 1$, $V_{OUT} = \pm 2.5V$		7		ns
dG	Differential Gain	$A_V = 2$, $R_L = 150\Omega$, $V_{INDC} = -1$ to +1V		0.01		%
dP	Differential Phase	$A_V = 2$, $R_L = 150\Omega$, $V_{INDC} = -1$ to +1V		0.02		0
e _N	Input Noise Voltage	f = 10kHz		10		nV/√Hz
i _N	Input Noise Current	f = 10kHz		54		pA/√Hz
t _{DIS}	Disable Time			180		ns
t _{EN}	Enable Time			650		ns
I _{EN}	Enable Pin Current	Enabled, V _{EN} = 0V	-1		1	μA
		Disabled, V _{EN} = 5V	5		25	μΑ

Typical Performance Curves

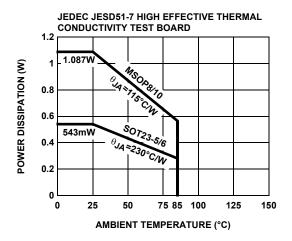


FIGURE 1. PACKAGE POWER DISSIPATION VS AMBIENT TEMPERATURE

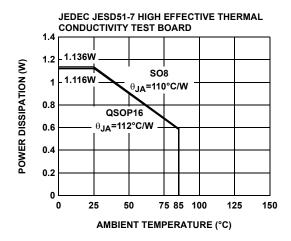


FIGURE 2. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Typical Performance Curves

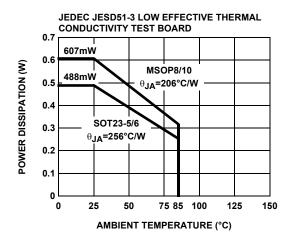


FIGURE 3. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

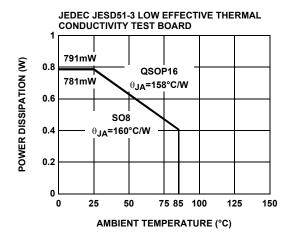


FIGURE 4. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com